c) Se puede utilizar la frecuencia relativa acumulada y restar a 1 el valor del Fi anterior. d) Se pide el percentil 65. En distribuciones agrupadas es necesario determinar el intervalo [Li-1, Li) en el que se encuentra el cuantil. Este intervalo se determina siguiendo exactamente los mismos procedimientos mencionados en el apartado anterior; se realiza el mismo que en el caso de datos no agrupados. La diferencia radica en que se obtendrá un intervalo en lugar de un valor. Una vez se tiene el intervalo [Li-1, Li), el cuartil se calcula: a ·n − N i−1 Cuartil = Li−1 + 100 Quantil ai donde, ni Li-1 Límite inferior de la clase del percentil Ni-1 Es la frecuencia absoluta acumulada de la clase «anterior» a la clase del percentil ni Es la frecuencia de la clase del percentil ai Es la amplitud de la clase del percentil
Ejercicio 6 Todos los apartados siguientes al de la creación de la tabla dependen de esta, que ayuda a calcular cada uno de los estadísticos. a) Nos preguntan: la media, la moda y la mediana. b) El rango, como ya debes saber es la diferencia entre máximo y mínimo valor de la variable, y el rango intercuartílico es la diferencia entre el cuartil primero y tercero. c) Nos preguntan el percentil 80, ya que nos habla de los valores más altos y a partir de este, se calcula el porcentaje. d) Se debe aplicar el teorema de Thebyshev a partir de la desviación típica. e) Aplicación de las propiedades de la media, la moda y la mediana, donde todos los factores que suman, restan, multiplican o dividen a la variable les afectan. En este caso: se multiplicaría por 0.05, por el 5 % y se sumaría a los tres estadísticos 50 euros. f) Lo que se pide es comparar la variabilidad o la dispersión de dos muestras diferentes. En estos casos, lo más correcto es calcular el coeficiente de variación de Pearson, CV. Por este motivo, es necesario calcular tanto la media como la desviación típica de las variables.
P. Juan Verdoy / M. J. Beltrán / M. J. Peris - ISBN: 978-84-15444-38-1
48
Problemas resueltos de estadística aplicada a las ciencias sociales - UJI - DOI: http://dx.doi.org/10.6035/Sapientia100