2010 Senior Design Brochure

Page 35

Team 31: Air Steam Hybrid Engine Sponsored by Bevilacqua Knight Inc. Sponsor Advisor: Michael Brookman

Team 31: Michael Cocuzza, Brian Child, Faculty Advisor Prof. Thomas Barber and Douglas Read

The design team has designed and fabricated an engine model that will run using compressed air and steam as the working fluids. In the initial automobiles, steam engines were as common as internal combustion gasoline powered engines. Some advantages of external combustion steam cars are that they can create a large amount of torque with a small engine and that they can run on any number of different types of fuel. Also, external combustion steam cars can be more efficient than their internal combustion counterparts because they do not use certain components such as catalytic converters and transmissions. However, various factors like long start-up times and unsafe open flames pushed internal combustion to the forefront of the auto industry. In this design project, the sponsor started the team with the solutions to rectify most of the problems encountered in earlier generation steam cars. Applying these design ideas, the design team developed a new system that could be commercially relevant. First, a thermodynamic model of the new engine was developed in a Matlab code. This helped size the new engine components to be retrofitted into a SMART car. Once the components were acquired, the SMART car was assembled to be able to run using water and compressed air as the working fluids and propane as the fuel. Using the running engine, the design team was able to calibrate a Matlab code that would allow for sizing of different engines such as fleet vehicles or an everyday sedan.

Senior Design Project Program 2009-2010

Page 35


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.