Page 1

Traq Ltd.   30612  Salem  Drive   Bay  Village,  OH  44140  

                                        Protected  by  U.S.  Patents  5,524,637;  6,073,489;   6,098,458;  6,308,565;  6,430,997;   6,749,432;  6,765,726;  6,876,496;   7,038,855;  7,359,121     ©Traq  Ltd  2009/TRAZER  Technologies  2009  

Table of  Contents  

Table of  Contents  

Forward .................................................................................................................................................................................................................................................  2   1:  TRAZER  Summary  ..............................................................................................................................................................................................................................  3   2:  Characterizing  and  Creating  an  Accurate  Model  of  Sport  .................................................................................................................................................................  6   3:  TRAQ  3D  Athlete  Development  Program  ........................................................................................................................................................................................  15   4:  PowerTRAQ  .....................................................................................................................................................................................................................................  20   5:  Unpredictability  Training  ................................................................................................................................................................................................................  22   6:  Sports  Injury  Prevention  .................................................................................................................................................................................................................  24   7:  TRAZER®  Burst  Training  ..................................................................................................................................................................................................................  26   8:  TRAZER®  Performance  Assessments  ...............................................................................................................................................................................................  28   9:  Key  TRAZER  Definitions  ...................................................................................................................................................................................................................  35   10:  The  TRAQ  3D  Way  .........................................................................................................................................................................................................................  41   11:  TRAZER  2  Sport  Simulator  .............................................................................................................................................................................................................  65  



The TRAQ  3D  Team  

TRAQ 3D’s  founders  are  the  world  leaders  in  the  use  of  3D  computer   simulation  for  the  enhancement  of  health,  physical  performance,  physical   and  brain  fitness.  There  are  currently  ten  U.S.  patents  protecting  the   innovative  science  and  technology  behind  the  TRAZER®  computer-­‐based   simulator  that  is  the  core  of  our  Athlete  Development  Program.  All  of  this   science  and  technology  is  committed  to  helping  you  and  your  clients   achieve  their  goals!  

A Word  from  Barry  J.  French,   TRAZER®  Inventor  &  TRAQ  3D  Co-­‐Founder   “When  developing  TRAZER®,  we  asked  if  instead  of  being  limited   to  conventional  strength  and  endurance  programs,  training  drills   and  coaching  observations,  athletes  could  be  trained  and  tested   like  astronauts  and  fighter  pilots.  What  if  we  had  a  ‘sports   simulator’  much  like  the  flight  simulators  used  by  NASA  and  the   military?   Using  the  sports  simulator  would  be  like  putting  the  athlete   inside  a  giant  computer  to  compete  against  virtual  opponents   and  graphic  simulations  specially  designed  to  demand  the  same   visual  skills,  reaction  decisions  and  movements,  agility  and   quickness  of  actual  game  situations.  Visual  perception,  reaction   time,  acceleration,  deceleration,  agility,  jumping;  lateral,  diagonal,  


forward and  backward  movement  speed,  anaerobic  power...  all   would  be  challenged  and  measured.   The  computer  would  break  down  every  movement  into  its   component  parts  in  essentially  real  time.  The  athlete’s  efforts   would  be  rewarded  with  real-­‐time  feedback  and  game-­‐like   scoring.  We’d  provide  a  detailed  movement  skills  analysis   comparing  performance  in  all  directions.  Previously  undetectable   weaknesses  and  imbalances  would  be  immediately  identified.   Specially  designed  simulator-­‐based  training  programs  would   correct  and  optimize  performance.  It  could  be  the  tool  to  develop   the  ultimate  athlete.   TRAZER®  is  that  sport  simulator;  it  is  the  only  technology  that   accurately  ‘simulates’  the  demands  of  actual  competition.  But   more  than  great  technology  is  required  to  develop  the  athlete  of   the  future.  With  TRAQ  3D,  we’ve  created  the  specially-­‐tuned   environment,  patented  software  protocols  and  programs,  service,   support  and  educational  programs  to  fully  exploit  the  power  of   simulation.”


TRAZER Summary  

Movement defines  functional  capability  –  from  sports  to  the  most  basic   requirements  for  independent  living   Job  or  sports  injuries,  arthritis,  obesity,  heart  disease,  diabetes,  stroke  and   other  neurological  disorders  and  diseases,  and  simple  inactivity  whether  in   children  or  seniors  –  all  affect  movement.  And  in  each  case,  movement  is   essential  to  the  full  restoration  of  health.  Measurement  and  enhancement   of  movement  form  the  core  of  virtually  every  rehabilitation  or  training   program.   TRAZER  allows  the  clinician,  trainer  or  coach  to  view  disability  and   capability  as  a  continuum  of  the  capacity  for  movement.  TRAZER  is  equally   applicable  to  a  patient  using  braces  or  crutches,  or  to  an  elite  athlete.   Measurement  and  control  of  movement  and  physiological  response  are   the  foundation  of  TRAZER-­‐based  programs   TRAZER’s  patented  technology  merges  real-­‐time,  3-­‐dimensional  tracking  of   body  position  with  simulation  technology  to  deliver  game-­‐like,  interactive   simulations  controlled  by  actual  body  movement.  Progressive  movement   challenges  designed  to  motivate  and  improve  performance  can  be  as   gentle  as  raising  a  hand  or  as  demanding  as  a  series  of  reaction-­‐timed   vertical  jumps.  TRAZER  allows  unconstrained,  free  space  movement  that   can  be  easily  controlled  within  individual  limitations  –  even  by  telemetered   heart  rate.  And  every  movement  is  precisely  measured.   This  combination  of  engaging  visual  motivation,  real-­‐time  visual  feedback,   computer-­‐controlled  progression  and  precise  measurement  has  proved   uniquely  effective  for  rehabilitation  and  training  of  functional  strength  and  


power, range  of  motion,  balance,  coordination,  reaction  time,  movement   speed,  and  cardiopulmonary  condition.   Reaction  time,  acceleration,  deceleration,  stability  and  control  of  body   movement  are  key  capacity  measurements   TRAZER’s  optical  sensing  system  tracks  in  real  time  positional  changes  of   the  user’s  body  core  (the  pelvic  area)  in  response  to  interactive,  computer   generated  simulations.  Control  of  one’s  core  is  an  important  factor  in   determining  skilled,  purposeful  movement.  By  measuring  this  single   variable,  a  real  measure  of  functional  performance  can  be  made  -­‐  that  of   the  user’s  ability  to  successfully  navigate  his  or  her  environment.  Control   of  the  core  during  domain  specific  activities  in  the  healthy  user  with   smooth,  bell  shaped  acceleration  curves  and  minimal  variability  will  be   indicative  of  skilled  movement.  By  contrast,  injured  and  poorly  trained   individuals  will  exhibit  inconsistent  velocity  profiles  and  high  variability   during  movement.  TRAZER  also  provides  protocols  for  the  user’s  upper   limbs.     TRAZER  planned  and  unplanned  stimuli  (cues)  prompt  the  user  for  the   desired  response,  while  high-­‐speed  positional  tracking  enables  real  time   quantification  of  such  performance  parameters  as  reaction  time,  power   (the  product  of  velocity  and  acceleration)  and  moment  to  moment  core   position  (body  Center  of  Gravity),  jump  height,  etc.  TRAZER  gives  the   clinician,  coach  or  trainer  the  user-­‐friendly  tools  to  precisely  control  the   direction,  distance  and  rate  the  user  travels  in  response  to  both  unplanned   and  planned  movement    

TRAZER is  the  tool  to  break  down  complex  movement  into  divisible   components   Each  divisible  component  of  movement  is  trained  and  refined  using  the   power  of  computer  simulation,  with  real  time  feedback  and  realistic  stimuli   that  greatly  accelerate  the  learning  process.  TRAZER  exploits  the  Specific   Adaptation  to  Imposed  Demands  (SAID)  principle.  Beginning  with  simple,   easily  performed  reactive  movement  tasks,  TRAZER  varies  the  intensity  and   complexity  of  the  reactive  movement  activities.  The  user’s  compliance   with  the  exercise  prescription  determines  the  rate  at  which  he  or  she  can   be  progressed.  TRAZER  protocols  range  as  follows:   Low  Amplitude  Protocols  are  characterized  by  low  stress   displacements  of  the  subject’s  body  core  –  these  activities  do  not   require  the  subject  to  change  his  or  her  postural  base  of  support.   Emphasis  is  on  balance  activities  and  effective  weight  shifting.  The   goal  of  these  protocols  is  to  improve  the  subject’s  ability  to   maintain  equilibrium  and  control  of  the  center  of  gravity/mass   (body  core)  within  a  given  stance  (feet  fixed),  and  to  improve   fundamental  postural  control,  with  incorporation  of  cognitive   demands  with  simple  movement  tasks.   Intermediate  Amplitude  Protocols  are  provided  with  the  goal  of   improving  symmetry  in  basic  movements  by  minimizing  variability   in  the  movement  rate,  as  well  as  protocols  designed  to  enhance   dynamic  balance,  agility  and  proprioception  and  cardiovascular   conditioning.     High  Amplitude  Protocols  develop  movement  skills  and  strategy.   Emphasis  is  on  training  reaction  and  anticipation  skills  while   enhancing  the  ability  to  confidently  perform  complex  movements.   This  phase  is  characterized  by  sports  and  activity  specific  drills   designed  to  achieve  maximal  function.  The  movement  skills  used  

in this  phase  demand  maximal  accelerations  and  decelerations   with  smooth  application  of  power.  

By tracking and controlling key performance and physiological parameters, TRAZER improves safety and provides the feedback that will enhance motivation and compliance. TRAZER’s unique  capability  to  monitor  heart  rate  via  telemetry  and   measure  and  report  caloric  energy  expenditure  during  free  movement   activities  provides  real-­‐time  exercise  control  and  motivation.  TRAZER  can   provide  individualized  motivational  targets  while  automatically  limiting  the   demands  of  each  activity  to  match  the  current  fitness  level  of  any   participant.     By  offering  an  exercise  environment  that  is  safer  and  more  controlled  than   the  typical  fitness  environment,  and  by  providing  engaging,  game-­‐like   activities  that  automatically  adapt  to  individual  abilities  and  conditioning,   TRAQ  3D  creates  effective  new  programs  for  weight  management  and   wellness,  and  functional  training  for  demanding  sports  and  work   environments  as  well  as  safe,  enjoyable  activities  of  daily  living.  

Summary of  Key  Points   •

With TRAZER,  reaction  time,  acceleration,  deceleration,  velocity,   power  and  moment-­‐to-­‐moment  stance  analysis  provide  key   measurements  of  sport-­‐specific  movement.  

1: TRAZER  Summary   4  

TRAZER visual  stimuli  (cues)  prompt  the  client  to  initiate  and   execute  the  desired  planned  or  unplanned  movement  responses   while  high-­‐speed  position  tracking  enables  virtually  real-­‐time   quantification.    

TRAZER gives  the  trainer  user-­‐friendly  tools  to  control  the   direction,  distance  and  rate  the  client  travels  in  response  to  both   unplanned  and  planned  movement  cues.  TRAZER  games,   protocols  and  drills  are  intended  to  allow  the  physiological   (CVP/metabolic)  and  musculoskeletal  (joint  and   musculotendinous  force)  demands  to  be  limited  or  maximized  by   varying  these  factors.  

1: TRAZER  Summary   5  


Characterizing and  Creating  an  Accurate  Model  of  Sport

Sport Simulation  replicates  actual  competition  for  training  and   assessment   TRAZER®  creates  a  unique  and  sophisticated  computer  sports  simulator  by   replicating  the  ever-­‐changing  interaction  between  offensive  and  defensive   opponents.  This  fidelity  with  actual  competition  enables  a  global  and  valid   assessment  of  an  offensive  or  defensive  player’s  functional,  sport-­‐specific   performance  capabilities.   An  accurate  analog  of  sports  for  training  and  testing   At  the  most  primary  level,  sports  such  as  basketball,  football  and  soccer   can  be  characterized  by  the  moment  to  moment  interaction  between   competitors  in  their  respective  offensive  and  defensive  roles.  It  is  the   mission  of  the  player  assuming  the  defensive  role  to  “contain”,  “guard”,  or   neutralize  the  offensive  opponent  by  establishing  and  maintaining  real-­‐ time  synchronous  movement  with  the  opponent.  For  example,  in   basketball,  the  defensive  player  attempts  to  continually  impede  the   offensive  player’s  attempts  to  drive  to  the  basket  by  blocking  with  his  or   her  body  the  offensive  player’s  chosen  path.   By  contrast,  the  offensive  player’s  mission  is  to  create  a  brief  asynchronous   event,  perhaps  of  only  a  few  hundred  milliseconds  in  duration,  so  that  the   defensive  player’s  movement  is  no  longer  in  “phase”  with  the  offensive   player’s.  At  that  moment,  with  the  defensive  player  “out  of  position”  and   in  a  precarious  position,  the  offensive  player’s  chances  of  scoring  are   improved.  The  offensive  player  can  create  an  asynchronous  event  in  a   number  of  ways:  he  can  “fake  out”  or  deceive  the  opponent  by  delivering   purposefully  misleading  information,  or  he  can  “overwhelm”  his  opponent  


by abruptly  accelerating  the  pace  of  the  action  to  levels  exceeding  the   defensive  player’s  movement  capabilities.    To  remain  in  close  proximity  to  an  offensive  opponent,  the  defensive   player  must  continually  anticipate  or  “read”  the  offensive  player’s   intentions.  An  adept  defensive  player  will  anticipate  the  offensive  player’s   strategy  to  reduce  the  offensive  player’s  options  to  those  that  can  more   easily  be  contained.  This  must  occur  despite  the  offensive  player’s   attempts  to  disguise  his  or  her  actual  intentions  with  purposely  deceptive   and  unpredictable  behavior.  In  addition  to  being  able  to  quickly  perceive   and  interpret  the  intentions  of  the  offensive  player,  the  defensive  player   must  also  possess  adequate  sport-­‐specific  movement  skills  to  establish  and   maintain  the  desired  (from  the  perspective  of  the  defensive  player)   synchronous  spatial  relationship.     These  player-­‐to-­‐player  interactions  are  characterized  by  a  continual   barrage  of  useful  and  purposefully  misleading  visual  cues  offered  by  the   offensive  player  and  constant  reaction  and  maneuvering  by  the  defensive   participant.  Not  only  does  the  defensive  player  need  to  successfully   interpret  visual  cues  “offered”  by  the  offensive  player,  but  the  offensive   player  must  also  adeptly  interpret  visual  cues  as  they  relate  to  the   defensive  player’s  commitment,  balance  and  strategy.     Each  player  draws  from  a  repertoire  of  movement  skills  which  includes   balance  and  postural  control,  the  ability  to  anticipate  competitor   responses,  the  ability  to  generate  powerful,  rapid,  coordinated   movements,  and  reaction  times  that  exceed  those  of  the  opponent.  These  

sport-­‐specific movement  skills  are  often  described  as  the  functional  or   motor  related  components  of  physical  fitness.   Peak  acceleration  and  deceleration  –  “dueling”  for  advantage   The  interaction  between  competitors  frequently  appears  almost  chaotic,   and  certainly  staccato,  as  a  result  of  their  “dueling”  for  advantage.   Continual  abrupt,  unplanned  changes  in  direction  necessitate  that  the   defensive  player  maintain  control  over  his  or  her  center  of  gravity   throughout  all  phases  of  movement  to  avoid  over  committing.   Consequently,  movements  of  only  fractions  of  a  single  step  are  common   for  both  defensive  and  offensive  players.  Such  abbreviated  movements   ensure  that  peak  or  high  average  velocities  are  seldom,  if  ever,  achieved.   Accordingly,  peak  acceleration  and  power  are  more  sensitive  measures  of   performance  in  the  aforementioned  scenario.  Peak  acceleration  of  the   center  of  mass  can  be  achieved  more  rapidly  than  peak  velocity,  often  in   one  step  or  less,  while  power  can  relate  the  acceleration  energy  to  time,   making  comparisons  between  players  meaningful.   Relevant  and  valid  performance  testing   Valid  testing  and  training  of  sport-­‐specific  skills  requires  that  the  player  be   challenged  by  unplanned  cues  which  prompt  player  movement  over   distances  and  directions  representative  of  actual  game  play.  The  player’s   optimal  movement  path  should  be  selected  based  on  visual  assessment  of   his  or  her  spatial  relationship  with  opposing  players  and/or  game   objective.  A  realistic  simulation  must  include  a  sports  relevant   environment,  as  test  methods  prompting  the  player  to  move  to  fixed   ground  locations  are  considered  artificial.  Nor  are  test  methods  employing   static  or  singular  movement  cues  such  as  a  light  or  a  sound  consistent  with   accurate  simulations  of  actual  competition  in  many  sports.  

Until TRAZER®,  no  accurate,  real  time  model  of  the  complex,  constantly   changing,  interactive  relationship  between  offensive  and  defensive   opponents  engaging  in  actual  competition  existed.  Accurate  and  valid   quantification  of  sport-­‐specific  movement  capabilities  necessitates  a   simulation  with  fidelity  to  real  world  events.   The  importance  of  simulating  game  play   Only  through  actual  game  play  can  the  ability  to  correctly  interpret  and   respond  to  sport  specific  visual  cues  be  honed.  However,  simulation  is   uniquely  capable  of  refining  and  testing  the  sport-­‐specific  components  of   performance  that  are  essential  for  adept  defensive  and  offensive  play.     Through  task-­‐specific  practice,  athletes  learn  to  successfully  respond  to   situational  uncertainties.  Such  uncertainties  can  be  as  fundamental  as  the   timing  of  the  starter’s  pistol,  or  as  complex  as  detecting  and  interpreting   continually  changing,  “analog”  stimuli  presented  by  an  opponent.  To  be   task-­‐specific,  the  type  of  cues  delivered  to  the  player  must  simulate  those   experienced  in  the  player’s  sport.  Task-­‐specific  cueing  can  be   characterized,  for  the  purposes  of  this  document,  as  either  dynamic  or   static.     Dynamic  cueing  delivers  continual,  “analog”  feedback  to  the  player  by   being  responsive  to,  and  interactive  with,  the  player.  Dynamic  cueing  is   relevant  to  sports  where  the  player  must  possess  the  ability  to  “read”  and   interpret  “telegraphed”  information  offered  by  his  or  her  opponent.   Players  must  also  respond  to  environmental  cues  such  as  predicting  the   path  of  a  ball  or  projectile  for  the  purposes  of  intercepting  or  avoiding  it.     In  contrast,  static  cueing  is  typically  a  single  discreet  event,  and  is  sport   relevant  in  sports  such  as  track  and  field  or  swimming  events.  Static  cues   require  little  cerebral  processing  and  do  not  contribute  to  an  accurate  

2: Characterizing  and  Creating  an  Accurate  Model  of  Sport   7  

model of  sports  where  there  is  continuous  flow  of  stimuli  necessitating   sequential,  real  time  responses  by  the  player.     TRAZER,  by  delivering  dynamic  cueing,  contributes  to  player  performance   by  increasing  attentional  skills,  focus,  reaction  time,  processing  and   execution.   Current  test  methods   In  sports  science  and  coaching,  numerous  tests  of  movement  capabilities   and  reaction  time  are  employed.  However,  these  do  not  subject  the  player   to  the  type  and  frequency  of  sport-­‐specific  dynamic  cues  requisite  to   creating  the  accurate  analog  of  actual  sports  competition  described  above.    

accelerating the  pace  or  an  abrupt  change  in  direction.  Consequently,  it  is   believed  that  the  most  sensitive  indicators  of  athletic  prowess  occur  during   abrupt  changes  in  direction  or  pace  from  pre-­‐existing  movement.  All   known  test  methods  are  believed  to  be  incapable  of  making  meaningful   measurements  during  these  periods.   The  TRAZER®  model   TRAZER  creates  an  accurate  simulation  of  sport  to  quantify  and  train   several  core  performance  constructs.  TRAZER  delivers  realistic  movement   challenges  without  fixed  start  and  end  positions,  necessitating  continual   tracking  of  the  player’s  position  for  meaningful  assessment.  

For example,  measures  of  straight-­‐ahead  speed  such  as  the  100-­‐meter  and   40  yard  dash  only  subject  the  player  to  one  static  cue,  i.e.,  the  sound  of  the   gun  at  the  starting  line.  Although  the  test  does  measure  a  combination  of   reaction  time  and  speed,  it  is  applicable  to  only  one  specific  situation   (running  on  a  track)  and,  as  such,  is  more  of  a  measurement  of  capacity,   not  skill.  In  contrast,  the  player  in  many  sports  is  continually  bombarded   with  dynamic  cues  that  necessitate  constant,  real  time  changes  in  the   player’s  movement  path  and  velocity;  such  continual  real-­‐time   adjustments  preclude  a  player  from  reaching  maximum  high  speeds  as  in  a   100-­‐meter  dash.  Responding  successfully  to  dynamic  cues  places  constant   demand  on  a  player’s  agility  and  the  ability  to  assess  or  read  the  opposing   player  ‘sintentions.    

With TRAZER,  the  virtual  opponent  assumes  the  role  of  either  an  offensive   or  defensive  player.  In  the  defensive  role,  the  virtual  opponent  “attempts”   to  maintain  a  synchronous  relationship  with  the  player  in  the  physical   world  in  terms  of  tempo  and  fidelity  to  the  player’s  movement  vector   directions.  Controlled  by  computer  to  match  the  capabilities  of  each   individual  player,  the  virtual  opponent  “rewards”  instances  of  improved   player  performance  by  allowing  the  player  to  outmaneuver  (“get  by”)  him.   In  the  offensive  role,  the  virtual  opponent  “attempts”  to  create   asynchronous  events  to  which  the  player  must  respond  in  time  frames  set   by  the  computer,  depending  on  the  performance  level  of  the  player.  In  this   case,  the  virtual  opponent  “punishes”  lapses  in  the  player’s  performance,   i.e.,  the  inability  of  the  player  to  precisely  follow  a  prescribed  movement   path  both  in  terms  of  pace  and  precision,  by  outmaneuvering  the  player.    

There is  another  critical  factor  in  creating  an  accurate  analog  of  sports   competition.  Frequently,  a  decisive  or  pivotal  event  such  as  the  creation  of   an  asynchronous  event  does  not  occur  from  a  preceding  static  or   stationary  position  by  the  players.  A  decisive  event  most  frequently  occurs   while  the  offensive  player  is  already  moving  and  creates  a  phase  shift  by  

The virtual  opponent  delivers  dynamic  cues  that  allow  for  moment  to   moment  (instantaneous)  prompting  of  the  player’s  vector  direction  and   transit  rate.  In  contrast  to  static  cues,  dynamic  cues  enable  precise   modulation  of  the  movement  challenges,  as  stimuli  are  continually   provided  in  real  time.    

2: Characterizing  and  Creating  an  Accurate  Model  of  Sport   8  

These cues  include  continual  abrupt,  explosive  changes  of  direction  and   maximal  accelerations  and  decelerations  over  varying  vector  directions   and  distances.  


Reactive cutting  


Reactive bounding  


Dynamic posture    

Application of  TRAZER®  Measurement  capabilities  to  performance   enhancement  (actual  TRAZER  measurements  defined  on  pages  29  plus)   Several  novel  and  interrelated  performance  constructs  have  been   characterized  and  rendered  operable  by  TRAZER’s  position-­‐sensing   hardware  and  interactive  software.  The  two  global  constructs  are:  


Functional cardio-­‐respiratory  status    

Compliance (the  defensive  role)  is  the  ability  of  the  player  to   maintain  synchronicity  (follow)  with  TRAZER’s  virtual  offensive   opponent.  The  ability  to  faithfully  maintain  a  synchronous   relationship  with  the  virtual  opponent  is  expressed  either  as  a   game  score  and/or  as  absolute  performance  measures  of  the   player’s  velocity,  acceleration  and  power.  An  integral  component   of  such  synchronicity  is  the  player’s  ability  to  effectively  change   directions,  i.e.,  to  cut.   Opportunity  (the  offensive  role)  is  the  player’s  ability  to  create  an   asynchronous  event  at  such  time  as  the  player  assumes  an   offensive  role.  The  player’s  ability  to  adeptly  execute  abrupt  cuts   is  essential  for  creating  Opportunity,  which  is  reflected  in  the   player’s  ability  to  score  during  TRAZER  game  play.     A  number  of  performance  capabilities  are  essential  to  successfully   executing  the  two  aforementioned  global  roles;  some  of  them  include:   1.

Dynamic reaction  time  


Phase lag  



1. Dynamic  Reaction  Time   Dynamic  reaction  time  is  defined  as  the  player’s  ability  to  react  correctly  in   response  to  the  virtual  opponent’s  attempts  to  create  an  asynchronous   event  (a  phase  shift).  It  is  the  elapsed  time  from  the  moment  the  virtual   opponent  attempts  to  improve  his  position  (from  the  first  stimulus)  and   the  player’s  initial  correct  movement  to  restore  synchronicity  (player’s   initial  movement  along  the  correct  vector  path).   Dynamic  Reaction  Time  is  a  measurement  of  the  ability  to  respond  to   continually  changing,  unpredictable  stimuli,  i.e.,  the  constant  faking,   staccato  movements  and  strategizing  that  characterize  game  play.     Reaction  time  is  comprised  of  four  distinct  phases:  the  perception  of,  and   interpretation  of,  the  visual  and/or  audio  cue,  appropriate  neuromuscular   activation  and  musculoskeletal  force  production  resulting  in  physical   movement.  It  is  important  to  note  that  Dynamic  Reaction  Time,  which  is   specifically  measured  in  this  type  of  protocol,  is  a  separate  and  distinct   factor  from  rate  and  efficiency  of  actual  movement  which  are  dependent   on  muscular  power,  joint  integrity,  movement  strategy  and  agility  factors.   Function  related  to  these  physiological  components  is  evaluated  in  other   protocols  including  Phase  Lag  and  1st  Step  Quickness.   Faced  with  the  offensive  player’s  attempt  to  create  an  asynchronous   event,  the  defensive  player  must  typically  respond  within  fractions  of  a  

2: Characterizing  and  Creating  an  Accurate  Model  of  Sport   9  

second to  relevant  dynamic  cues  if  the  defensive  player  is  to  establish  or   maintain  the  desired  synchronous  or  spatial  relationship.  With  such   minimum  response  time,  and  low  tolerance  for  error,  the  defensive   player’s  initial  response  must  typically  be  the  correct  one.  The  player  must   continually  react  to  and  repeatedly  alter  direction  and/or  velocity  during  a   period  of  continuous  movement.  Any  significant  response  lag  or  variance   in  relative  velocity  and/or  movement  direction  between  the  player  and   virtual  opponent  places  the  player  irrecoverably  out  of  position.   Relevant  testing  must  provide  for  the  many  different  paths  of  movement   by  the  defensive  player.  The  stimulus  may  prompt  movement  side  to  side   (the  X  translation),  fore  and  aft  (the  Z  translation)  or  up  and  down  (the  Y   translation).  In  many  instances,  the  appropriate  response  may  simply   involve  a  twist  or  torque  of  the  player’s  body,  which  is  a  measure  of  the   orientation.    

2. Phase  Lag   Phase  lag  (“out  of  position”)  is  defined  as  the  elapsed  time  that  the  player   is  “out  of  phase”  with  the  virtual  opponent’s  movement.  It  is  the  time  from   the  virtual  opponent’s  initial  attempt  at  creating  an  asynchronous  event  to   actual  restoration  of  synchronicity  by  the  player  with  the  virtual  opponent.   In  sports  vernacular,  it  is  the  time  required  by  the  player  to  “recover”  after   being  “out-­‐of-­‐position”  while  attempting  to  guard  his  opponent.  Phase  Lag   includes  dynamic  reaction  time.    

3. Acceleration   Acceleration  is  the  player’s  1st  step  quickness  as  the  player  attempts  to   establish  or  restore  synchronicity  (lock  into  phase)  with  the  offensive  

virtual opponent.  1st  step  quickness  is  equally  important  for  creating  an   asynchronous  event  for  an  offensive  player.   Acceleration  is  defined  as  the  rate  of  increase  of  velocity  over  time  and  is  a   vector  quantity.  In  sports  vernacular,  an  athlete  with  first  step  quickness   has  the  ability  to  accelerate  rapidly  from  rest;  an  athlete  with  speed  has   the  ability  to  reach  a  high  velocity  over  longer  distances.  One  of  the  most   valued  attributes  of  a  successful  athlete  in  most  sports  is  first  step   quickness.     Numerous  tools  are  available  to  measure  the  athlete’s  average  velocity   between  two  points;  the  most  commonly  employed  tool  is  a  stopwatch.  By   knowing  the  time  required  to  transit  the  distance  between  a  fixed  start   and  end  position,  i.e.,  a  known  distance  and  direction,  the  athlete’s   average  velocity  can  be  accurately  calculated.  But  just  as  an  automobile’s   zero  to  sixty-­‐mph  time,  a  measure  of  acceleration,  is  more  meaningful  to   many  car  aficionados  than  its  top  speed,  an  average  velocity  measure  does   not  satisfy  interest  in  quantifying  the  athlete’s  first  step  quickness.  Any   sport  valid  test  of  1st  step  quickness  must  replicate  the  challenges  the   athlete  will  actually  face  in  competition.   This  novel  measurement  construct  purports  that  acceleration  is  a  more   sensitive  measure  of  “quickness”  over  short,  sport-­‐specific  movement   distances  than  is  average  velocity  or  speed.  This  is  especially  true  since  a   realistic  simulation  of  sports  movement  challenges,  which  are  highly   variable  in  distance,  would  not  be  dependent  upon  fixed  start  and  end   positions.  A  second  reason  that  the  measurement  of  acceleration  over   sport-­‐specific  distances  appears  be  a  more  sensitive  and  reliable  measure   is  that  peak  accelerations  are  reached  over  shorter  distances,  as  little  as   one  or  two  steps.  Because  the  vector  distances  are  so  abbreviated  and  the   player  is  typically  already  under  movement  prior  to  “exploding”,   acceleration,  power  and/or  peak  velocity  are  assumed  to  be  the  most  valid  

2: Characterizing  and  Creating  an  Accurate  Model  of  Sport   10  

measures of  such  performance.  Measures  of  speed  or  velocity  over  such   short  distances  may  not  be  reliable,  and  at  best,  are  far  less  sensitive   indicators.     1st  step  quickness  can  be  applied  to  both  static  and  dynamic  situations.   Static  applications  include  quickness  related  to  base  stealing.  Alternatively,   truly  sports  relevant  quickness  also  means  that  the  athlete  is  able  to   rapidly  change  his  movement  pattern  and  accelerate  in  a  new  direction   towards  his  goal.  This  type  of  quickness  is  embodied  by  Michael  Jordan’s   skill  in  driving  to  the  basket.  After  making  a  series  of  misleading  movement   cues,  Jordan  is  able  to  make  a  rapid,  powerful  drive  to  the  basket.     In  situations  where  the  athlete’s  movement  is  over  short,  sport-­‐specific   distances  that  are  not  fixed  start  and  stop  positions,  the  attempt  to   compare  velocities  in  various  vectors  of  unequal  distance  is  subject  to   considerable  error.  For  example,  comparison  of  bilateral  vector  velocities   achieved  over  different  distances  will  be  inherently  unreliable  in  that  the   athlete,  given  a  greater  distance,  will  achieve  higher  velocities.  And   conventional  testing  means,  i.e.,  without  continual  tracking  of  the  player,   cannot  determine  peak  velocities,  only  average  velocities.     Only  by  continuous,  high-­‐speed  tracking  of  the  athlete’s  positional  changes   in  three  planes  of  movement  can  acceleration  or  peak  velocity  be   accurately  measured.  For  accurate  assessment  of  bilateral  performance,   the  measurement  of  acceleration  provides  a  practical  means  for   normalizing  performance  data  to  compensate  for  unequal  distances  over   varying  directions  since  peak  accelerations  are  achieved  within  a  few  steps,   well  within  a  sport-­‐specific  playing  area.  

4. Reactive  Cutting   Reactive  cutting  (with  emphasis  on  the  ability  to  decelerate)  is  a  unique   indicator  of  the  player’s  ability  to  execute  an  abrupt  change  in  the   direction,  i.e.,  a  “cut”,  of  movement.  Cutting  can  be  a  directional  change  of   a  few  degrees  to  greater  than  90  degrees.  Vector  changes  can  entail   complete  reversals  of  direction,  similar  to  the  abrupt  forward  and   backward  movement  transitions  that  may  occur  in  soccer,  hockey,   basketball,  and  football.  The  athlete  must  reduce  momentum  before   attempting  an  aggressive  directional  change;  this  preparatory  deceleration   often  occurs  over  several  gait  cycles.  Once  the  directional  change  is   accomplished,  the  athlete  will  maximally  accelerate  along  the  new  vector   direction.  TRAZER  has  the  unique  ability  to  measure  the  player’s   deceleration  capabilities,  which  is  critical  to  managing  athlete   development  programs.     Accurate  measurement  of  cutting  requires:   •

continuous tracking  of  position  changes  in  three  planes  of   movement,    

ascertaining the  angle  scribed  by  the  cutting  action,    

measuring both  the  deceleration  during  braking  prior  to  direction   change  and  

the acceleration  after  completing  the  directional  change.    

For valid  testing,  the  cues  prompting  the  cutting  action  must  be   unpredictable  and  interactive  so  that  the  cut  cannot  be  pre-­‐planned  by  the   athlete,  except  under  specific  training  conditions,  i.e.  practicing  pass   routes  in  football.  It  must  be  sport-­‐specific,  replicating  the  types  of  stimuli   the  athlete  will  actually  experience  in  competition.  The  validity  of  agility  

2: Characterizing  and  Creating  an  Accurate  Model  of  Sport   11  

tests employing  ground  positioned  cones  and  a  stopwatch,  absent  sport-­‐ relevant  cueing,  is  suspect.     With  knowledge  of  acceleration  and  the  player’s  bodyweight,  the  power   produced  by  the  player  during  directional  changes  can  also  be  quantified.  

5. Reactive  Bounding   Reactive  bounding  is  the  player’s  ability  to  jump  or  bound  in  response  to   the  virtual  opponent.  Measured  constructs  include  the  player’s  dynamic   reaction  time  in  response  to  the  virtual  opponent’s  jumps  as  well  as  the   player’s  actual  jump  height  and/or  bound  distance  and  trajectory.  Static   measures  of  jumping  (maximal  vertical  jump)  can  have  relatively  poor   correlation  to  athletic  performance.  Dynamic  measurements  made  within   the  TRAZER  simulation  provide  sports  relevant  information  by   incorporating  the  variable  of  time  with  respect  to  the  jump  or  bound.   A  jump  is  a  vertical  elevation  of  the  body’s  center  of  gravity;  specifically  a   displacement  of  the  CM  (Center  of  Mass)  in  the  vertical  plane.  A  jump   involves  little,  if  any,  horizontal  displacement.  In  contrast,  a  bound  is  an   elevation  of  the  body’s  center  of  gravity  having  both  horizontal  and  vertical   components.     It  is  universally  recognized  that  jumping  and  bounding  ability  is  essential  to   success  in  many  sports,  and  that  it  is  also  a  valid  indicator  of  overall  body   power.  Most  sports  training  programs  attempt  to  quantify  jumping  skills  to   both  appraise  and  enhance  athletic  skills.  A  number  of  commercially   available  devices  are  capable  of  measuring  an  athlete’s  peak  jump  height.   The  distance  achieved  by  a  bound  can  be  determined  if  the  start  and  end   points  are  known.  But  no  testing  equipment  other  than  TRAZER  purports   to  measure  or  capture  the  peak  height  (amplitude)  of  a  bounding  exercise  

performed in  sport  relevant  simulation.  The  peak  amplitude  can  be  a   sensitive  and  valuable  measure  of  bounding  performance.  As  is  the  case   with  a  football  punt,  where  the  height  of  the  ball,  i.e.,  the  time  in  the  air,  is   at  least  as  important  as  the  distance,  the  height  of  the  bound  is  often  as   important  as  the  distance  obtained.   Both  the  high  jump  and  the  long  jump  can  be  characterized  as  a  bound.   Satisfactory  measures  currently  exist  to  accurately  characterize  an   athlete’s  performance  in  these  track  and  field  events.  But  in  these   individual  field  events,  the  athlete  is  not  governed  by  the  unpredictable   nature  of  game  play.   Many  competitive  team  sports  require  that  the  athlete  elevate  his  or  her   center  of  gravity,  whether  playing  defense  or  offense,  during  actual  game   play.  Examples  include  rebounding  in  basketball,  a  diving  catch  in  football,   a  volleyball  spike,  etc.  Unlike  field  events,  the  athlete  does  not  know   exactly  when  or  where  he  or  she  must  jump  or  bound.     The  timing  of  a  jump  or  bound  is  as  critical  to  a  successful  spike  in   volleyball  or  rebound  in  basketball  as  is  its  height.  The  jump  or  bound   should  be  made  and  measured  in  response  to  an  unpredictable  dynamic   cue  to  accurately  simulate  competitive  play.  The  required  movement   vector  may  be  known  (volleyball  spike)  or  unknown  (soccer  goalie,   basketball  rebound).     TRAZER  tracks  in  real  time  the  actual  trajectory  of  a  jump  or  bound   performed  during  simulations  of  offensive  and  defensive  play.  To  measure   the  critical  components  of  a  jump  or  bound  requires  continuous  sampling   at  high  rates  for  the  purpose  of  detecting  the  peak  amplitude  of  the   athlete’s  movement,  as  well  as  the  distance  achieved  during  a  jumping  or   bounding  event.    

2: Characterizing  and  Creating  an  Accurate  Model  of  Sport   12  

6. Dynamic  Posture   Dynamic  posture  is  the  player’s  body  position  during  defensive  or  offensive   activities.  Coaches,  players,  and  trainers  universally  acknowledge  the   criticality  of  a  player’s  body  posture  during  sports  activities.  Whether  in  a   defensive  or  offensive  role,  the  player’s  body  posture  during  movement   directly  impacts  the  desired  outcome.   An  effective  body  posture  optimizes  such  performance  capabilities  as   agility,  stability  and  balance,  and  minimizes  energy  expenditure.  An   optimum  posture  during  movement  enhances  control  of  the  body  center   of  gravity  during  periods  of  maximal  acceleration,  deceleration  and   directional  changes.  For  example,  a  body  posture  during  movement  in   which  the  center  of  gravity  is  (“CG”)  “too  high”  may  reduce  stability  as  well   as  dampen  explosive  movements;  conversely,  a  body  posture  during   movement  that  is  “too  low”  may  reduce  mobility.  Without  means  of   quantifying  the  effectiveness  of  a  body  posture  on  performance,   discovering  the  optimum  stance  is  a  “hit  or  miss”  process  without   objective,  real  time  feedback.     Optimal  posture  during  movement  can  be  determined  by  continuous,  high   speed  tracking  of  the  player’s  CG  in  relationship  to  the  ground  during   execution  of  sport-­‐specific  activities.  For  each  player,  at  some  vertical  CG   position,  functional  performance  capabilities  will  be  optimized.  To   determine  that  position  requires  means  for  continual  tracking  of  small   positional  changes  in  the  player’s  CG  at  high  enough  sampling  rates  to   capture  relevant  CG  displacements.  It  also  requires  a  sports  simulation  that   prompts  the  player  to  move  in  actual  competition,  with  abrupt  changes  of   direction  and  maximal  accelerations  and  decelerations  over  varying   distance  and  directions.    

TRAZER’s protocols  have  the  player  striving  to  maintain  CG  within  a   prescribed  range  during  execution  of  movements  identical  to  those   experienced  in  actual  game  play.  During  such  training,  the  player  is   provided  with  immediate,  objective  feedback  based  on  compliance  with   the  targeted  vertical  CG.  Recommended  ranges  for  each  player  can  be   based  either  on  previously  established  normative  data,  or  could  be   determined  by  actual  TRAZER  testing  to  determine  that  CG  position   producing  the  higher  performance  values.  

7. Functional  Cardio-­‐Respiratory  Status   Functional  cardio-­‐respiratory  status  is  the  player’s  cardio-­‐respiratory  status   during  sports  specific  activities.  In  most  sports  competitions,  there  are   cycles  of  high  physiologic  demand,  alternating  with  periods  of  lesser   demand.  Cardiac  demand  is  also  impacted  upon  by  situational   performance  stress  and  attention  demands.  Performance  of  the  cardio-­‐ respiratory  system  under  sports  relevant  conditions  is  important  to   efficient  movement.     Currently,  for  the  purposes  of  evaluating  the  athlete’s  cardio-­‐respiratory   fitness  for  sports  competition,  stationary  exercise  bikes,  treadmills  and   climbers  are  employed  for  assessing  cardiac  response  to  increasing  levels   of  physical  stress.  Though  such  exercise  devices  can  provide  measures  of   physical  work,  they  are  incapable  of  replicating  the  actual  stresses  and   conditions  experienced  by  the  competitive  athlete  in  most  sports.   Accordingly,  these  tests  are  severely  limited  if  attempts  are  made  to   correlate  the  resultant  measures  to  actual  sport-­‐specific  activities.  It  is  well   known  that  heart  rate  is  influenced  by  variables  such  as  emotional  stress   and  the  type  of  muscular  contractions,  which  can  differ  radically  in  various   sports  activities.  For  example,  heightened  emotional  stress,  and  a   corresponding  increase  in  cardiac  output  is  often  associated  with  defensive  

2: Characterizing  and  Creating  an  Accurate  Model  of  Sport   13  

play as  the  defensive  player  is  constantly  in  a  “coiled”  position  anticipating   the  offensive  player’s  next  response.     For  the  cardiac  rehab  specialist,  coach,  or  athlete  interested  in  accurate,   objective  physiological  measures  of  sport-­‐specific  cardiovascular  fitness,   few  valid  tests  have  been  identified.  A  valid  test  would  deliver  sport-­‐ specific  exercise  challenges  to  cycle  the  athlete’s  heart  rate  to  replicate   levels  observed  in  actual  competition.  The  athlete’s  movement  decision-­‐ making  and  execution  skills,  reaction  time,  acceleration-­‐deceleration   capabilities,  agility  and  other  key  functional  performance  variables  would   be  challenged.  Cardiac  response,  expressed  as  heart  rate,  would  be   continuously  tracked  as  would  key  performance  variables.  Feedback  of   heart  rate  vs.  sport-­‐specific  performance  at  each  moment  in  time  would  be   computed  and  reported.   Functional  cardio-­‐respiratory  fitness  is  a  novel  measurement  construct   capable  of  quantifying  any  net  changes  in  sport-­‐specific  performance   relative  to  the  function  of  the  cardio-­‐respiratory  system.  

Simulation’s  competitive  advantages  include:   •

DELIVERY of  both  planned  and  unplanned  sport-­‐specific  cues  to   elicit  realistic  movement  responses.  Unplanned  movement   demands  create  completely  different  movement  challenges  than   do  pre-­‐planned  or  controlled  movement  patterns.  

MEASUREMENT of  reaction  time  and  movement  speed,  power,   acceleration  and  deceleration  to  unpredictable  stimuli.  This   provides  a  sensitive  gauge  of  the  ability  and  perhaps  even   propensity  for  future  injury  or  disability.  A  primary  factor   indicative  of  potential  injury  or  disease  is  the  inability  to  react  and   move  quickly.  

TRAINING and  valid  TESTING  of  visual  perception,  interpretation   and  reactive  decision  making  functions  by  providing  means  for   simulating  the  types  of  visual  cues  that  elicit  reaction  movements.   The  timing  and  indicated  response  of  each  cue  must  be   unpredictable,  yet  interactive  based  on  moment-­‐to-­‐moment   performance.    

To simulate  the  VISUAL  PERCEPTION  and  SENSORY-­‐MOTOR   INTEGRATION  demands  seen  in  competition,  TRAQ  3D   incorporates  giant  display  screens  for  head-­‐tracking,  eye-­‐tracking   and  peripheral  vision  skills  necessary  for  success.  

DUPLICATION of  the  neuromuscular  and  biomechanical  stresses   of  actual  game  situations  and  required  functional  activities.    

Summary of  Key  Points    We  characterize  the  core  attributes  required  for  success  in  the  power   sports  as  the  ability  to:   •

Make lightning-­‐quick  reads  and  to  explosively  react  to  the   opponent  and/or  the  ball  

Move with  power,  agility,  balance  and  stamina  over  distances   typically  of  less  than  two  yards    

Perform at  peak  levels  for  periods  (bouts)  of  explosive  movement   lasting  approximately  10  to  30  seconds,  alternating  with  rest   periods  of  10  to  30  seconds.    

2: Characterizing  and  Creating  an  Accurate  Model  of  Sport   14  


TRAQ 3D  Athlete  Development  Program  

TRAQ’s Athlete  Development  Program  is  designed  for  athletes  of  all  ages   who  are  serious  about  maximizing  their  athletic  potential.  TRAQ  3D   employs  patented  technology  and  world-­‐class  programs  to  radically   improve  mental  and  physical  performance  while  building  lean  muscle  mass   and  improving  energy  levels.   Using  a  medically-­‐based  model,  the  Program  uniquely  exploits  award   winning  TRAZER  Sports  Simulation  technology  and  programs  to  deliver   unprecedented  results.    

“Blending high tech entertainment with exercise science and sports simulation creates a compelling resource for the athlete who demands the best from his mind and body.” -Dr. Alan Davis, MD A  big  bench  press  doesn’t  make  the  best  player    Sports  physicians,  therapists,  trainers  and  coaches  readily  agree  that  it  is   the  athlete  with  superior  reactions,  agility  and  quickness  who  excels  in   competition  and  is  less  likely  to  be  injured.  Scientific  strength  training  is   essential  of  course,  but  it’s  not  the  big  bench  press  that  makes  the  best   tennis  player,  basketball  player  or  football  player.    


Straight ahead  running  is  only  a  small  part  of  performance  for  most  sports.   Rather  it  is  the  explosive  reaction  movements,  rapid  starts  and  stops,   direction  changes;  lateral,  linear,  diagonal  and  backward  movement  skills   that  dominate  play.     Unfortunately,  training  programs  for  reaction  time,  agility,  and  quickness   have  always  been  the  hardest  to  design.  And  with  the  exception  of  simple   straight-­‐ahead  running,  results  have  been  virtually  impossible  to  measure   objectively.  Yet,  weaknesses  in  these  capabilities  are  certainly  those  most   directly  related  to  actual  game  performance,  as  well  as  injuries.     In  most  game  situations,  the  timing  and  required  movement  response   needed  to  intercept  the  ball  or  to  counter  an  opponent’s  actions  cannot  be   predicted.     The  reality  is  that  the  unpredictable  nature  of  sport  creates  completely   different  musculoskeletal  stresses  (pathways)  than  the  pre-­‐planned  or   controlled  movement  patterns  often  practiced  in  conventional  training   programs.  For  example,  with  cone  drills,  shuttle  runs  and  similar   conventional  drills,  the  distance  and  direction  you  must  move  are  all   known  in  advance  unlike  action  sports  competition.    Agility  is  more  about  fast  hips  than  fast  feet    Dr.  Michael  Yessis  has  written  that  ”Most  drills  that  are  commonly  used  to   improve  agility  require  lifting  the  knees  up  high  or  making  very  short   changes  in  direction  with  the  feet.  For  example,  ladder  drills  are  very   popular  in  which  your  client  must  touchdown  in  each  segment  of  a  ladder   which  lies  on  the  floor  or  higher  ladders  in  which  you  must  step  over  the  

rope and  touch-­‐down  in  between.  Or,  the  agility  drill  may  require  lifting   the  leg  (more  specifically  the  knee)  in  order  to  step  over  a  cone  or  hurdle   as  quickly  as  possible.  Sometimes  the  drill  may  involve  raising  the  knees  to   waist  level  in  an  alternating  manner  as  quickly  as  possible.    Such  drills,  however,  do  not  imitate  or  come  close  to  duplicating  what   occurs  in  true  cutting  actions.  The  main  reason  for  this  is  that  they  do  not   involve  cutting  actions.  Your  client  may  be  excellent  at  performing  the   drills  but  if  they  do  not  have  the  ability  to  execute  a  correct  cutting  action   the  drill  will  be  of  little  value.  As  a  result,  the  common  hurdle,  cone  and   ladder  drills  do  not  appreciably  improve  the  athlete’s  quickness.  The   athlete  may  develop  faster  feet,  but  not  the  ability  to  change  direction   very  sharply  and  powerfully.  He  concluded  that  “Understand  that  agility   involves  fast  legs  not  fast  feet.”  We  at  TRAQ  believe  that  agility  is  more   about  fast  hips  than  fast  legs.      We  train  athletes  like  fighter  pilots    To  train  pilots,  flight  simulators  accurately  and  realistically  replicate  the   demands  of  flying.  Because  practicing  on  a  flight  simulator  is  so  similar  to   actual  flying,  simulator  training  readily  “transfers”  to  actual  flying.  The   exact  same  principles  apply  to  TRAQ’s  Athlete  Development  Program!  

apparatus could  not  determine  whether  your  client  had  regained  equal   reaction  time  off  their  injured  leg,  or  could  accelerate,  decelerate  and   stabilize  in  different  directions.     Yet,  deficits  and  imbalances  in  these  capabilities  can  indicate  inappropriate   training  or  previously  undetected  injury,  and  are  certainly  the  most  directly   related  to  actual  game  performance.   TRAZER  offers  unparalleled  testing,  training  and  functional  rehabilitation   versatility  and  effectiveness.  It  provides  certain  capabilities  beyond  those   of  even  the  most  sophisticated  biomechanics  lab.    In  rapidly  changing  environments,  you  must  Sense  –  Process  –  Execute    The  mental  calculations  your  client  must  make  from  moment-­‐to-­‐moment   to  command  the  field  or  court  would  overwhelm  the  most  powerful   computer,  yet  his  brain  is  expected  to  make  these  calculations  all  the  time.   Hockey  legend  Wayne  Gretzky  volunteered,  “Growing  up,  I  was  always  the   small  guy;  I  couldn’t  beat  people  with  my  strength.  My  eyes  and  my  mind   have  to  do  most  of  the  work.”  

For valid  testing  of  sport-­‐specific  performance  capabilities,  the  tests  must   replicate  the  actual  demands  of  competition.  For  example,  how  many   times  in  a  game  does  your  client  actually  run  a  40  yard  dash?  For  optimal   training  results,  his  training  must  actually  transfer  to  game  play.    

Peter  Vint,  a  researcher  with  the  US  Olympic  Committee,  commented   about  superstars  Wayne  Gretzky,  Larry  Bird,  and  Joe  Montana,  “In  any   sport,  you  come  across  these  players…  They’re  not  always  the  most   physically  talented,  but  they’re  the  best.  The  way  they  see  things  that   nobody  else  sees—it  can  seem  almost  supernatural.  But  I’m  a  scientist,  so  I   want  to  know  how  the  magic  works.”  

Until TRAZER®,  there  was  no  widely  accepted  method  for  reliable  testing  or   effective  training  of  reaction  time,  power,  acceleration,  deceleration,   velocity  of  movement  or  balance  and  stability  over  sport-­‐specific  distances.   Even  the  most  sophisticated  strength,  power  and  endurance  testing  

Because  the  visual  acuity  and  physicality  of  the  aforementioned  superstars   were  certainly  not  superior—or  perhaps  even  equal—to  their  peers,  we   suggest  that  the  “magic”  Dr.  Vint  refers  to  is  the  ability  to  process:  that  

3: TRAQ  3D  Athlete  Development  Program   16  

rare ability  to  calculate  on  the  move,  in  real-­‐time,  the  complex  geometry   and  physics  problems  that  sports  present.     Interestingly,  elite  athletes  exhibit  memory  and  perceptual  skills   comparable  with  the  memory  and  perceptual  skills  of  people  who  are   accomplished  in  architecture,  chess,  and  physics.  So  perhaps  sports  REALLY   ARE  “90  percent  mental…  the  other  half  physical,”  as  Yogi  Berra  notoriously   claimed.   TRAQ’s  simulations  are  the  missing  link  in  modern  athlete  training   programs.  And  as  such,  they  are  the  future—the  bridge  that  trains  the   mind  on  the  move,  re-­‐creating  the  incredibly  complex  physical  and  mental   demands  of  competition  to  build  a  superior  performer.   TRAQ’s  collaboration  with  the  world-­‐renowned  Cleveland  Clinic  at  the   Westlake  Medical  Campus,  and  with  both  professional  and  amateur   athletes  of  all  ages  and  abilities  have  validated  the  power  of  sports   simulation.     Patented  testing  capability  enables  superb  assessment  and  management   capabilities   Your  client’s  initial  consultation  enables  you  to  elicit  goals  and  aspirations   so  that  you  can  precisely  configure  TRAZER’s  Performance  Assessments.   With  TRAZER’s  ability  to  measure  interactive  3D  movement  capabilities,   you  can  effectively  manage  the  training  program.     1.

You’ll take  your  client’s  history  to  determine  whether  there  are   any  deficits  that  would  limit  full  participation  in  the  TRAQ  3D   programs.  You’ll  question  them  about  factors  that  may  affect   movement  skills  and  balance,  as  well  as  some  pertaining  to  their   general  health  and  fitness.    


The TRAZER  Performance  Assessment  identifies  any  specific   functional  movement  deficits  and  limitations;  the  testing   employed  will  be  specific  to  the  client’s  sport.    


Using this  info,  you’ll  apply  TRAQ  programs  targeting  identified   goals,  deficits  and  limitations.  Because  it  is  interactive,  TRAZER   automatically  accommodates  to  your  client’s  current  performance   and  fitness  levels.    


As you  work  together,  each  aspect  of  your  client’s  program  will  be   implemented  progressively  with  TRAZER  monitoring  moment-­‐to-­‐ moment  performance  to  determine  tolerances  and  limits.   Beginning  with  simple,  easily  performed  reactive  movement  tasks,   TRAZER  varies  the  intensity  and  complexity  of  the  interactive   challenges.  The  ability  to  complete  each  stage  of  the  program   determines  the  rate  at  which  you  will  progress  the  client.  


At each  step  of  the  way,  you’ll  closely  monitor  their  heart  rate,   dynamic  stance,  and  movement  speed  to  more  precisely  control   the  activities  to  ensure  safe  and  effective  exercise  and  maximal   results.      


You’ll test  the  client  periodically  to  document  progress  until  their   goals  are  achieved.    

Our post-­‐program  assessment  tests  will  document  the  effectiveness  of   TRAQ  3D  programs  in  improving  your  client’s  physical  and  mental   performance  capabilities.     As  such,  TRAZER  has  a  unique  ability  to  quantify  player  potential  and   detect  player  weaknesses.  For  example,  if  test  results  show  your  client  has   quicker  reactions  and/or  faster  movements  in  certain  directions,  a  change   in  position  to  exploit  a  comparative  strength  might  be  of  immediate   benefit.  Of  course,  in  the  long  run,  even  more  specific  TRAZER  training  to  

3: TRAQ  3D  Athlete  Development  Program   17  

achieve reaction  and  movement  skills  symmetry  would  provide  greater   benefit.  TRAZER  test  results  can  be  forwarded  to  the  physician,  physical   therapist,  or  coach  if  desired.   Training  and  testing  the  distinct  speed  components  of  performance   The  study  “Specificity  of  Acceleration,  Maximum  Speed  and  Agility  in   Professional  Soccer  Players”  concluded  that  “acceleration,  maximum   speed,  and  agility  are  specific  qualities  and  relatively  unrelated  to  one   another.  The  findings  suggest  that  specific  testing  and  training  procedures   for  each  speed  component  should  be  utilized  when  working  with  elite   players.”     At  TRAQ  3D,  sports  simulators  are  uniquely  able  to  train  and  measure  the   major  components  of  sports  performance  –  linear  and  lateral  speed,   acceleration  and  deceleration,  agility  and  vertical  power  (jump  height).   Coaches,  clinicians  and  athletes  know  that  pre-­‐planned  training  activities   such  as  agility  drills  using  stationary  cones  only  train  and  measure  a   fraction  of  the  capabilities  required  for  success  on  the  field  or  court  –  left   untested  and/or  untrained  are  the  most  vital  SENSE  –  PROCESS  capacities,   as  well  as  the  ability  to  EXECUTE  in  all  movement  vectors  when  subjected   to  unplanned  stimuli  that  occur  in  real  sports.     Sports  simulation  creates  a  more  realistic  and  productive  virtual   environment  through  which  physical,  physiological,  and  cognitive   capabilities  can  be  accurately  assessed  and  enhanced.  Simulation   replicates  the  complex  challenges  experienced  in  dynamic  and   unpredictable  action  on  the  field  or  court  without  the  constraints  or  risk   factors  inherent  in  competition.  

Reaction time,  mental  processing,  focus  and  visual  tracking   High-­‐performance  athletes  have  the  almost  uncanny  ability  to  focus  all   these  attributes  on  the  task  at  hand.   Your  client’s  every  physical  response  is  the  result  of  a  miraculous  series  of   communications  involving  the  senses,  brain  and  thousands  of  muscle   fibers.  Your  goal  is  to  “wire”  the  body  so  that  the  senses,  mind  and  body   work  together  at  maximum  efficiency.  Unlike  “mindless  exercise”  and   monotonous  training  programs,  TRAZER  simulations  improve  the  ability  to   think  more  clearly,  react  faster  and  to  move  the  body  more  explosively  and   powerfully  during  challenging  competitive  situations.     Computer  simulation,  by  delivering  realistic  cueing,  greatly  accelerates  the   learning  process  by  providing  you,  the  trainer,  with  real-­‐time,  accurate   feedback  of  critical,  previously  unavailable  performance  parameters.  With   TRAZER,  the  direction,  distance  and  rate  of  core  body  movement  can  be   precisely  controlled  and  then  measured  to  within  an  inch.   Your  clients  will  achieve  immediately  noticeable  performance   improvements  from  brief  training  periods.  These  improvements  in  visual   perception  and  interpretation,  movement  decision  making,  neuromuscular   activation  time,  foot  movement  patterning  and  speed,  and  in  direction   change,  acceleration,  deceleration  and  stabilization  capabilities  will  carry   over  to  game  situations.   TRAQ  3D  is  developing  a  large-­‐scale  database  for  statistical  analysis  of  data   by  combinations  of  age,  gender,  bodyweight,  height,  sport,  position,   competition  level  and  other  parameters  defined  by  users.      

3: TRAQ  3D  Athlete  Development  Program   18  

Your brain  retains  movement-­‐related  info  as  “motor  programs”   Body  building  places  its  emphasis  on  the  development  of  specific,  isolated   muscle  groups;  by  contrast,  TRAQ  training  focuses  on  refining  the  global   movement  patterns  necessary  for  superior  agility,  speed,  reaction  time,   coordination,  balance  and  stamina.  TRAZER  protocols  train  and  reinforce   efficient  complex  movement  patterns.  

Increase lean  muscle  mass  via  scientific,  functional  strength   training  and  proper  diet  and  nutrition    

Significantly improve  sport-­‐specific  power  and  endurance  by   combining  simulation  and  patented  functional  power   development  via  progressive  overloads  (“PowerTRAQ”)  

Improve sports  vision,  which  includes  anticipation,  timing,   reaction  speed,  focus,  concentration  and  court  vision  using  TRAQ   3D  Sports  Vision  Training.    

Improve movement  efficiency  to  ensure  no  wasted  movements  or   unnecessary  energy  expenditures  –  efficient  movement   maximizes  results  and  reduces  injuries  

Factor in  the  timing  of  the  competitive  season  to  ensure  peaking   at  the  optimal  time  –  which  in  sports  science  is  call  “periodization.

Our Specific  Goals  for  Your  Client   •

Develop and  refine  advanced  specific-­‐movement  skills.  Emphasis   is  on  their  global  performance,  increasing  their  ability  to  react,   acceleration  and  deceleration  with  power  while  maintaining   balance.    

Significantly improve  movement  consistency  by  minimizing  the   variability  of  movement  –  this  will  be  accomplished  by  computer   analysis  and  training  of  stance  during  sports  simulations  

Training as  compelling  as  game  play   Clients  find  that  TRAQ  training  offers  the  interactive  challenges  of  actual   sport  competition;  it  engages  the  body  and  mind.  With  competitive   training,  your  athletes  will  work  harder  and  go  farther.  Our  goals  include:

3: TRAQ  3D  Athlete  Development  Program   19  



Buckle up  for  the  ultimate  interactive  training  experience   PowerTRAQ  training  builds  incredible  sport-­‐specific  power,  speed  and   stamina;  it  is  an  invaluable  component  of  your  client’s  training  at  TRAQ  3D.     Elastic  cables  have  been  valuable  tools  for  rehabilitation  and  sports   enhancement  programs.  However,  before  TRAZER,  there  was  no  practical   way  to  integrate  resistive  cables  with  interactive,  sport-­‐specific  training   and  provide  immediate  objective  feedback;  all  of  which  are  essential  for   the  successful  management  of  your  client’s  TRAQ  program.     PowerTRAQ  provides  resistive  strength  and  power  training  with  real-­‐time   feedback  and  real-­‐world  challenges.  Specially  calibrated  elastic  cables  are   attached  to  a  comfortable  body-­‐worn  belt,  with  the  opposite  ends  secured   to  the  floor  at  the  edges  of  the  TRAZER  playing  field.  In  contrast  to  the  use   of  such  elastic  cables  without  simulation  or  objective  measurement,   TRAZER  training  replicates  sport  relevant  movement  patterns,  and  is  also   uniquely  capable  of  quantifying  the  effects  of  such  added  resistance  both   in  real  time  and  progressively  over  time.    

overstressing joints.  Your  clients  will  be  able  to  work  harder  (and  therefore   get  better  faster)  with  reduced  risk  of  injury  and  joint  and  muscle  soreness.     Kids  and  adults  alike  tell  us  they  enjoy  the  spring-­‐like  response  of  the   cables.  

Effectively  Monitoring  PowerTRAQ  Training   Employ  the  following  protocol  to  monitor  your  client’s  PowerTRAQ   Program  sessions:   •

Test the  client’s  unloaded  (sans  PowerTRAQ)  performance  to   establish  a  baseline.  

Add resistance  while  monitoring  your  client’s  cardiac  response,   reaction  time,  and  movement  speed.  Their  CG  height  also   provides  you  with  an  objective  measure  of  their  posture.  

Progressively increase  resistance  based  on  this  measured  data.  

This enables  you  to  monitor  your  client’s  cardiac  response,  reaction  time,   and  movement  speed  during  sport-­‐specific  resistance  training.  This   building  of  truly  usable  strength  and  power  is  accomplished  according  to   the  “specific  adaptation  to  imposed  demand  principle”  (SAID)  of  training.  

Continue to  monitor  cardiac  response  and  movement  speed  to   increase  loads  appropriately.  

Adjust resistance  according  to  tolerance  and  to  ensure  sufficient   training  time  at  a  given  resistance  for  physiological  changes.  

Your client’s  joints  during  rigorous  training  experience  the  largest  resultant   forces  during  braking  and  abrupt  directional  changes.  Since  the  elastic   cables  act  to  dampen  these  braking  forces,  PowerTRAQ  builds  functional   movement  capability  and  cardiovascular  conditioning  without  

Periodically test  their  movement  skills  during  resistive  loading  to   measure  maximum  benefits  from  the  resistance.  

Continue progression  until  maximum  functional  improvement  or   other  specific  training  goals  are  achieved.  


Test their  unloaded  (sans  PowerTRAQ  cables)  performance  and   compare  to  their  initial  benchmark.  

4: PowerTRAQ   21  


Unpredictability Training  

We compete  in  an  unpredictable  world   Athletes,  the  aging,  and  those  who  work  in  a  physically  demanding   environment  are  especially  vulnerable  to  the  inherent  challenges  of   dealing  with  the  unpredictable.  For  these  populations,  successfully   responding  to  the  unpredictable  translates  into  success,  confidence,   safety,  security,  and  a  heightened  enjoyment  of  life  in  general.     The  cat  interfering  with  the  next  step,  that  patch  of  unseen  ice,  the  tackler   on  the  field—they  all  impose  unanticipated  forces  on  the  body  that  disrupt   the  planned  movement  path.  Successfully  dealing  with  spontaneous  forces   or  disruptions  requires  an  amazing  series  of  coordinated  responses  from   our  incredible  bodies.  We  must  instantaneously  sense  the  force  or   disruption,  decide  on  a  response,  and  execute  the  proper  action—all  in  a   fraction  of  a  second.  We’re  penalized  for  a  slow  response  or  an  improper   course  of  action—sometimes  severely.     Unpredictable  training  for  predictable  improvements  in  safety  and   performance   The  unpredictable  becomes  knowable  by  way  of  our  senses—for  example,   we  either  see  or  feel  the  unexpected  cat  under  our  feet.  A  football  player   feels  the  crush  of  a  tackle  from  behind.  In  fact,  football  players  are  exposed   to  unpredictable  forces  on  nearly  every  play.  Thankfully,  the  entire  system   can  be  trained  to  readily  deal  with  the  abrupt  introduction  of  unseen   forces  through  “unpredictability  training.”  Unpredictability  training   ensures  injuries  are  relatively  rare  and  develops  superb  responsiveness.    


To be  relevant  or  transferable  to  our  world,  the  training  should  be   measurable,  or  it  would  be  like  shooting  baskets  without  a  hoop;  we’d   never  know  if  we  made  the  shot.  Plus,  to  be  as  fun  as  game  play,  we  need   to  keep  score.   Finally,  our  training  system  must  impose  on  us  unpredictable  forces  while   we  are  responding  to  unpredictable  challenges  in  our  training   environment.  Obviously,  all  of  this  must  be  done  safely,  progressively,  and   in  a  challenging  manner.     Of  course,  no  exercise  machine  at  the  traditional  gym  or  health  club  does   all  of  this.  But  imagine  if  such  an  “unpredictability  trainer”  actually  existed.   It  would  energize  your  brain  and  your  nervous  system.  It  would  improve   core  strength,  movement  power  and  speed,  and  balance  and  stamina.  It   would  burn  calories  like  nothing  else  as  it  sculpts  your  body.  And  it  would   improve  your  safety  and  sports  performance.   But  such  a  training  device  does  exist.  It  is  the  product  of  a  decade  of   leading-­‐edge  research  in  simulation,  exercise,  and  sport  science  and  holds   10  U.S.  patents.     TRAZER®  and  Unpredictability  Training   How  does  it  work?  During  TRAZER  training,  one,  two  or  three  PowerTRAQ   bands  can  be  attached  to  1  of  4  floor  positions  to  impose  disruptive  forces   while  your  client  moves  with  the  constraints  of  the  elastics.  The  client   experiences  alternating  unconstrained  and  imposed  forces  in  nearly  each   distinct  movement  leg.  

The precise  moment  of  force  application  during  each  movement  leg  is   unpredictable  to  the  client,  and  will  therefore  progressively  train  the  entire   system  to  successfully  deal  with  events  that  occur  in  an  unpredictable   world.     A  single  PowerTRAQ  band  (as  opposed  to  multiple  bands)  heightens   TRAZER’s  ability  to  prepare  the  client  for  the  unpredictable  through   “asymmetrical  vector  training.”  The  patented  TRAZER  and  PowerTRAQ   methodologies  result  in  the  first  and  only  “Unpredictability  Trainer.”   Asymmetrical  vector  training  increases  the  demands  on  the  core  for   rotational  control,  and  disrupts  the  neuromuscular  system.  Abruptly   introducing  unplanned  forces  on  the  body  triggers  the  neuromuscular   system  to  compensate  in  ways  not  trained  by  other  methods.     Because  of  the  unbalancing  effects  of  the  imposed  forces,  asymmetrical   vector  training  elicits  greater  core  activity  and  stimulation  of  the   neuromuscular  system.  Asymmetrical  training  also  produces  contra-­‐lateral   strength  and  power  enhancements  (i.e.,  enhancements  on  the  side  of  the   body  opposite  the  side  that’s  directly  being  worked)  because  of  the   crossover  effects.  

5: Unpredictability  Training   23  


Sports Injury  Prevention  

There is  a  well-­‐documented  need  for  programs  that  prevent  sports   injuries.  TRAQ  3D  programs  are  designed  to  reduce  the  incidence  of  lower   extremity  injuries,  specifically  knee  and  ankle  injuries.  In  fact,  TRAZER  is   routinely  used  successfully  for  the  rehabilitation  of  knee,  ankle  and  hip   injuries.     By  employing  TRAZER  protocols,  PowerTRAQ  resistive  training  and  the   principles  of  Unpredictability  Training,  TRAQ  programs  improve  client   movement  mechanics,  strength,  power  and  stamina.   There  is  a  growing  consensus  among  clinicians  that  a  lack  of  movement   training,  or  improper  biomechanics  expose  athletes  to  an  increased   incidence  of  knee  injuries.     Simply  identifying  and  training  the  proper  stance  that  maximizes   performance  and  minimizes  stress  can  significantly  reduce  sports  injuries.   For  example,  some  athletes  hold  their  knees  straighter  upon  landing  from   a  jump  or  upon  braking,  thereby  increasing  the  pressure  on  the  knee  joint.   And  during  cutting  maneuvers,  some  athletes  tend  to  change  direction   from  a  more  erect  position,  which  also  strains  the  ACL.  Learning  to  crouch   and  bend  at  the  knees  and  hips  can  reduce  the  stress  on  the  ACL.  Recent   studies  have  demonstrated  that  serious  knee  injuries  are  preventable  with   specialized  agility,  jump,  balance,  and  strength  training.      TRAQ’s  simulation-­‐based  movement  training  program  is  designed  to   improve  sport-­‐specific  movement  capabilities,  reduce  the  incidence  of   lower  back  and  knee  injuries,  improve  cardiovascular  fitness  and  build  lean   muscle  mass.    


Teaching of  correct  mechanics  of  sports-­‐specific  movement  is  an  important   step  for  an  athlete  striving  reach  his  or  her  genetic  potential,  or  to  fully   restore  mobility  after  recovery  from  an  injury.   Specific  knowledge  about  the  correct  position  for  the  core  (e.g.  pelvis)  and   knees,  as  well  as  the  coordination  of  the  actions  of  the  upper  and  lower   extremities  with  the  actions  of  the  core  is  essential.  Yet  paradoxically,  few   athlete  development  programs  or  coaches  actually  teach  the  mechanics  of   movement,  the  knowledge  that  transforms  a  player  with  average  first  step   quickness  and  agility  into  a  champion  more  resilient  to  injury.   Ancient  Arts  –  Future  Science   No  physical  endeavor  of  mankind  has  so  focused  on  the  refinement  of  3-­‐ dimensional  movement  and  maximizing  the  generation  of  power  than  has   the  traditional  martial  arts.  Martial  arts  masters  invest  a  lifetime  perfecting   their  movement  skills  to  maximize  their  balance,  agility,  stability,   quickness,  reactions,  and  power,  as  well  as  their  ability  to  withstand   impact  to  the  body.  Many  of  the  principles  employed  at  TRAQ  are  based   on  these  fundamental  principles.     Agility  is  comprised  of  a  series  of  accelerations,  decelerations  and  abrupt   changes  in  direction.  Such  movements  can  be  executed  with  great  speed   and  precision  provided  the  entire  body  works  effectively  together.  There   must  be  a  coordinated,  properly  sequenced  action  of  the  muscles  of  the   torso  and  the  extremities.   During  vigorous  movement  such  as  rapid  changes  in  direction,  the  muscles   of  the  trunk  undergo  a  series  of  contractions  to  give  optimum  support  to  

the extremities.  Power  originates  from  the  rotation  of  the  trunk  that   begins  with  the  contraction  of  the  lower  abdominal  muscles  which  diffuses   to  the  trunk  and  upper  extremities  to  facilitate  the  movement  of  the  torso   around  the  central-­‐vertical  axis  of  the  body.  

synchronization of  lower  extremity  movement  with  the  energetic  action  of   the  torso  and  arms  further  increases  the  stabilization  of  the  core  and  lower   extremities.  

The ancient  masters  intuitively  understood  that  the  core  muscles  are   primarily  composed  of  red,  slow  contracting  fibers  that  are  capable  of   prolonged,  repetitive,  low-­‐intensity  contractions  –  this  is  in  contrast  to  the   predominately  white,  fast  contracting  fibers  of  the  extremities.    

Correct Posture   •

Feet are  parallel  and  wider  than  hips,  knees  are  slightly  bent,  abs   pulled  in,  tailbone/pelvis  is  tucked  into  a  neutral  position.  

Slight forward  lean  to  upper  body.  

The pelvis  approaches  a  posterior  tilt,  where  the  back  of  the  pelvis   moves  down  slightly  and  the  front  moves  up  -­‐  with  a  somewhat   posterior  tilt,  the  lower  abdominals  fire  with  involvement  of  the   quads,  and  with  aggressive  movement,  perhaps  the  buttocks.  

The arm  action  reflects  demands  of  the  specific  sport  in  a   coordinated  manner  that  mimics  our  natural  walking  pattern    

Increasing Stability  and  Reducing  Knee  &  Back   Injuries   Maintaining  a  correct  pelvis  tilt  synchronized  with  a  fully  involved  torso   and  upper  extremities  will  reduce  injuries  to  the  lumbar  spine  (lower  back)   and  knees.  A  post-­‐pelvis  tilt  fires  the  quads  so  that  they  act  to  stabilize  the   knees  during  aggressive  braking  and  change-­‐in-­‐direction.  And  the  

6: Sports  Injury  Prevention   25  


TRAZER® Burst  Training  

14-­‐minute TRAQ  Burst  Training  beats  60  minutes  of  running—and  the   research  proves  it   Imagine  having  your  client  play  just  six  20-­‐second  TRAZER  games   interspersed  with  10-­‐second  rest  periods—play  just  2  minutes  plus  their   warm-­‐up  and  cool  down  for  impressive  results  in  six  weeks.  

But don’t  be  fooled:  4  total  minutes  of  this  type  of  training  can  be  the  most   challenging  of  workouts.  Keeping  your  client  motivated  is  very  tough.  The   key  to  Burst  Training  is  TRAZER.  TRAZER  games  make  this  incredibly   challenging  and  productive  form  of  training  actually  fun,  competitive,  and   satisfying,  thus  keeping  the  client  charged  and  motivated.    

TRAQ Burst  Training  is  better  than  conventional  aerobic  training   programs—even  better  than  running  at  70%  of  your  client’s  aerobic   capacity  for  60  minutes.    

Plus, with  PowerTRAQ  Strength  &  Power  Protocols,  your  clients  will  build   lean  muscle  while  actually  reducing  the  physical  stress  on  their  joints.    

The proof?  Dr.  Izumi  Tabata  and  his  associates  at  the  National  Institute  of   Fitness  and  Sports  in  Tokyo  found  that  six  weeks  of  conventional  aerobic   training  improved  aerobic  capacity  by  only  9.5%,  with  no  effect  on   anaerobic  capacity  .   By  contrast,  this  same  study  showed  that  with  the  14-­‐minute  workout,   even  elite  athletes  improved  their  maximum  aerobic  capacity  (their  ability   to  consume  oxygen)  by  14%.  And  incredibly,  they  also  improved  their   anaerobic  capacity  (their  ability  to  maintain  a  high  work  load)  by  28%.   Both  endurance  athletes  and  power  athletes  benefit  from  TRAQ  Burst   Training.  And  Dr.  Tabata's  research  demonstrates  that  sprint  training  is  up   to  50%  more  efficient  at  burning  fat  compared  to  low-­‐intensity  training.   Moreover,  it  builds  more  lean  muscle  to  rev  up  the  metabolism  for  hours   after  the  training  ends.   TRAQ  Burst  Training  also  improves  reaction  time,  agility,  balance,  and   coordination.  Your  clients  will  look  better  and  move  better.    


CAUTION: Burst  Training  is  not  appropriate  for  all.  Those  with  cardiac  or   musculoskeletal  problems  should  first  consult  with  their  physicians.   However,  studies  have  demonstrated  that  TRAQ  Burst-­‐type  training  safely   improves  anaerobic  tolerance  better  than  traditional  aerobic  training   programs  for  highly  functional  coronary  artery  disease  patients.     Burst  Training  can  be  characterized  as  reactive,  anaerobic  and  ballistic   training.  We  further  improve  safety  and  results  by:   •

Modulating the  CV  intensity  of  the  exercise  via  HR  monitoring  to   ensure  the  client  remains  within  an  appropriate  work  range.  

Selecting TRAZER  activities  that  reward  the  client  for  well-­‐ controlled  movement  responses  in  contrast  to  ballistic  responses.   The  goal  is  to  maximize  the  training  experience  while  adhering  to   the  heart-­‐rate  prescription.  

The Protocol   TRAQ  Burst  Training  consists  of  six  to  seven  20-­‐second  full-­‐speed  bursts  of   exercise  interspersed  with  rest  periods  of  10  seconds.  Recommended   frequency  for  your  clients  is  five  days  per  week  during  a  minimum  of  a  six  –   8  week  cycle.     The  promising  outcomes  are  reported  to  be  due  to  the  brief  rest  intervals   between  bursts.  Conventional  interval  training  guidelines  prescribe  a  1:3   work-­‐rest  ratio.  In  contrast,  Burst  Training’s  work-­‐rest  ratio  is  2:1,  which   can  be  brutal.  The  result,  however,  is  a  superior  form  of  training.     In  that  other  study,  Tabata  and  his  colleagues  compared  their  original   protocol  to  a  second  configuration  of  intervals  that  consisted  of  30-­‐second   sprints  interspersed  with  two-­‐minute  rest  periods.  Despite  the  fact  that   this  required  subjects  to  sprint  for  more  time  at  a  higher  intensity,  the   original  Tabata  Protocol  still  proved  more  effective  at  boosting  both   aerobic  and  anaerobic  capacity.   On  paper,  the  Tabata  Protocol  offers  an  efficient  means  of  conditioning,   but  it  is  grueling.  It  was  originally  developed  for  Olympic-­‐caliber  athletes,   and  Dr.  Tabata  reported  that  they  were  exhausted  by  the  routine.  In  fact,   most  subjects  were  so  exhausted  they  couldn’t  complete  the  seventh  set.   It  is  important  that  your  client  is  mentally  and  physically  prepared  to   undertake  this  rigorous  training  method.  For  those  clients  unprepared,  it   would  be  prudent  to  increase  the  rest  periods.     Ensure  your  client  properly  warms  up  approximately  five  minutes  prior  to   Bursting  –  it  is  preferable  that  the  warm-­‐up  be  performed  on  TRAZER  just   before  the  TRAZER  intervals.  A  TRAZER  cool-­‐down  after  completion  of  the   Burst  session  is  preferable  as  well.    

7: TRAZER®  Burst  Training   27  


TRAZER® Performance  Assessments  

Brief Summary  of  the  Physics  of  TRAZER®   Hard  Data  Drives  TRAQ’s  Personalized  Training  Programs   Before  the  TRAZER  simulator,  there  wasn’t  an  effective  means  to  quantify   the  core  components  of  sport-­‐specific  game  play.  And  there  was  certainly   no  testing  model  for  the  complex,  constantly  changing  and  interactive   relationship  between  offensive  and  defensive  opponents  and  the  ball.     Tests  that  measure  the  amount  of  load  that  your  client  can  lift  are   specialized  strength  measures  and  do  not  give  any  indication  of  their   ability  to  move  adeptly.  Of  course,  their  strength  capacity  and  flexibility   should  not  be  ignored.  But  they  must  be  considered  for  what  they  are:   factors  that  contribute  to  the  maintenance  and  enhancement  of  effective   sport-­‐specific  performance.     Tests  of  isolated  joint  and  limb  strength  are  not  reflective  of  sport-­‐specific   function;  for  example,  knee  strength  in  one  plane  of  movement  does  not   indicate  real-­‐world  capacity.     Measures  of  straight-­‐ahead  speed  (e.g.,  the  100-­‐meter  and  40-­‐yard  dash)   only  subject  your  client  to  one  static  cue  (i.e.,  the  sound  of  the  gun  at  the   starting  line).  Although  the  test  does  measure  a  combination  of  simple   reaction  time  and  speed,  it  can  be  applied  to  only  one  specific  situation  -­‐   responding  to  a  gun  and  then  running  straight  ahead  on  a  track.  Static  cues   require  little  thinking  and  no  strategy;  they  do  not  contribute  to  an   accurate  model  of  your  client’s  sport,  which  demands  rapid  response  to  a   continuous  flow  of  environmental  cues.    


By simulating  real  play  and/or  competition,  TRAZER  enables  accurate   quantification  of  previously  “immeasurable”  performance  and   physiological  parameters.  Consequently,  TRAZER  can  guide,  track,  and   report  your  client’s  performance  in  real  time  and  after  each  training   session,  providing  the  feedback  necessary  to  manage  your  client’s   program.   These  measurements  will  enable  us  to  identify  any  previously  undetectable   weaknesses  and  imbalances.  The  data  provided  allows  a  more  accurate   and  sensitive  assessment  of  the  ability  to  control  and  adapt  to  game   situations  and  the  likely  response  to  new  physical  challenges.  Unlike  the   results  of  many  other  tests,  TRAZER  provides  direct,  reliable   measurements  of  your  actual  function,  and  those  measurements  are   directly  transferable  to  performance  on  the  field  or  court.   Though  it  is  useful  to  be  able  to  limit  demands  for  training  and  rehab   purposes  –  accurate,  reliable,  and  valid  testing  protocols  require  maximal   efforts  from  your  client.  Submax  efforts  are  not  acceptably  reproducible.   The  only  exception  to  this  is  a  graded  exercise  test  which  by  definition   progressively  increases  physiological  demand.   The  Force  -­‐  Velocity  Curve  Shows  that  Strength  Training  has  its   “Weaknesses”     Strength  can  be  defined  as  the  maximum  force  generated  during  a   movement.  One  measure  of  our  strength  is  our  maximum  squat  or  bench.   Proper  strength  training  is  essential  to  optimizing  our  sports  performance.   But  like  all  training  protocols,  it  too  has  its  limitations.    

TRAZER’s Measurement  of  Power  

The force-­‐velocity  curve  (see  Figure  1)  provides  some  insight  regarding   such  limitations  -­‐  it  clearly  illustrates  the  benefits  of  combining  strength   training  with  sport-­‐specific  speed  training.  

Power is  a  measure  of  the  rate  at  which  you  can  perform  work,  defined  as   the  force  acting  upon  a  person  that  causes  displacement  (movement).   Work  includes  running  down  the  court  or  lifting  a  weight.     However,  work  does  not  account  for  the  amount  of  time  the  force  acted   on  the  person  to  cause  the  displacement.  Lifting  a  weight  slowly  generates   less  power  (but  an  equal  amount  of  work)  than  lifting  the  same  weight   faster.  The  power  a  person  can  generate  is  certainly  one  of  the  most   important  measures  of  physical  prowess.     TRAZER’s  measurement  of  power  is  a  unique  measure  of  the  ability  to   execute  an  abrupt  change  in  direction,  that  is,  the  ability  to  “cut  on  a   dime.”    

Power  can  be  explained  as  adding  speed  to  strength;   agility  can  perhaps  be  defined  as  “quickness  under  control”   The  force-­‐velocity  curve  depicts  the  relationship  between  the  force   produced  by  muscle  and  the  speed/velocity  of  the  muscle  contraction.   Maximal  muscle  force  is  generated  during  a  maximal  isometric  contraction,   which,  of  course,  has  a  zero  velocity.   As  force  increases,  the  speed  at  which  a  movement  can  be  executed   slows—large  forces  simply  require  more  time  to  develop.  The  time   required  could  be  as  much  as  a  half  second  or  more.  And  yet  most  sport-­‐ specific  movements  are  performed  at  such  high  velocities  that  there  is   insufficient  time  to  develop  maximum  forces.  Foot  ground  contact  times   are  typically  less  than  a  tenth  of  a  second.  

Power is  more  important  to  an  athlete  than  strength   Power  is  simply  our  ability  to  produce  force  very  rapidly.  The  force-­‐velocity   curve  shows  that  our  greatest  power  is  achieved  approximately  equidistant   between  our  max  power  and  max  velocity  for  a  particular  movement.  As   our  power  improves,  our  ability  to  produce  both  force  (strength)  and   velocity  also  improves.     Emphasizing  the  importance  of  power  should  not  be  construed  as   devaluing  strength  training.  On  the  contrary,  as  strength  improves,  the   ability  to  generate  power  does  so  as  well.  But  for  an  athlete  to  reach  his  or   her  genetic  potential,  he/she  must  properly  blend  strength  and  sport-­‐ specific  speed  training.  Diligently  working  to  increase  maximum  strength  -­‐   which  primarily  improves  our  ability  to  generate  large  forces  at  slow   speeds,  results  in  diminishing  returns  at  some  training  point.    

8: TRAZER®  Performance  Assessments   29  

Training that  increases  the  rate  at  which  an  athlete  can  produce  force   directly  correlates  with  success  on  the  field  or  court.    

TRAZER’s  Measurement  of  Reaction  Time   Great  reaction  time  depends  on  the  recognition  of  your  opponent  or  the   ball,  a  prompt  decision  to  act  and  the  correctness  of  the  resulting  physical   action.  A  novice  athlete,  for  example,  may  recognize  the  ball  or  opponent   adeptly,  but  their  inexperience  may  result  in  an  incorrect  decision  that   produces  an  inappropriate  or  inefficient  response.  TRAZER  quantifies  your   ability  to  react  both  quickly  and  to  move  in  the  correct  direction  to  visual   and  auditory  cues  mimicking  real  sports  activities.  TRAZER  measures  the   elapsed  time  from  the  instant  each  cue  is  presented  until  your  response  in   the  correct  direction.  

TRAZER’s Measurement  of  1st  Step  Quickness   First  Step  Quickness  is  one  of  the  most  valued  attributes  of  a  successful   athlete.  In  sports  vernacular,  an  athlete  possessing  “first-­‐step  quickness”   accelerates  well.  By  contrast  a  high  “top  end”  is  a  measure  of  speed.  1st-­‐ step  quickness  often  determines  who  makes  the  play.  1st-­‐step  quickness  is   a  component  of  overall  agility,  but  like  reaction  time,  it  is  a  component   that  is  useful  and  meaningful  to  look  at  separately.   Numerous  training  tools  are  available  to  measure  your  average  speed   between  two  points.  For  example,  a  stopwatch  is  used  to  measure  your   100  meter  time.  Your  average  velocity  between  two  points  is  the  ratio  of   the  change  in  your  position  (how  far  you  traveled)  to  the  time  interval  it   took  you  to  get  there  (e.g.,  feet  per  second  or  miles  per  hour).    

However, any  time  your  speed/velocity  actually  changes,  the  change  is   measured  as  acceleration.  An  everyday  example  of  acceleration  is  pressing   down  on  your  car’s  accelerator  pedal.  Acceleration  is  the  ratio  of  the  car’s   change  in  velocity  (in  feet  per  second)  to  the  time  (seconds)  it  took  for  the   change  to  take  place.  Therefore,  the  measurement  units  are  feet  divided   by  seconds  squared.       st

It is  important  to  note  that  1  Step  Quickness  applies  to  more  than  just   increasing  velocity.  Increasing  your  velocity  is  acceleration;  decreasing  your   velocity  is  usually  termed  “deceleration.”  So  braking  our  car  -­‐  again  a   change  in  velocity  -­‐  is  deceleration.     Since  acceleration  occurs  whenever  you  change  velocity  or  your  direction   of  movement,  you  can  see  how  acceleration  can  be  more  valuable  for   testing  of,  and  training  for,  agility  than  speed  or  velocity  is.     You  may  have  heard  the  sports  jargon  that  “speed  kills”  when  referring  to   the  break-­‐away  speed  of  a  running  back  or  split  end,  for  example.  Speed   can  certainly  be  dangerous,  but  acceleration  can  be  a  more  potent   weapon.  Here’s  another  common  example,  a  roller  coaster,  is  thrilling   because  of  its  acceleration,  not  its  speed.  A  roller  coaster’s  top  end  seldom   exceeds  freeway  speed  limits.     Any  valid  test  of  first-­‐step  quickness  must  not  only  measure  acceleration,  it   must  also  replicate  the  real-­‐world  cues  that  actually  cause  the  person  to   accelerate  in  the  first  place.  Until  TRAZER,  acceleration  over  sport-­‐relevant   distances  and  directions  in  response  to  real-­‐world  cues  could  not  be   practically  measured.  

8: TRAZER®  Performance  Assessments   30  

TRAZER’s Measurement  of  Movement  Speed  

TRAZER’s  Measurement  of  Optimal  Sports  Posture  

Velocity is  defined  as  the  average  speed  in  feet  per  second  over  a  specified   direction  and  measured  distance.    

Dynamic posture  is  defined  as  the  optimal  stance  to  generate  maximum   power  and  stability  during  game  play.  TRAZER  allows  the  cueing,  tracking   and  comparison  of  movement  power  at  different  stances.  For  each  user,  at   some  particular  dynamic  posture,  their  agility,  quickness,  stability  and   balance  will  be  optimized,  and  unnecessary  energy  expenditure  will  be   reduced.  Certain  games  and  drills  can  be  set  up  to  train  and  reward   maintaining  more  optimal  stance  during  movement.  

TRAZER’S Measurement  of  Agility   Perhaps  the  most  complex  and  critical  movement  demand  in  sport  is  the   requirement  to  rapidly  change  direction  in  response  to  the  unpredictable   actions  of  opponents,  teammates,  and  objects  during  game  play.  Similar  to   tests  of  reaction  time,  the  cues  must  be  unpredictable  so  that  you  can’t   pre-­‐plan  movements.  The  cues  also  must  be  interactive  and  continuous  to   simulate  the  challenges  of  real  sports  competition.  TRAZER  does  all  of  this.   TRAZER  measures  your  ability  to  execute  abrupt  changes  in  direction,   whether  defending  or  evading.     Agility  depends  on  being  able  to  rapidly  change  the  direction  of  movement   and  accelerate  in  a  new  direction  toward  a  target.  This  type  of  quickness   (actually  acceleration)  is  embodied  by  Michael  Jordan’s  skill  in  driving  to   the  basket.  After  making  a  series  of  misleading  movement  cues,  Jordan  is   able  to  make  a  rapid,  powerful  drive  to  the  basket.     As  we  have  discussed,  most  tests  of  speed/velocity,  such  as  the  40-­‐yard   dash,  are  pre-­‐planned  events.  Such  tests  do  not  accurately  replicate  the   types  of  movement  challenges  faced  in  real  competition.  TRAZER,  by   contrast,  measures  the  ability  to  execute  abrupt  and  explosive  changes  in   any  direction  while  either  evading  or  guarding  a  virtual  opponent  to   simulate  both  realistic  offensive  and  defensive  play.  

Both the  ancient  martial  arts  and  modern  sports  science  teach  the   importance  of  strengthening  and  controlling  your  core.  This  control  is   perhaps  the  single  most  important  factor  in  determining  whether  you   move  effectively.  The  stance  you  assume  while  playing  a  game  determines   in  no  small  measure  how  effectively  you  actually  will  play.  Proper  body   posture  optimizes  your  agility,  stability  and  balance  and  minimizes  your   required  expenditure  of  energy.     This  approximate  center  of  your  body  is  often  referred  to  as  your  “CG”   (center  of  gravity).  Effective  body  core  control  is  essential  for  everyone.   Accomplished  athletes  exhibit  superb  control  of  the  body  core,  which  is   reflected  in  their  extraordinary  balance,  power,  and  agility.     An  optimum  posture  during  movement  enhances  control  of  your  body’s   center  of  gravity  during  periods  of  maximum  acceleration,  deceleration,   and  directional  change.  For  example,  a  body  posture  during  movement  in   which  your  center  of  gravity  is  too  high  may  reduce  your  stability  as  well  as   dampen  explosive  movements;  conversely,  a  body  posture  that  is  too  low   may  reduce  mobility.  Without  means  of  quantifying  the  effectiveness  that   a  particular  body  posture  has  on  your  performance  and  getting  objective,   real-­‐time  feedback,  discovering  the  optimum  stance  is  a  hit-­‐or-­‐miss   process.    

8: TRAZER®  Performance  Assessments   31  

TRAZER’s measurement  of  your  approximate  center  of  gravity  (CG)  offers   the  unique  ability  to  determine  the  stance  that  will  maximize  your  agility.   TRAZER  tracks  the  elevation  (height)  of  your  body  center  during  play  and   compares  it  to  your  overall  movement  power  and  speed.  Recommended   ranges  can  either  be  based  on  previously  established  normative  data  or   can  be  determined  by  actual  TRAZER  testing  to  determine  the  CG  position   producing  the  higher  performance  values  for  you.  At  some  particular   height/elevation,  your  ability  to  move  explosively  can  be  optimized  by   TRAZER.  

be known  (volleyball  spike)  or  unknown  (soccer  goalie,  basketball   rebound).  

Once determined,  TRAZER  activities  can  be  set  to  play  at  the  optimum   height  stance.  Training  in  this  way  builds  strength  and  reinforces  the   optimum  posture  with  real-­‐time  feedback  during  execution  of  movements   identical  to  those  experienced  in  actual  game  play.  

Research has  shown  that  assuming  a  properly  loaded  stance  upon  landing   effectively  dampens  landing  forces  and  can  significantly  reduce  the   chances  of  developing  future  knee  problems.  TRAZER’s  feedback  can  assist   in  developing  safe  and  effective  jumping  skills.    

TRAZER’S Measurement  of  Jump  Height  

TRAZER’S Measurement  of  Sport-­‐Specific  Stamina  

The ability  to  jump  and  bound  is,  of  course,  essential  to  success  in  many   sports  and  is  also  a  valid  indicator  of  a  body’s  overall  power.  Most  sports   training  programs  attempt  to  quantify  a  person’s  jumping  ability  to  both   appraise  and  enhance  athleticism.  Many  competitive  team  sports  require   that  you  elevate  your  CG,  whether  playing  defense  or  offense.  Unlike  field   events,  you  must  time  your  response,  and  often  you  are  already  moving   prior  to  the  jump  or  bound.  In  most  game  play,  exactly  when  or  where  you   must  jump  or  bound  is  not  a  pre-­‐planned  movement.    

Currently, stationary  exercise  bikes,  treadmills  and  climbers  are  used  to   evaluate  cardio-­‐respiratory  fitness  for  sports  competition.  

The timing  of  a  jump  or  bound  is  as  critical  to  a  successful  spike  in   volleyball  or  rebound  in  basketball  as  is  its  height.  These  should  be   measured  in  response  to  an  unpredictable  dynamic  cue  in  order  to   accurately  simulate  competitive  play.  The  required  movement  vector  may  

In most  sports  competitions,  there  are  cycles  of  high  physiologic  demand,   alternating  with  periods  of  lesser  demand.  Cardiac  demand  is  also   impacted  by  situational  performance  stress  and  attention  demands.   Performance  of  the  cardio-­‐respiratory  system  under  sports-­‐relevant   conditions  is  important  to  efficient  movement.    

In sharp  contrast  to  jump  tests  that  are  pre-­‐planned  (e.g.,  running  and   jumping  as  high  as  you  can),  TRAZER  provides  a  simulated  environment   where  you  jump  and  bound  to  unpredictable  movements  of  virtual   opponents  to  simulate  actual  competition.  TRAZER  actually  tracks  the  path   traveled  for  each  of  your  jumps  to  measure  ground  time,  jump  height,  and   the  quality  of  the  landing.  

Though such  exercise  devices  can  provide  measures  of  a  person’s  physical   work  capacity,  they  are  not  capable  of  replicating  the  actual  stresses  and   conditions  experienced  in  most  sports.  Accordingly,  these  tests  are   severely  limited  if  attempts  are  made  to  correlate  the  resultant  measures   to  your  actual  sport-­‐specific  activities.    

8: TRAZER®  Performance  Assessments   32  

It is  well  known  that  a  person’s  heart  rate  is  influenced  by  variables  such  as   emotional  stress  and  the  type  of  muscular  contractions,  which  can  differ   radically  in  various  sports  activities.  For  example,  heightened  emotional   stress  and  a  corresponding  increase  in  cardiac  output  is  often  associated   with  defensive  play  because  the  defensive  player  is  constantly  in  a  coiled   position  anticipating  the  offensive  player’s  next  response.     For  the  cardiac  rehab  specialist,  coach,  or  athlete  interested  in  accurate,   objective  physiological  measures  of  sport-­‐specific  cardiovascular  fitness,   few  if  any  truly  valid  tests  are  available.  Such  a  test  would  deliver  sport-­‐ specific  exercise  challenges  that  make  the  heart  rate  replicate  levels   observed  in  actual  competition.  Your  movement,  decision-­‐making,   execution  skills,  reaction  time,  acceleration-­‐deceleration  capabilities,   agility  and  other  key  functional  performance  variables  would  be   challenged.  Your  heart  rate  would  be  continuously  tracked,  as  would  other   key  performance  variables.  Feedback  of  heart  rate  versus  your  physical   performance  would  be  computed  and  reported.   By  monitoring  your  heart  rate  via  telemetry,  TRAZER’s  exercise  challenges   are  automatically  increased  or  decreased  to  cycle  your  heart  rate  to  those   levels  you  will  actually  experience  in  a  game  situation.  TRAZER  helps  to   cycle  your  heart  rate  as  if  you  were  actually  competing,  to  high  rates   during  periods  requiring  maximum  effort  and  to  lower  ones  during  periods   of  lower  demand.     After  testing,  TRAZER  can  train  your  cardiovascular  system  specifically  for   your  chosen  sport  by  providing  exercise  challenges  that  simulate  those   actually  experienced  on  the  field  or  court  (e.g.,  unplanned  explosive  lateral   movements  with  frequent  changes  of  direction).     TRAZER’s  Functional  Cardiac  Evaluation  (FCE)  measures,  calculates,  and   reports  a  comparison  of  heart  rate  to  movement  power  (functional  work  

rate) and  also  provides  a  trend  analysis.  The  TRAZER  FCE  has  the  advantage   of  being  more  relevant  to  the  demands  that  a  subject  or  patient  faces  in   sports,  work  activities,  and  other  real-­‐world  environments.  The  test  uses   continuous  monitoring  of  heart  rate  via  telemetry  while  the  subject   performs  exercise  challenges  that  may  be  gradually  increased  to  a  target   heart  rate  level  or  modulated  to  cycle  the  heart  rate  among  target  levels.    

TRAZER’s Measurement  of  Balance   The  position  of  your  body  CG  or  core  is  precisely  and  continuously  tracked,   even  in  apparently  static  postures.  Balance  (sway/instability)  is  measured   and  reported  as  amplitude  of  displacement  in  inches  or  centimeters  and   frequency  of  movement  oscillations  in  cycles  per  second.  Simple  tests  like   single-­‐leg  balance  for  a  fixed  time  with  comparison  of  right  to  left  side   movement  when  appropriate  can  be  easily  performed.   By  tracking  a  person  in  three  planes  of  movement  and  rotations  around   these  three  planes,  TRAZER  can  measure  sway  and  instability  during   activities  that  require  balance  and  body  control.  Whether  attempting  to   follow  the  tai-­‐chi-­‐like  movements  of  a  virtual  teacher  or  balancing  on  a   moving  track  in  the  virtual  world,  an  individual’s  variance  from  perfect   movement  and  stability  is  precisely  measured.     These  weight-­‐bearing  activities  do  not  require  much  exertion;  however,   balance,  stability,  proprioception,  and  coordination  act  to  build  core  and   leg  strength.  

TRAZER’s Measurement  of  Dynamic  Stability   Dynamic  stability  measurement  is  an  extension  of  balance  testing  that   looks  at  the  same  measurement  factors  (displacement  in  inches  or  

8: TRAZER®  Performance  Assessments   33  

centimeters and  frequency  of  movement  oscillations  in  cycles  per  second),   but  during  activities  that  require  dynamic  body  control.  For  example,  a   person  can  be  interactively  cued  to  raise  and  lower  CG  while  maintaining   balance,  balance  can  be  disrupted  on  a  deformable  or  moveable  surface  or   platform,  or  recovery/maintenance  of  balance  can  be  measured  after  a   vertical,  forward,  backward  or  lateral  jump.  This  type  of  test  is  particularly   useful  for  clinicians,  but  it  also  can  be  a  meaningful  component  of  a   personal  trainer’s  client  evaluation  and  measurement  of  progress.    

8: TRAZER®  Performance  Assessments   34  


Key TRAZER  Definitions  

TRAZER employs  optical  position  sensing  means  to  locate  the  position  of  a   target  (the  “beacon”)  mounted  to  the  subject’s  body  in  three  degrees-­‐of-­‐ freedom.  TRAZER  has  a  sampling  rate  of  more  than  300  Hz;  sufficiently  fast   to  ensure  the  absence  of  perceived  lag  between  the  subject’s  movement   and  resultant  activity  in  the  computer  simulation.     This  essentially  real-­‐time  recognition  and  assessment  of  the  client’s   movement  in  3D  space  enables  accurate  quantification  of  functional   performance  parameters  associated  with  agility,  posture,  physical  activity,   etc.     Essential  elements  of  the  TRAZER  include:  1.  the  protocols  or  games  that   deliver  unplanned  movement  challenges  over  sport-­‐specific  distances  and   directions  and  2.  Comparative  mapping  of  the  player’s  movement  pattern   in  3D  space  so  that  the  client  receives  uninterrupted  feedback  of  his   performance  and,  3.  the  spatially  correct  relationship  that  is  maintained   between  the  virtual  opponent  and  the  client’s  icon  that  creates  a  more   accurate  simulation  of  game  play.   TRAZER  protocols  lead,  prompt  or  induce  the  client  through  various  tests   and  exercises  so  that  accurate  measurements  of  unplanned,  sport-­‐specific   activities  can  be  made.    

Key TRAZER  Definitions   Displacement  –  Displacement  is  the  distance  traveled  by  the  body-­‐

mounted beacon  in  the  X,  Y  or  Z  planes  from  a  fixed  reference   point.  It  is  also  a  vector  quantity.  Each  of  TRAZER’s  measurement  


constructs or  protocols,  discussed  below,  employ  displacements   over  time  in  their  calculations.  

3D Space  –  3D  space  is  a  specific  volume  of  space,  which  in  this  example,   is  TRAZER’s  approx.  10’  by  10’  field,  by  ceiling  height  working   environment.  Any  location  in  3D  space  can  be  described  by  its  X,   Y,  Z  coordinates  relative  to  the  fixed  reference  point  or   origin/start  position  that  is  calibrated  at  the  start  of  the  protocol.   That  origin  point  can  be  defined  as  X,  Y,  Z  coordinates  0.0.0.    

In a  three-­‐dimensional  coordinate  system,  the  X-­‐coordinate  refers   to  left-­‐right  location,  the  Y-­‐coordinate  refers  to  up-­‐down  location,   and  the  Z-­‐coordinate  refers  to  near-­‐far  location.  For  example,   Sport  Posture  tracks  displacements  over  time  in  the  Y  plane.  

Degrees-­‐of-­‐freedom –  Is  defined  as  the  axis  of  translation  provided  for   by  TRAZER’s  optical  sensor.  TRAZER’s  sensor  system  provides   three  degrees-­‐of-­‐freedom  from  X,  Y,  Z  translations.    

Simulation –  Is  defined  as  the  use  of  computer  software  to  model  and  

analyze the  behavior  of  real  world  systems,  in  our  case,   competitive  sports.  The  simulation  depicts  a  real  world  system’s   behavior;  it  is  animation  with  a  sense  of  purpose.  If  the  real  world   system  has  been  modeled  accurately  and  with  fidelity,  then  the   simulation  will  be  able  to  visually  demonstrate  the  performance   of  the  real  world  system  over  time.  

Physics-­‐based Simulation  –  Uses  principles  of  physics  to  manage  the   events  being  modeled  and  simulated;  the  software  considers   factors  such  as  velocity,  speed,  displacement,  acceleration,   deceleration  and  mass,  etc.  as  objects  interact  in  the  virtual   world.  Most  of  the  proposed  TRAZER  games  and  protocols  will   involve  “realistic”  interaction  between  the  icon  representing  the   subject  and  virtual  objects  such  as  balls,  opponents,  etc.      

Perceived Exertion  Rating  –  The  goal  for  TRAZER  was  to  burn  the  

maximum number  of  calories  in  the  most  painless  manner.   “Painless”  in  the  field  of  exercise  physiology  is  defined  by  a   Perceived  Exertion  Rating,  where  the  exercises  are  subjectively   rated  on  a  scale  of  1-­‐20  based  on  the  relative  “discomfort”   experienced  for  a  given  work  load.  As  may  be  surmised,  game-­‐like   activities  or  competitions,  where  the  mind  is  engaged,  result  in   lower  perceived  exertion  ratings  than  those  activities  where  TV  or   music  must  distract  the  mind.  Weight  bearing  activities,  such  as   basketball  or  handball,  also  typically  result  in  low  ratings  vs.   equipment  that  supports  the  body,  such  as  stationary  bikes  or   climbers.  The  game-­‐like  format  and  weight  bearing  activity   contribute  to  a  low  Perceived  Exertion  Rating.    

Basal Metabolic  Rate  (BMR)  –  The  energy  expenditure  necessary  to  

maintain the  normal  body  temperature  and  the  basic  functions  of   the  body  at  rest  (breathing,  circulation,  smooth  muscle   contractions,  etc.).  BMR  is  expressed  in  kilocalories  or  oxygen   utilization  per  square  meter  of  body  surface.    

Energy Expenditure  –  During  exercise,  energy  expenditure  is  often  

expressed in  kilocalories  per  kilogram  body  weight  per  minute.   Cost  of  exercise  is  often  expressed  as  a  ratio  of  the  energy  

expended during  exercise  to  the  resting  metabolic  rate   (WMR/RMR  or  METS),  which  corrects  for  differences  in  body  size.     Heart  rate  represents  an  estimation  of  energy  expenditure  from   physiologic  data,  TRAZER  estimates  from  the  integral  of  absolute   accelerations  of  the  mass  of  the  body  versus  time  in  three  planes   of  movement.    

Force –  Is  defined  as  "that  which  changes  the  state  of  rest  or  motion  in  

matter." Force  is  expressed  in  Newtons  (N).  We  apply  force  when   we  stop  a  ball  carrier,  throw  a  ball  or  run  down  the  field.    

Work –  Is  the  product  of  a  force  and  the  distance  that  the  force  displaces  

an object  without  regard  to  time.  Work  is  expressed  in  joules  (J).  It   is  calculated  as  the  force  in  Newtons  (N)  multiplied  by  the   distance  in  meters  (m).  One  joule  of  work  is  equivalent  to  one   Newton  causing  a  displacement  of  one  meter  (1  J  =  1  N  •  1  m).   From  Work,  we  can  also  derive  power.  

Power –  Is  the  "rate  that  work  is  performed”  and  is  measured  in  watts  

(W). A  force  of  1  Newton  through  a  displacement  of  1  meter   during  one  second  is  equal  to  one  watt.  Power  can  then  be   calculated  as:  force  (N)  multiplied  by  distance  (m)  and  divided  by   time  in  seconds  (s)  or  as  work  (J)  per  unit  of  time  (s).  The  formula   is:   Power  (W)  =  [Force  (N)  Distance  (m)/  Time  (s)]  =  Work  (J)/  Time  (s)     Power  can  be  measured  for  a  single  event,  a  series  of  events  or   repetitive  events/movements  such  as  running.  To  make  a  power   measurement,  the  force  generated,  the  distance  the  force  is   applied,  and  the  time  involved  must  be  known.      

9: Detailed  Description  of  TRAZER  Measurements   36  

Relevant Equations:   • Force  (N)  x  Distance  (m)  =  Work  (J)   •

Force (N)  x  Velocity  (m/s)  =  Power  (W)  

Work (J)/Time  (s)  =  Power  (W)  

motions of  several  simple  activities  into  a  general  blended  sequence  of   movements.  

TRAZER Formulae   The  following  section  provides  a  framework  for  relating  TRAZER’s   measurement  of  motion  (movement  in  three  planes)  to  quantify  work,  and   energy  expenditure  that  is  required  to  effect  that  movement.  Quantities   such  as  force,  acceleration  and  power,  defined  below,  are  dependent  on   the  rate  of  change  of  more  elementary  quantities  such  as  body  position   and  velocity.  The  energy  expenditure  of  an  individual  is  related  to  the   movement  of  the  individual  while  performing  TRAZER  protocols.   To  facilitate  understanding,  a  few  examples  of  representative  movement   patterns  are  discussed:     First,  with  the  beacon  placed  at  the  CG  point  (near  the  midsection  of  a   subject  under  study),  an  activity  or  protocol  is  delivered  by  TRAZER’s   application  program.  For  example,  it  may  be  a  simple  repetitive  motion   performed  at  a  uniform  pace;  it  may  be  a  rhythmic  motion  such  as   continuous  jumping,  or  it  could  consist  of  a  side-­‐to-­‐side  motion;  any   representative  movement  is  satisfactory.     In  any  case,  each  of  these  simple  examples  of  TRAZER  protocols  consists  of   repetitive  bilateral  motion  along  a  line.  More  complex  examples  of  physical   activities  can  be  readily  constructed  by  varying  the  tempo  of  a  repetitive   activity  or  by  combining  the  up-­‐down,  side-­‐to-­‐side,  and  front-­‐to-­‐back  

The concept  that  a  complex  motion  can  be  considered  as  a  combination  of   simple  bilateral  movements  in  any  of  three  directions  is  convenient  since   we  can  focus  on  elementary  movements  and  subsequently  add  the  effects   of  these  simple  components.  These  ideas  will  be  related  to  the  ability  to   monitor  the  movement  of  the  individual  to  measure  the  resultant  energy   expenditure.   TRAZER’s  ability  to  accurately  measure  a  subject's  movement  rests  on   being  able  to  determine  his  or  her  position  and  velocity  at  arbitrary  points   of  time.   For  a  given  point  in  time,  position  can  be  either  measured  directly  or   calculated  from  a  previously  known  position.  The  updating  of  position  from   a  previous  position  requires  knowing  the  velocity  at  the  previous  position   and  the  net  effect  of  any  forces  acting  on  the  individual.  Since  the  forces   acting  on  an  individual  are  often  complicated  or  even  unknown,  this   method  of  updating  the  position  is  often  difficult  or  impossible.   Fortunately,  TRAZER’s  sampling  rate  is  sufficiently  fast  to  allow  accurate   measurements  to  be  made  at  very  closely  spaced  intervals  of  time.   Moreover,  by  knowing  an  individual's  position  at  arbitrary  points  along  its   path  the  velocity  can  be  calculated,  thus  avoiding  the  difficult  methods   which  require  knowing  the  forces  acting  on  the  individual.     How  position  can  be  used  by  TRAZER  to  determine  velocity  along  a   movement  path   Given  the  position  of  the  individual  at  various  instances  of  time,  TRAZER   can  obtain  the  velocity  in  several  ways.  One  method  is  to  choose  a  point   and  calculate  its  velocity  as  being  the  result  of  dividing  the  distance  

9: Detailed  Description  of  TRAZER  Measurements   37  

between it  and  the  next  point  by  the  time  difference  associated  with  those   points.  This  is  known  as  a  finite  difference  approximation  to  the  true   velocity.  For  small  spacing  between  points,  it  is  highly  accurate.    

where dV  is  the  change  in  velocity  and  T  is  the  time  interval.  Acceleration  is   expressed  in  terms  of  meters  per  second  per  second.  The  accuracy  of  this   approximation  to  the  acceleration  is  dependent  on  using  sufficiently  small   intervals  between  points.  

If we  let  D  be  the  distance  between  consecutive  points  and  T  equal  the   time  period  to  travel  the  distance  D,  then  the  velocity  V  is  given  by  the   following  rate  of  change  formula  

As an  alternate  to  using  smaller  position  increments  to  improve  accuracy,   more  accurate  finite  difference  procedures  may  be  employed.  TRAZER   obtains  positional  data  with  accuracy  within  a  few  millimeters  over  time   intervals  of  approximately  .020  seconds,  so  it  does  not  appear  that   accuracy  will  be  a  concern  for  activities  involving  durations  of  minutes  and   distances  on  the  order  of  meters.    

V =  D/T,     where  V  has  the  units  of  meters  per  second,  m/s.   In  three  dimensional  space,  D  is  computed  by  taking  the  change  in  each  of   the  separate  bilateral  directions  into  account.  If  we  let  dX,  dY,  dZ  represent   the  positional  changes  between  the  successive  bilateral  directions,  then   the  distance  D  is  given  by  the  following  formula   D  =  sqrt(  dX*dX  +  dY*dY  +  dZ*dZ  ),   where  "sqrt"  represents  the  square  root  operation.  The  velocity  can  be   labeled  positive  for  one  direction  along  a  path  and  negative  for  the   opposite  direction.  This  is,  of  course,  true  for  each  of  the  bilateral   directions  separately.   This  finite  difference  approximation  procedure  can  also  be  used  to   calculate  the  acceleration  of  the  object  along  the  path.  This  is   accomplished  by  taking  the  change  in  velocity  between  two  consecutive   points  and  dividing  by  the  time  interval  between  points.  This  gives  an   approximation  to  the  acceleration  A  of  the  object  which  is  expressed  as  a   rate  of  change  with  respect  to  time  as  follows:  

In contrast  to  the  finite  difference  approach,  the  positional  data  could  be   fitted  by  spline  curves  and  treated  as  continuous  curves.  The  velocity  at   any  point  would  be  related  to  the  tangent  to  the  individual's  path  using   derivative  procedures  of  standard  calculus.  This  would  give  a  continuous   curve  for  the  velocity  from  which  a  corresponding  curve  could  be  obtained   for  the  acceleration  of  the  individual.   In  any  case,  the  determination  of  the  individual’s  acceleration  provides  a   knowledge  of  the  force  “F”  it  experiences.  The  force  is  related  to  the  mass   M,  given  in  kilograms,  and  acceleration  by  the  formula   F  =  M*A   This  is  a  resultant  formula  combining  all  three  components  of  force  and   acceleration,  one  component  for  each  of  the  three  bilateral  directions.  The   international  standard  of  force  is  a  Newton,  which  is  equivalent  to  a   kilogram  mass  undergoing  an  acceleration  of  one  meter  per  second  per   second.  TRAZER  will  require  that  the  individual  enter  bodyweight  (for   MASS)  and  gender  prior  to  playing.  

A  =  dV/T,  

9: Detailed  Description  of  TRAZER  Measurements   38  

The effect  of  each  component  can  be  considered  separately  in  analyzing  an   individual's  movement.  This  is  easily  illustrated  by  recognizing  that  an   individual  moving  horizontally  will  be  accelerated  downward  due  to  gravity   even  as  it  is  being  decelerated  horizontally  by  air  drag.  The  effects  of  forces   can  be  treated  separately  or  as  an  aggregate.  This  allows  one  the  option  to   isolate  effects  or  lump  effects  together.  This  option  provides  flexibility  in   analysis.    

calorie actually  means  a  kilocalorie  of  energy.  So,  a  food  calorie  is  1000   standard  calories.     The  definition  of  power  and  its  standard  unit  of  measure   Power  P  is  the  rate  of  energy  or  work  production  and  is  given  by  the   following  formula     P  =  W/T.  

The concepts  of  energy  and  work   The  energy  expended  by  a  subject  on  TRAZER  can  be  separated  into  two   types.  One  form  is  useful  mechanical  work  while  the  other  form  is  the  type   that  shows  up  as  heat.  This  is  because,  by  nature,  nothing  is  100  percent   efficient.  The  mechanical  work  is  calculated  by  multiplying  the  force  acting   on  the  subject  by  the  distance  that  the  subject  moves  while  under  the   action  of  the  force.  The  expression  for  work  W  is  given  by   W  =  F*d.   The  unit  of  work  is  a  joule,  which  is  equivalent  to  a  Newton-­‐meter.  The   above  force  is  a  variable  quantity,  which  means  it  may  be  changing  with   time  as  the  subject  moves.  Using  numerical  method  techniques,  the  work   can  be  readily  calculated  given  knowledge  of  the  movement  as  described   above.   The  units  of  work  are  the  same  as  for  energy.  However,  in  some  instances   it  is  customary  and  convenient  to  use  a  standard  calorie  for  the  energy   unit,  with  1000  calories  =  kilocalorie,  kcal.  A  kilocalorie  is  the  amount  of   energy  required  to  raise  the  temperature  of  one  kilogram  of  water  from   14.5  to  15.5  degrees  centigrade.  The  conversion  between  joules  and   calories  is  one  kcal=  4184  joules.  Also,  when  speaking  of  food  energy,  a  

The standard  unit  for  power  is  the  watt  and  it  represents  one  joule  of  work   produced  per  second.     Direct  and  indirect  methods  exist  to  determine  the  amount  of  heat   expended  by  an  individual.  With  a  direct  method,  the  individual  exercises   in  an  insulated  calorimetric  chamber  in  which  the  heat  dissipated  by  the   individual  is  transferred  by  convection  to  a  tube  of  circulating  water.  The   change  in  water  temperature  between  its  entering  and  exiting  the   chamber  is  measured.  From  this  temperature  rise,  the  calories  expended   can  be  evaluated  to  accuracies  of  less  than  one  percent  error.       Different  individuals  performing  the  same  activity  expend  different   amounts  of  heat  due  to  differences  in  body  mass,  gender,  conditioning,   and  other  factors.  This  can  be  measured  directly  by  the  calorimetric   chamber  method.  As  indicated  above,  we  can  obtain  the  work  done  in  an   activity  if  we  know  the  motion  associated  with  that  activity.  Thus,  a  device   which  can  measure  position  can  be  used  in  conjunction  with  other   measurements  to  provide  comparisons  between  useful  work  produced  and   heat  energy  discarded  during  an  exercise  routine.  The  efficiency  of  an   individual  can  be  determined  using  the  ratio  of  useful  energy  to  total   energy.  Furthermore,  a  method  to  calculate  work,  such  as  the  TRAZER,  can  

9: Detailed  Description  of  TRAZER  Measurements   39  

be calibrated  or  validated  against  standard  measures  of  energy   expenditure,  rate  of  energy  expenditure  and  efficiency.

9: Detailed  Description  of  TRAZER  Measurements   40  


The TRAQ  3D  Way  

Adhering to  a  structured,  scientifically-­‐based  Athlete  Development   Program  is  essential  to  the  consistent  delivery  of  superior  outcomes.    

In Summary  -­‐  Why  TRAZER®  Sports  Simulation?  

Provides for  over-­‐speeding  to  energize  the  neurological  system   •

TRAZER® Nomenclature  

Uniquely measures,  tests  and  trains  performance  capabilities  that   correlate  highly  to  success  on  the  field  or  court  

Delivers reaction-­‐based  movement  challenges  with  real-­‐time   feedback    

Calculates and  delivers  protocols  to  correct  bilateral  movement   differences  

Calculates and  reinforces  optimal  stance  and  proper  landing   technique  

Tests and  trains  sport-­‐relevant  stamina  using  heart-­‐rate  telemetry  

90 degrees  –  (right/east  of  calibration  position)  

Competitive gaming  environment  improves  compliance  and  tests   athlete’s  determination  pre  and  post  workout  

135 degrees  

Tracks performance  during  the  athlete’s  training  cycle  

225 degrees  

Describing Movement  Direction  relative  to  the  TRAZER  screen:  TRAZER   delivers  3-­‐dimensional  movement  challenges.  Assuming  the  client  begins   each  TRAZER  activity  at  the  center  of  the  TRAZER  training  field  (the   “Calibration  Position”)  facing  the  TRAZER  screen,  the  direction  of   movement  is  based  on  degrees  of  the  compass.  TRAZER’s  Performance   Report  displays  results  from  8  vectors:   0/360  degrees  –  (north  from  calibration  position)   45  degrees  

180 degrees  –  (back  from  calibration  position)   270  degrees  –  (left/west  from  calibration  position)  

The value  of  the  PowerTRAQ™  Resistive  Training  System:   Progressively  builds  sport-­‐specific  speed,  power  and  stamina   Reduces  braking  forces  during  explosive  change-­‐in-­‐ direction/decelerations   Reinforces  proper  stance  


Uniquely effective  for  all  stages  of  rehab  


315 degrees  

PowerTRAQ resistance  bands  can  be  attached  at  the  following  points  on   the  floor:   0  degrees   90  degrees   180  degrees   •

270 degrees  

PowerTRAQ Bands  are  mounted  either  symmetrically  or  asymmetrically   depending  on  your  client’s  present  condition,  experience  and  goals.    

Primary Training  Vectors:     (See  figure  at  right.)   1.

LINEAR Training  -­‐  Forward/back  movement  –  typically  0  and/or   180  degrees  movement  from  the  TRAZER  Calibration  Position  


LATERAL Training  -­‐  Side-­‐to-­‐side  vector  movement  –  typically  90  or   270  degrees  from  the  TRAZER  Calibration  Position  


AGILITY Training  -­‐  Multi-­‐segmental  changes-­‐in-­‐direction  –   essentially  movement  to  numerous  compass  points  


POWER Training  -­‐  Vertical  movement  transgressions  

10: The  TRAQ  3D  Way   42  

Program Progression   With  TRAZER®,  each  activity’s  stress  level  can  be  carefully  controlled  to   maximize  your  client’s  potential  while  ensuring  her  safety.   Our  training  program  will  emphasize:   Controlled  progression  of  sport-­‐specific  movement  challenges  

Jumps (including  Bounds)  –    are  core  displacements  that  generate   forces  of  gravity  greater  than  1  G.  Vertical  jumps  have  purely   vertical  components;  Bounds  involve  both  horizontal  and  vertical   components   •

Shuttle –    is  a  transit  where  the  body  core  remains  positioned   above  the  feet  to  insure  maximum  balance  during  rapid  changes   in  direction  

Strengthening and  conditioning  for  anaerobic  power  and  endurance   •

Complex movement  patterns  -­‐  multi-­‐planar,  multilevel,  increasing   loading,  high  repetitions,  fast  speeds,  acceleration/deceleration   changes  

The intensity  will  progress  as  follows:     Double  leg  protocols  to  single  leg  protocols   Smooth  transitions  to  explosive  movements   Increased  complexity  of  movement  tasks   Short  to  long  transit  distances/Long  to  short  reaction  times   •

Greater power  and  deceleration  rates  with  improved   decelerations  in  both  the  vertical  (landings)  and  horizontal  planes  

Four primary  body  core  movements  are  employed:   Shifts/Core  Displacements  -­‐  are  short  distance  core  displacements   that  require  that  the  feet  remain  substantially  fixed  in  position  -­‐   shifts  include  toe  raises  and  partial  squats   Lunges  -­‐  are  one  step  core  displacements  –  with  one  leg  advancing  in   any  of  eight  directions  

Nomenclature for  PowerTRAQ  Resistive  Training   PowerTRAQ  resistance  training  improves  the  shortening  (concentric),   lengthening  (eccentric),  and  stabilizing  (isometric)  phases  of  muscle  activity   to  improve  agility,  speed,  power  and  stamina.     Acceleration  Training  -­‐  Over-­‐speed  training  improves  the  rate  at   which  a  body  segment  moves.  For  example,  the  elastic  energy   stored  in  a  stretched  band  (increased  tension)  over-­‐speeds  the   client  in  a  specific  movement  vector,  energizing  the   neuromuscular  system.     Deceleration  Training  -­‐  PowerTRAQ  is  perfect  for  training  the  body  for   the  stresses  imposed  during  decelerations,  when  the  involved   muscle  system  is  experiencing  lengthening  contractions  (eccentric   movement  causes  lengthening  of  the  muscle).     •

Overload -­‐  PowerTRAQ  provides  resistive  loading  that  builds   power  and  speed  without  inhibiting  the  client  from  moving   explosively.  Assuming  proper  resistance,  PowerTRAQ  builds   power  while  enabling  sport-­‐specific  movement  velocities  and   correct  biomechanics.  Plus  it  enables  the  application  of  resistance   along  numerous  force  vectors  to  recreate  sport-­‐type  movement.    

10: The  TRAQ  3D  Way   43  

PowerTRAQ Quadrilateral  Training   Quadrilateral  Training  simultaneously  applies  PowerTRAQ  resistance  to  the   client’s  core  and  arms  via  the  addition  of  hand-­‐held  bands.  The  goal  is  to   build  core  strength,  reinforce  optimal  posture,  and  elicit  complex   movement  patterns  involving  upper  and  lower  limbs  working  in  concert,   and  to  increase  metabolic  demands  during  TRAZER  play.  The  client  should   assume  and  maintain  correct  posture.       Side-­‐attached  (lateral)  PowerTRAQ  bands:   Protocol  Progression:   1.

Maintain hands  in  guard  position  (palms  facing  each  other)  –  this   posture  is  common  in  many  sports  such  as  martial  arts,  football   and  basketball  –  this  posture  creates  some  “relaxed  tension”  thru   the  core  –  shoulder  blades  should  be  pinched  together  with   shoulders  back  –  proper  posture  ensures  the  lower  and  upper   torso  are  linked  


Double punch  simultaneously  with  each  core  displacement  –   with  the  palms  facing  forward  or  toward  each  other  –  teaches   projection  of  force  from  the  ground/core  –  for  sport-­‐specific   movement  in  certain  sports  such  as  football,  the  punching   movement  can  be  with  an  open  palm  


Overhead Press  with  palms  facing  forward  –  Use  low  resistance   bands    

Rear-­‐attached PowerTRAQ  bands:   Protocol  Progression  as  above:   1.

Single punch  off  the  same  side  (front  punch)  as  the  initial  step   (with  rotating  core)  –  palm  facing  down  –  develops  timing,  as  the   purpose  is  to  maximize  power  development      


Single punch  off  the  back  foot  (reverse  punch)    


Double back-­‐fist  strike  starting  with  arms  crossed  and  palms   facing  in  –  a  strike  with  each  core  displacement    

Front-­‐mounted bands:   Protocol  Progression  as  above  with  emphasis  on  the  eccentric  phase.


10: The  TRAQ  3D  Way   44  

Testing Important  cautions  about  TRAZER  II  setup  and  use   Make  sure  no  obstacles  are  in  any  possible  movement  path  and  keep   activity  area  clear.  Please  refer  to  your  Operator’s  Manual  for   specifications  on  space  requirements  for  TRAZER  II.  Use  TRAZER  only  on   floor  surface  appropriate  for  rapid  starts  and  stops  and  jumping   movements.  TRAZER  activities  challenge  balance,  agility,  coordination  and   cardiovascular  fitness.  Ensure  appropriate  warm-­‐up  and  supervision.   Instruct  users  to  maintain  movement  control  and  to  not  over-­‐exert.  Users   attempting  new  activities  should  have  qualified  supervision.       TRAZER’s  Member  Record  Database  manages  all  testing  and  training   program  data  and  is  used  as  part  of  the  TRAZER’s  progression  criteria.  An   Elite  and  Normative  Database,  currently  under  development,  will  supply   meaningful  comparisons.  

exception to  this  is  a  graded  exercise  test  which  by  definition  progressively   increases  physiological  demand.     Test  Familiarity   For  valid  testing,  the  client  should  be  familiar  with  the  Test  format  and   have  adequate  physical  conditioning  to  safely  perform  at  maximal  levels.   Prior  to  testing,  the  client  should  first  become  familiar  with  the  test  by   performing  the  test  protocol  in  a  controlled  manner  to  become  familiar   with  the  cues,  their  placement,  and  the  spatial  relationship  between  the   virtual  world  and  the  real  world.       TRAQ  3D  Combine™   TRAZER  testing  provides  a  group  of  standardized  activities  designed  to   challenge  and  assess  specific  movement  skills  and  functional  performance.   To  run  any  Test  activity:     1.

Select Test  Repetitions  appropriate  for  individual  fitness  level.   Note  that  a  repetition  is  a  complete  cycle  of  all  movement   directions  included  in  a  test  or  activity  pattern  –  an  individual   directional  movement  is  not  a  repetition.  For  optimal  data   comparison  reliability,  use  the  same  number  of  repetitions  in   future  tests.  


Click “OK”  to  start  Test.  The  client  should  be  instructed  as  follows:    

Test results  are  displayed  on  the  “Performance  Analysis  Report”,  and  are   stored  to  client’s  data  base  file,  and  are  available  through  “Reports.”    The   client  must  be  logged  in  to  access  the  TRAZER  Test  Module.      

Test Protocols   Maximal  Efforts   Though  useful  to  be  able  to  limit  demands  for  training  and  rehab  purposes   –  accurate,  reliable,  and  valid  testing  protocols  require  maximal  efforts   from  the  subject.  Submax  efforts  are  not  acceptably  reproducible.  The  only  


Move to  center  calibration  position  and  stand  straight  at   full  height  to  allow  system  to  calibrate  and  assign  CG   height.  The  first  target  cue  will  appear  after  a  brief   countdown.    

React and  move  quickly  left,  right,  forward  and  backward  to   strike  orange  bumpers.  Toe  raise  to  strike  white  ball  or  

10: The  TRAQ  3D  Way   45  

jump in  jump  test  or  activities.  Squat  to  strike  yellow  ring.   Movements  may  be  just  shifting  of  hips  or  multiple  steps   depending  on  activity.    

TRAZER Test  Module   Valid  testing  mandates  that  each  Test  delivers  sufficient  repetitions  to   ensure  adequate  sampling.     LATERAL  –  TRAZER’s  virtual  field  alternately  cues  a  left  lateral  and  a   right  lateral  target.  The  client  moves  as  quickly  as  possible  from   side  to  side,  impacting  the  virtual  targets  as  they  appear.  Proper   shuffling  technique,  foot  position,  and  orientation  should  be   observed.     AGILITY  –  TRAZER’s  virtual  field  displays  “targets”  in  a  “T”  pattern  that   must  be  “impacted”  in  the  order  prompted.  Each  repetition   consists  of  an  initial  randomized  left  or  right  movement,  resulting   in  the  execution  of  a  total  of  10  T-­‐patterns.     REACT  –  The  client  responds  to  spontaneous  cues  in  six  different   directions  by  shifting  the  hips,  or  executing  a  small  half  step  to  the   left,  right,  forward  or  back,  performing  a  toe  raise  or  slight  hop   up,  and  partial  knee  bend  down.  The  targets  are  presented  in  a   pseudo  random  order  and  require  a  return  to  starting  position   after  contact  before  the  next  cue  is  delivered.   •

POWER –  cues  a  series  of  three  vertical  jumps.  React  quickly  and   jump  maximally  at  white  ball  cue.  The  client  can  do  either   counter-­‐movement  jumps  (drop  quickly  and  jump  up)  or  squat   jumps  from  a  selected  CG  height.  If  selected,  squat  to  indicate   starting  CG  height.  TRAZER’s  virtual  field  presents  a  Target  above   the  client’s  head.  The  objective  is  for  the  client  to  jump  

sufficiently high  to  impact  the  Target  as  rapidly  in  succession  as   possible  for  the  duration.  Quick,  explosive  technique  should  be   performed,  with  minimal  ground  contact  time.  It  is  important  for   the  client  to  utilize  the  grid  placement  in  the  center  of  the  virtual   world  field  of  play  as  a  visual  cue  to  remain  centered  under  the   overhead  Targets.      

Performance Training  Drills   TRAZER  Training  Drills  provide  extensive  variations  and  combinations  of   challenges  to  dynamic  balance,  agility,  coordination,  functional  power,   muscular  and  CV  endurance,  and  sports-­‐specific  reactions  and  responses.   Drills  can  also  provide  accurate,  objective  data  for  sports  performance  and   injury  prevention  screening,  and  proof  of  performance  enhancement  in   personal  training  programs.  Essentially,  Drills  breakdown  complex   movement  patterns  into  their  sub-­‐components  to  be  tested  and  refined.     With  Drills,  you  can  precisely  control  the  direction,  distance  and  rate   traveled  by  a  client  in  response  to  TRAZER’s  planned  and  unplanned   movement  cues.  Drills  are  the  foundation  –  the  building  blocks  for  global   competitive  sport  competition.     Low  Amplitude  Drill  Activities   These  Drills  are  characterized  by  low  stress  displacements  of  the  client’s   body  core.  In  most  instances,  these  activities  do  not  require  the  client  to   change  his/her  postural  base  of  support.  Emphasis  is  on  effective  weight   shifting,  body  control  and  core  body  strength.  Overload  may  be   accomplished  by  the  use  of  elastic  cables,  and  deformable  exercise   surfaces  that  act  to  perturb  balance.  Ensure  proper  warm-­‐up  prior  to  any   physically  demanding  TRAZER  activities.  

10: The  TRAQ  3D  Way   46  

The value  of  the  Drill  for  the  client  is  often  enhanced  by  having  the  client   observe  the  Vertical  Meter  at  least  during  low  amplitude  activities.  For   many  Drills,  the  goal  is  controlled  movement  with  emphasis  on  smooth   transitions,  postural  control,  balance  and  correct  form.  For  many  of  the   lower  amplitude  activities  relatively  high  repetitions  are  advantageous  to   engrain  the  movement  pattern.     Goals  for  Low  Amplitude  Activities:   Enhance  the  client’s  ability  to  maintain  control  of  his  center  of   gravity/mass  within  a  given  stance  during  weight-­‐bearing   activities     Improve  the  client’s  fundamental  postural  control,  while  combining   cognitive  demands  with  simple  movement  tasks     Improve  the  client’s  balance  as  well  as  lower  limb  and  core  strength   •

Provide basic  proprioceptive  training  to  improve  the  client’s   balance  and  weight  shifting  skills  

Enhance the  client’s  ability  to  rapidly  transition  from  one  position  to   another  –  to  effectively  accelerate  and  displace  the  body  core,   while  responding  effectively  to  environmental  cues   Develop  movement  strategies  and  rapid  reaction  to  visual  input.   Improve  symmetry  in  basic  movements,  including  linear,  lateral   and  dynamic  balance  by  minimizing  variability  in  the  movement   rate  and  optimizing  Dynamic  Posture  (most  efficient  body  CG   during  movement).  Emphasis  on  smooth  transitions,  especially   when  cutting/change-­‐in-­‐direction.   Develop  advanced,  activity/sports-­‐specific  movement  skills,   particularly  in  reaction  and  anticipation  capability.  Emphasis  is  on   performance,  e.g.  fastest  reaction  time,  increasing  accelerations,   accuracy,  etc.   Strengthening  and  conditioning  for  anaerobic,  sport-­‐specific   endurance   •

Complex movements,  multi-­‐planar,  multilevel,  increased  loading,   high  repetitions,  fast  speeds,  acceleration/deceleration  changes    

Intermediate Amplitude  Drill  Activities   Intermediate  Amplitude  Drills  are  characterized  by  higher  amplitude,   multidirectional  activities  designed  to  develop  overall  movement  skills  and   strategy.  Emphasis  is  on  training  reaction  and  anticipation  skills  while   enhancing  the  ability  to  confidently  perform  complex  unplanned   movements.  The  movement  skills  used  in  this  phase  begin  to  elicit  near   maximal  accelerations  and  decelerations  while  maintaining  control  of  the   body  core.    

High Amplitude  Drill  Activities     High  Amplitude  Drills  are  characterized  by  plyometric  jump  training   designed  to  develop  overall  body  power,  effective  sport-­‐specific  jumping   skills  and  to  reduce  knee  injuries.  Emphasis  is  on  training  reaction  and   anticipation  skills  by  the  application  of  realistic  training  protocols  that   develop  sport-­‐specific  power  and  leaping  ability.  

Emphasis is  more  on  lateral  and  linear  movement  and  less  on  high  stress   plyometrics/vertical  excursions.    

Refining the  ability  to  dampen  forces  during  braking/landing  is  a  primary   objective  of  these  drills.  Proper  form  is  essential,  especially  the  proper   knee  angle  during  landing  or  change-­‐in-­‐direction.  

Goals for  Intermediate  Amplitude  Activities:  

Goals for  High  Amplitude  Activities:  

10: The  TRAQ  3D  Way   47  

Improve client  landing  skills  to  dampen  the  forces  incurred  on  landing   as  means  to  reduce  injuries   Determine  and  train  the  optimal  CG  that  maximizes  jumping  ability   Develop  advanced  activity/sports-­‐specific  movement  skills,  particularly   in  reaction  and  anticipation  capability.  Emphasis  is  on   performance,  e.g.  fastest  reaction  time,  higher  jumps,  etc.  

CORE SPEED  –  cues  weight-­‐shifting,  toe-­‐raise  and  knee  bend   movements  with  goal  of  either  quick  reaction  and  movement  or   controlled  movement.     •

EVADE –  cues  a  series  of  take  off  movements  followed  by  cutting   movements  in  the  selected  directions.    

CUT –  cues  a  series  of  movements  in  the  selected  directions.    

Operation of  Drills   Note  that  default  settings  have  been  extensively  tested  to  offer  a  wide   variety  of  performance  challenges  applicable  to  the  broadest  possible   population.  Using  the  defaults  as  much  as  possible  increases  the  reliability   of  comparing  test-­‐retest  data  and  data  among  different  individuals.  The   exceptions  to  this  recommendation  are  the  Core  Speed  and  Lunge  drills   which  are  designed  to  be  totally  customized  to  each  individual’s  current   performance  status.  Note  that  all  changes  made  to  options  settings  for   each  activity  are  saved  in  each  individual’s  database.  Click  “Restore   defaults”  if  desired  to  clear  changes.  

LINEAR –  cues  a  series  of  movements  in  the  fore/aft  directions.    

To run  a  typical  Drill  (note  that  available  options  vary  among  activities):  

Use jump  training  to  strengthen  and  condition  for  anaerobic   endurance  and  power  

Drills BOUND  –  cues  a  series  of  bounding  lateral  jumps  with  varying  lateral   distance  requirements.  Jumps  must  reach  a  minimum  height,  but   can  be  maximal  if  desired,  but  the  client  must  maintain  body   control  at  all  times.    

JUMP –  cues  a  series  of  sub-­‐maximal  or  maximal  vertical  and/or  lateral   jumps.  Client  can  do  either  counter-­‐movement  jumps  (drop   quickly  and  jump  up)  or  squat  jumps  from  a  fixed  CG  height.     JUMP/RECOVER  –  cues  a  series  of  movements  and  jumps  with   additional  special  cues  designed  to  train  proper  landing  technique   to  amortize  landing  forces.  Jumps  can  be  maximal  or  sub-­‐maximal   squat  or  counter-­‐movement.   LUNGE  –  cues  single-­‐step  movements  with  knee  bending  in  selected   directions  with  goal  of  quick  reaction  and  movement  or  controlled   movement.     REACT  –  cues  a  series  of  movements  in  the  selected  directions.    


Select the  general  type  of  movement  pattern  and/or  physical   activity  by  choosing  a  specific  drill.  


Select from  available  movement  Directions  –  left,  right,  forward,   back,  diagonal  (adds  4  movement  directions),  up,  down,  vertical,   lateral.    


Select Duration  (time  limit)  or  Volume  (specific  number  of   repetitions,  sets  and  rest  period).  Note  that  a  repetition  is  a   complete  cycle  of  all  movement  directions  included  in  drill,  not  an   individual  directional  movement.  For  optimal  data  comparison   reliability  over  repeated  trials,  use  the  standard  default  settings   for  each  drill  which  are  equilibrated  and  randomized  sets.  

10: The  TRAQ  3D  Way   48  




Select Sequence  –  Group  (all  reps  run  one  direction  at  a  time),   Sequential  (all  directions  run  in  repeated  cycle),  or  Random  (all   reps  for  all  directions  intermixed).  Ideally,  compare  data  from  only   like  sequence  selections.  For  most  testing  applications,  unless   default  is  otherwise  set,  Random  is  the  best  choice.   Set  Movement  Scales  –  This  is  the  distance  of  each  selected   directional  movement,  from  simple  weight-­‐shifting  to  multiple   steps,  and  from  toe  raise  and  squat  variances  from  erect  height  to   maximal  vertical  jump  and  lateral  bounding  height.   Enable  CG  Control  if  you  want  to  enforce  a  specific  stance  during   activity  from  low  squat  to  toe  raise.  CG  feedback  and   reinforcement  can  be  used  to  test  and  train  optimal  CG  height  to   maximize  speed,  power,  direction  change  &  stability.  


Set PAUSE  for  a  delay  between  repetitions  which  is  desirable  for   most  reliable  reaction  time  measurement.  Default  settings  have   optimal  Pause  selections  for  most  applications.  


Click “Show  Reports  &  Save  Data”  to  get  Performance  Analysis  if   desired  for  supervised  activities.      


Click “Restore  defaults”  if  unsure  how  to  set  up  drill  or  if  it   appears  that  settings  may  have  been  changed  inappropriately.   Remember  that  settings  may  have  been  purposefully  changed  for   specific  clients.  


Move to  the  “base  position”  and  lower  body  to  ready   stance.  Wait  for  target  cue.  


React and  move  quickly  left,  right,  forward  and  backward   to  strike  orange  bumpers.  Toe  raise  to  strike  white  ball  or   jump  in  jump  test  or  activities.  Squat  to  strike  yellow  ring.   Movements  may  be  just  shifting  of  hips  or  multiple  steps   depending  on  activity.  


Press “Esc”  on  keyboard  at  any  time  to  stop  drill  which  can   be  immediately  started  over  from  setup  screen  by  clicking   “OK.”      

If Polar®  compatible  HR  monitor  is  worn,  TRAZER  beacon  telemeters   HR  to  track  &  report  CV  response.     If  “Show  Reports  &  Save  Data”  was  selected,  Performance  Analysis   Report  (PAR)  will  appear  at  completion  of  drill.  After  reviewing   the  PAR,  click  “Print”  to  print  report  if  desired.  Click  “OK”  to   return  to  setup  screen.  From  setup  screen,  press  “Esc”  on   keyboard  or  click  “Back”  to  return  to  Main  Menu,  or  click  “OK”  to   repeat  test.   •

If “Show  Reports  &  Save  Data”  was  not  selected,  Score  Card   appears  at  completion  of  drill.  Press  “Enter”  on  keyboard  to   return  to  setup  screen  and  repeat  drill,  or  press  Esc  to  return  to   Main  Menu.  

10. Click “OK”  to  start  drill.  Instruct  client  as  follows:   1.

Move to  center  calibration  position  and  stand  straight  at   full  height  to  allow  system  to  calibrate  and  assign  “0”  CG   height.  Countdown  will  start  when  you  are  in  correct   calibration  position.  After  countdown,  a  red  disk  which  is   the  “base  position”  for  this  activity  will  appear.  

Linear Training  Notes   Drop  Steps  are  single  core  shifts  via  dropping  either  the  left  or  right  leg   backward  (reverse  lunge)  

10: The  TRAQ  3D  Way   49  

Set TRAZER  up  for  Lunge  Drill;  movement  direction  to  the   rear/back   Leg  goes  back  with  same  side  hand  going  forward     Bend  knee  going  back  to  floor;  front  knee  bends  so  that  shin  is   perpendicular  to  the  floor.       Primary  Band  Attach  Pt.  Fore/Aft  

Front Steps  are  single  core  shifts  via  stepping  forward  with  either  the   left  or  right  leg    

Use REACT  Drill.  Explode  forward  to  target  in  one  or  two-­‐step   motion,  depending  on  programmed  distance.  Swing  alternate  arm   forward  to  lock  into  place  as  you  set.   Primary  Band  Attach  Pt.  Fore/Aft  

Use React  Drill  with  Diagonals  only      

45 Drop  &  Front  Steps  –  Continuously  performance  of  45  Drop  &   Front  Steps  

Shift &  Bump  –  Select  Front/Back  –  Initially  train  the  right  side  only.   Emphasis  is  on  coordinating  hand  and  feet  movement  and   maintaining  proper  stance  

Shift &  Bump  –  Select  Front/Back  –  Initially  train  the  left  side  only.   Emphasis  is  on  coordinating  hand  and  feet  movement  and   maintaining  proper  stance  

React –  Select  Front/Back  –  Increase  distance  traveled,  emphasis   synchronizing  hands  and  feet  

Drop &  Front  Steps  –  Continuously  performance  of  Drop  &  Front  Steps   without  pause  at  neutral  position   Use  React  Drill  with  movement  distance  at  12”  and  directions  at   Forward,  Back,  and  Diagonal  

45 Drop  Step  –  Step  back  at  45  degree  angle  –  if  left  leg  moves  back,   right  arm  moves  forward—Use  React  Drill  with  Diagonals  only  

45 Front  Steps  –  Step  forward  at  45  degree  angle  –  if  left  leg  moves   forward,  right  arm  moves  back  

Get Back  –  Select  Front/Back  -­‐  Forward  explosion;  backpedal  to  start   position  

Shuttle –  Select  Linear/Lateral  -­‐  Move  with  choppy  steps  with  no  pause   between  sets,  then  move  more  explosively  with  2  second  pause   between  sets.  

Lateral Training  Notes   LATERAL  SIDE  STEPS  are  shifts  of  the  body  core   Minimize  lean  of  the  body,  keep  even  pressure  on  both  feet    

10: The  TRAQ  3D  Way   50  

Don’t lift  leg,  rather  slide    

Lateral Speed  Test  –  Further  distances;  explode  side  to  side.    Beginning   distances  set  at  7  –  8”  and  build  up.  Work  foot  transitions  –   replace  front  foot  with  back  foot  as  you  leap  towards  target.     Watch  height  meter  and  stay  as  level  as  possible.      

Center core  between  legs     Derive  energy  from  pushing  (opposite)  leg  (simultaneously  push/step)     Arm  action  –  the  arm  and  leg  in  the  direction  of  movement  both  travel   in  same  vector   •

To every  action,  there  is  an  equal  and  opposite  reaction  

Initial work  in  free  motion  –  To  warm-­‐up  for  TRAZER,  perform  lateral   weight  shifts  keeping  shoulders  over  hips,  same  side  arm  and  leg   lock  down  together  

Shift &  Bump  –  Select  L  R  -­‐  Work  Right  side  only  –  perfect  hand   correlation;  work  on  stance;  posterior  tilt;  contract  core;  lock   entire  body  in  set  position.  

Shift &  Bump  –  Select  L  R  -­‐  Repeat  working  Left  side  only  –  perfect  hand   correlation;  work  on  stance;  posterior  tilt;  contract  core;  lock   entire  body  in  set  position.  

Phase 2:   “Bottom  Drawer”  Version:    N.B.:    Lead  leg  lowers  and  loads  so  you  can   drive  off  it  when  it  becomes  the  back  leg.   Initial  work  in  free  motion  –  not  using  TRAZER.  Side-­‐to-­‐side  weight   shifting  –  keep  shoulders  over  hips.  Moving  leg  plants;  rear  leg   joins  plant  leg  at  45  –  90  degree  angle,  (as  if  squatting  to  put   something  in  a  bottom  drawer  at  your  side)  ready  to  sprint   further.  Hips  sink  as  same  side  arm  and  leg  lock  down  together.       Shift  &  Bump:  Select  L  R.  Continue  as  above;  work  Right  side  only  –   perfect  hand  correlation;  work  on  stance;  posterior  tilt;  contract   core;  lock  entire  body  in  springing  position.   Shift  &  Bump:  Select  L  R.  Repeat  working  Left  side  only  –  perfect  hand   correlation;  work  on  stance;  posterior  tilt;  contract  core;  lock   entire  body  in  springing  position.   Lunge:    Set  distance  to  target  and  depth  of  squat  

Lunge –  Set  distance  to  target  and  depth  of  squat  -­‐  Step  out  and  sink;   return  to  standing  in  center.  

React –  Select  L  R.    Further  distances;  synchronize  hands  and  feet  

React: Select  L  R.  Further  distances;  synchronize  hands  and  feet.     Again,  back  knee  dips  to  floor  and  hips  pivot  in  direction  of   movement  –  ready  to  spring  further.   •

Lateral Speed  Test.  Further  distances;  explode  side  to  side.  Work   foot  transitions  –  Push  off  with  back  leg  and  explode  to  opposite   side  as  you  cross  step  over  towards  target.  Hips  turn  back  to  

10: The  TRAQ  3D  Way   51  

center as  you  reach  target  and  set.  Watch  height  meter  and  stay   as  level  as  possible.      

Breath with  each  rep  –  contract  abs  &  stay  centered     •

Power Development:    

Variations:     Remember  that  cones  and  ladder  drills  have  value,  but  it  is  all  about  fast   hips  and  fast  feet  secondarily.     Use  cones  at  each  phase  of  movement  to  step  over;  keep  knees  high;   arms  move  in  synchronicity  with  legs.  Step-­‐overs  are  in  1  –  2  –  3   time   Use  cones  at  each  phase  to  step  around;  keep  feet  close  during   transition;  don’t  knock  over  cones   Use  ladder  for  full  lateral  movement;  train  stutter  steps  to  develop   quick  feet   Use  bands  as  in  LINEAR  phase  to  develop  balance  and  power;  work   braking  and  re-­‐accelerating   Use  medicine  ball  for  bottom  drawer  work.  Torque  torso  in  direction   of  movement  as  you  lower  the  ball  towards  the  floor   Use  single  bands  for  acceleration.    When  moving  to  right,  band  on  left   hip;  and  switch.  Start  at  10”;  progress  to  36”   •

Use single  bands  for  deceleration.  When  moving  to  right,  band  on   right  hip;  switch.  Start  at  10”;  progress  to  36”  

Elevations performed  in  various  stances    

Attach lateral  double  band(s)  

Perform sets  of  partial  squats  of  above  6  inches  travel  -­‐   maintain  core  position  

For greater  loading  use  plyo-­‐box  

For asymmetrical  loading,  attach  a  single  band  

Core Depressions     Core  depressions  from  various  stances   Breath  with  each  rep  –  contract  abs  &  stay  centered     Hands  either  rise  up  or  hands  go  low  and  back     •

Drops performed  in  various  stances    

Make it a game for the Client – have them observe the Vertical Meter, vary the CG start position – observe the resultant effect on jump height.

Power Training  Notes   Core  Elevations   Core  elevations  from  various  stances  

10: The  TRAQ  3D  Way   52  

TRAZER Burst  Module   The  Protocol   TRAQ  Burst  Training  Protocol  consists  of:   Six  20-­‐second  full-­‐speed  bursts  of  TRAZER  play  interspersed  with  rest   periods  of  10  seconds.     •

specific stamina.  The  following  is  a  summary  of  the  first  four  TRAZER   Games.      

Sport Sims   Breakout   Goalie  Wars  

Recommended frequency  for  your  clients  is  three  to  five  days  per   week  during  a  minimum  of  a  six  –  8  week  cycle.    

Jump Explosion   Re-­‐Bound  

Lower amplitude  versions  (less  stressful)  protocols  for  athletes  early  in   their  conditioning  program  increase  the  rest  period:  

Spike Dodge  

Six 20-­‐second  full-­‐speed  bursts  of  TRAZER  play  interspersed  with  rest   periods  of  30  seconds.     •

Six 20-­‐second  full-­‐speed  bursts  of  TRAZER  play  interspersed  with   rest  periods  of  60  seconds.    

As discussed  earlier,  it  is  essential  that  your  client  is  mentally  and   physically  prepared  to  undertake  this  rigorous  training  method.  For  those   clients  unprepared,  it  is  prudent  to  increase  the  rest  periods.     Ensure  your  client  properly  warms  up  approximately  five  minutes  prior  to   Bursting  –  it  is  preferable  that  the  warm-­‐up  be  performed  on  TRAZER   before  the  TRAZER  intervals.  Cooling  down  on  TRAZER  after  completion  of   the  Burst  session  is  preferable  as  well.    

TRAZER Game  Descriptions   TRAZER  Games  are  superb  for  developing  visual/spatial  awareness,   balance,  quickness,  agility,  body  control,  proper  posture,  reaction  time,   recognition/cognition,  cutting  ability  and  decision-­‐making  and  sport-­‐

Traq Attack   •

Pong 3D  

Mind-­‐Body Games   1. 2.

Strias  Rocks   3DW  Math  

TRAZER Games offer 7 Levels of Difficulty to successfully challenge clients from the partially weight-bearing to the elite athlete. Trap Attack  –  TRAZER’s  virtual  world  presents  a  floor  grid  of  squares,  4  

wide and  4  deep.  A  red  disc  appears  randomly  to  indicate  the  spot  

10: The  TRAQ  3D  Way   53  

to which  the  player  must  relocate  to  satisfy  the  cue.  The  moment   that  the  player  contacts  the  red  disc,  it  vanishes  and  reappears   elsewhere.       With  difficulty  Level  1,  the  disc  only  appears  in  the  central  4   squares  of  the  grid.  At  difficulty  Level  3  and  above,  the  entire  field   is  used.  At  Level  4,  one  square  in  the  grid  at  a  time  will  randomly   disappear,  requiring  the  player  to  either  jump  over  the  newly   formed  hole  or  to  circumnavigate  it  to  avoid  “falling  through”  and   losing  4  points.  At  each  subsequent  Level,  the  number  of  holes   appearing  increases  and  the  path  of  play  becomes  more   treacherous.      

Breakout –  Like  the  classic  computer  game  “Pong,”  the  player  controls  a   slender  paddle  that  moves  laterally  across  the  bottom  of  the   screen.  To  start  the  game  action  after  calibration,  the  player  hops.     The  ball  drops  to  strike  the  player’s  paddle  and  ricochets  off  to   impact  the  wall  of  bricks.    To  accelerate  game  play,  jump  as  the   ball  leaves  the  paddle  and  it  will  burst  through  the  entire  wall.  

Jump Explosion  –  TRAZER’s  virtual  world  presents  a  conveyer  belt   positioned  above  the  player  that  transports  balls  from  the  right  to   left  side.  Over  time,  the  balls  pile  up  and  spill  over  the  conveyer   belt  and  begin  to  fall  to  the  floor  where  they  explode  and  result  in   a  loss  of  points.  The  player  can  either  position  himself  beneath   the  falling  balls  to  intercept  them  while  they  fall,  or  can   proactively  jump  up  to  intercept  them  off  the  conveyor  belt  or   during  their  fall.  At  each  difficulty  Level,  the  speed  and  number  of   falling  balls  increases.    

Re-­‐Bound –  In  this  reaction  time  and  agility  challenge,  the  player  

controls a  square,  purple  paddle.    A  tennis  ball  bounces  off  a   distant  wall  and  hurtles  directly  towards  the  player,  who  must   position  his  paddle  to  return  the  ball  to  the  opposite  wall.    The   computer  is  a  formidable  opponent;  the  objective  is  to  minimize   the  point  spread!    A  quick  hip  shift  by  the  player  puts  “English”  on   the  ball  and  increases  the  likelihood  of  a  score.    The  grid  lights  up   when  a  score  is  made  –  whether  by  the  computer  or  player.  

Goalie Wars  –  TRAZER’s  virtual  world  presents  a  pair  of  hands  that  

appear on  the  lower  edge  of  the  screen.  These  hands  are   controlled  by  the  player.  The  virtual  opponent  is  a  robotic  “goalie”   that  faces  the  player’s  virtual  hands.  The  objective  is  for  the   player  to  protect  his/her  goal  which  is  located  behind  the  virtual   hands  while  simultaneously  attempting  to  score  on  his  virtual   opponent’s  goal.       To  score,  the  player  must  “fake-­‐out”  the  virtual  goalie  by  drawing   him  off  to  one  side  of  the  field  to  create  an  unobstructed  path  to   the  opponent’s  goal.  The  ball  is  “thrown”  by  making  a  violent   lunge  forward.  The  velocity  of  the  lunge  must  increase  at  each   difficulty  level  in  order  to  successfully  release  the  ball.  At  the   higher  difficulty  Levels,  the  goalie  exhibits  greater  artificial   intelligence  to  challenge  the  player’s  skills  of  blocking  and   evasion.  

Spike Dodge  —The  virtual  world  presents  a  honeycombed  wall  at  the   rear  of  the  virtual  field  that  “throws  off”  balls  into  the  field  of  play   to  be  intercepted  by  the  player.  If  the  player  successfully  “hits”  a   ball,  it  is  returned  to  the  front  wall.  If  the  ball  is  not  impacted  it  

10: The  TRAQ  3D  Way   54  

will land  on  the  floor  and  must  “picked  up”  by  having  the  player   drop  his/her  center-­‐of-­‐gravity.       The  player  can  hit  a  ball  either  when  it  is  in  flight,  or  can  “pick  it   up”  off  the  virtual  floor  by  lunging  forward.  The  number  of  balls   entering  the  field  of  play  is  related  to  the  difficulty  Level:  at  Level   1,  one  ball  at  a  time  floats  in;  at  Level  6,  6  balls  and  so  on.  The   speed  of  the  balls  and  the  depth  of  the  lunge  required  to  “pick   up”  balls  increases  slightly  at  each  Level.  Beginning  at  Level  4,   balls  allowed  remaining  on  the  floor  too  long  without  being   “picked  up”  turn  into  “spikes”.  Spikes  chase  after  the  player  to   “zap”  him/her  causing  a  loss  of  points.  At  each  subsequent  level,   the  time  the  ball  is  permitted  to  remain  on  the  floor  before   becoming  a  spike  decreases.   Game  scoring  matches  the  Level  of  Difficulty.  For  example,  Level  1   play  awards  1  point  per  “hit”  -­‐  Level  5  awards  5  points  per  “hit”.     Conversely,  a  “miss”  subtracts  a  like  number  of  points  from  the   score.  Each  completed  game  generates  a  Score  Card,  which  is   available  for  later  viewing  by  each  client  through  “Reports”.  

laterally to  position  it.    Squat  to  drop  the  block  into  place  and   stand  to  lock  it  there.    Strategize  by  planning  your  pattern  for  the   blocks  rising  in  the  right  panel.    If  you  can  build  a  4  x  4  square,  it   becomes  a  “wild  card”  and  each  row  you  fill  adjacent  to  the   square  is  worth  5  points  rather  than  1.  

3DW Math  –  Challenge  your  working  memory,  your  depth  perception   and  your  agility  as  you  solve  math  problems  with  your  core   movement.    A  simple  math  problem  appears  at  the  top  of  the   screen.    Numbered  balls  scroll  towards  the  player’s  paddle  from   the  horizon.    As  the  player  moves  in  his  field  of  play,  the   environment  shifts,  allowing  him  to  derive  “location-­‐based   information”  in  order  to  solve  the  problem.    Is  that  a  5  behind  the   2?    Fill  the  left  integer,  then  the  right  to  solve  the  problem.    If  the   answer  is  correct,  your  paddle  will  flash  green.    If  you  miss,  the   paddle  will  flash  red  and  the  problem  will  change.    Score  is  based   on  how  quickly  and  how  accurately  the  problem  is  solved.

Pong –  This  is  the  first  multi-­‐player  TRAZER  activity.    Each  of  two  players   controls  a  round  purple  paddle.    Position  the  paddle  to  intercept   your  opponent’s  ball.    Put  “English”  on  the  ball  by  quickly  shifting   hips  as  it  leaves  your  paddle.    The  grid  lights  with  each  score  –  red   for  your  opponent;  green  for  YOU!  

Strias Rocks  –  Just  as  addictive  as  Tetris,  one  of  the  most  addictive  

original computer  games,  TRAZER  2’s  Strias  Rocks  challenges  the   player  to  fill  the  grid  row  by  row  by  turning  and  shifting  block   configurations.    Hop  to  turn  the  active  block  90  degrees.    Move  

10: The  TRAQ  3D  Way   55  

TRAQ Performance  Report  

This section  lists  some  of  the  common  measurement  parameters  of  the   Performance  Report.  See  the  image  below  for  an  example  of  a  report.  


10: The  TRAQ  3D  Way   56  

CG –  Center  of  gravity.  Proper  location  of  the  beacon  positions  the  client’s   approximate  center  of  gravity.    

CG Height  –  Real  time  CG  height  is  shown  on  the  feedback  bar  during  

activities. CG  is  shown  as  +  or  -­‐  from  calibrated  height  when   standing  straight  as  required  at  start  of  each  activity.  This  data   and  the  CG  height  control  function  that  is  available  on  setup   screens  can  be  used  to  identify  and  train  optimal  CG  height  for   power  speed  and  stability.     Average  CG  Height  is  reported  for  all  vectors,  but  obviously  not   for  Up  and  Down  movements  if  included  in  activity.  

Average CG  Height  –  Overall  Average  CG  Height  (exclusive  of  jumping   movements)  for  each  movement  vector  is  shown  as  +  or  -­‐  from   calibrated  height,  which  is  defined  as  0.    

Best &  Average  Jump  Height  –  Reported  as  overall  values  for   complete  activity.    

Power –  In  watts  per  kg  of  bodyweight  -­‐  multiply  by  bodyweight  for  your   client’s  power  in  watts  (1  kg  =  2.2  lbs).    

Average Power  –  This  value  is  power  in  watts  averaged  over  the  entire   activity  set  taking  bodyweight  into  account.    

Reaction Time  –  Hundreds  of  seconds  from  instant  target  cue  appears  

until acceleration  in  correct  direction  occurs.  This  measures  how   quickly  your  client  perceives,  interprets  and  develops  muscle   forces  required  to  respond  to  objects,  obstacles  and  sports   situations.    

Left/Right MV  Deficit  %  –  These  values  are  the  comparisons  of  each  

major measurement  to  determine  performance  differences   between  movements  to  the  left  and  right.  Calculation  assumes   the  better  side  is  100%  and  shows  the  percentage  deficit  with  the   direction  of  deficit  indicated  by  an  arrow.  If  the  arrow  points  left,   movements  to  the  left  were  lower  in  overall  performance  by  the   indicated  percentage.    

Max./Avg. Heart  rate  –  Reported  for  overall  activity  set.     Speed  –  Average  feet  or  meters  per  second  for  overall  movements  in   each  specified  vector  (right,  left,  forward,  back,  up,  down).    

Total Calories  –  Reported  for  overall  activity  set.     Total  Distance  –  This  is  reported  as  an  overall  value  for  the  entire   activity  set.    

Total Time  –  Total  time  from  start  to  end  of  activity  set.     Acceleration  –Defined  as  the  maximum  acceleration  occurring  in  the   sport-­‐specific  distances  after  the  initiation  of  movement.    

Deceleration –  The  peak  deceleration  at  the  end  of  the  movement  just   before  direction  change  or  braking.    

Speed –  This  is  the  movement  speed  in  feet/second  or  meters/second  

averaged over  all  samples  of  each  vector  included  in  the  activity.   Average  is  from  the  initiation  of  movement  to  stop  movement  in   each  vector.  Reaction  time  delay  before  start  of  movement  is  not   averaged  into  the  speed  measurement.  Speed  is  reported  for  all   vectors,  but  not  for  Up  or  Down  movements.    

10: The  TRAQ  3D  Way   57  

Jumping Movements  –  Jumping  Movements  are  actually  calculated  as   separate  movements  which  won’t  factor  into  some  of  the  other   movement  calculations,  such  as  Acceleration,  Deceleration,   Speed,  CG  height.    

Maximum &  Average  Jump  Height  –  Reported  as  inches  or  

To advance  the  science  of  performance  enhancement  requires:   That  sport  simulation  deliver  to  the  athlete  realistic  reaction-­‐based   cues  in  3-­‐dimensions  (all  vectors  of  movement)   Real-­‐time  measurement  of  the  three  most  important   phases/components  of  sport-­‐specific  movement:  

centimeters averaged  over  all  jumps  in  completed  activity.  

Our Training  Model   There  are  several  critical  points  to  remember  as  you  learn  about  TRAQ’s   patented  approach  to  training:   Superlative  performance  is  more  about  fast  hips  than  fast  feet,  yet  no   other  training  system  provides  real-­‐time  feedback  regarding  the   effectiveness  of  the  hips  during  execution  of  sports-­‐specific   movement    1st  step  quickness,  cutting  and  agility   If  you  can’t  measure  something,  how  do  you  know  if  it  is  getting  better   or  worse?   Provided  that  the  stresses  to  the  body  can  be  controlled  and   measured  to  ensure  proper  body  mechanics  (“perfect  practice”)   high  repetitions  are  better  than  low  repetitions.  TRAZER  training   has  been  characterized  as  a  “SwimEx  for  dry  land”.     •

No other  athlete  training  instrument  measures  the  critical   components  essential  to  the  first  step  or  for  agility  (e.g.  reaction   time,  acceleration  &  deceleration)  nor  provide  the  means  for   controlling/modulating  the  imposed  stresses  associated  with   explosive  movement  to  maximize  results  and  reduce  the   incidence  of  injury.  

CG Position  



The ability  to  module/control  the  stresses  imposed  on  the  athlete   during  explosive  accelerations  and  decelerations.    

The result  is  a  system  that  facilities  the  delivery  of  quality  repetitions  with   surveillance  that  ensure  proper  mechanics  and  the  modulating  of  imposed   forces  to  maximize  outcomes  with  reduced  risk  of  injury.       TRAQ  Athlete  Development  is  based  on  our  patented  capabilities  to   precisely  measure  and  modulate  the  forces  of  braking  and  acceleration   (1st  step  quickness  and  braking)  during  the  training  process.    

Training REACT-­‐START-­‐STOP-­‐CUT  Overview  

Depending on  Band  placement,  the  forces  resulting  from  decelerations   (braking)  can  either  be  amplified  (increase)  or  reduced  (dampened)  the   forces  of  braking.  By  amplifying  or  dampening  the  forces,  you  are  able  to   elicit  a  higher  number  of  repetitions  from  the  athlete  without  imposing   excessive  stress  (controlling  the  physical  stress  of  braking  and   accelerating.)   Dampening  the  forces  allows  higher  repetitions  to  be  safely  performance   while  adhering  to  proper  movement  posture/mechanics.  Amplifying  the  

10: The  TRAQ  3D  Way   58  

braking forces  provides  a  progressive  overload  to  condition  the  athlete  for   the  rigors  of  braking  and  cutting.     Responding  to  TRAZER’s  reaction-­‐based  cues,  the  athlete  explodes  forward   one  to  two  steps.  His  effort  is  rewarded  with  measurement  of  reaction   time,  acceleration  and  deceleration,  as  well  as  velocity  and  CG  elevation.     To  provide  overload  (resistance)  to  build  acceleration  capability,  one  of   PowerTRAQ’s  6  levels  of  resistive  bands  is  attached  at  180  degrees  (directly   behind  the  athlete).  Assuming  proper  loading  to  ensure  that  the  athlete   can  maintain  proper  movement  mechanics,  each  repetition  accomplishes   the  following:   1. 2.

Builds strength,  power  and  speed  and  sport-­‐specific  stamina   during  the  acceleration  phase.       The  opposing  resistance  dampens  (reduces)  the  forces  associated   with  braking  (deceleration)  to  reduce  the  forces  on  the  athlete’s   joints  –  which  enables  more  quality  repetitions  without   breakdown.  

Front Attachment   In  contrast,  a  resistive  band  attached  to  the  front  of  the  athlete:   1. 2.

“Over-­‐speeds” the  movement,  improving  the  rate  the  athlete’s   core  explodes  forward,  which     Increases  the  forces  imposed  during  braking  to  train  the  athlete   to  deal  with  the  stress  of  braking  –  providing  incredibly  sport-­‐ specific  eccentric  development.  

Training Tip – Use caution when increasing resistance to ensure your client can maintain proper movement mechanics Asymmetrical Loading  with  single  band  –  Linear  movement   working  core  strength  and  balance    

Overload to  higher  band  resistance  that  the  client  is  accustomed     •

Rotate to  all  4  mounting  points  

Progress to  application  of  2  bands  –  the  2  bands  can  be  at  90  +  270   degrees;  at  90  +  180  degrees;  at  90  +  0  degrees;  at  0  +  270   degrees;  270  +  180  degrees  -­‐  Bands  can  be  same  color/weight  or   different  weights  to  offset  balance  and  build  core  strength  

Apply 4  bands  –  for  building  strength,  power  and  stamina   Training Tip – Add upper body bands on either side or from rear clip to intensify load and engage upper body and core


10: The  TRAQ  3D  Way   59  

Example TRAZER®-­‐Driven  DRILLS  

LATERAL DRILL  SET  –  Cues  a  series  of  explosive  lateral  movements/use   with  and  without  PowerTRAQ  loading.    “Lead  Leg”  is  that  closest  to  the   target;  “Back  Leg”  is  that  furthest  from  the  target.  

2. One-­‐Step  Lateral  Shuffle  for  Balance/Stability  –  Use  of   single  band  provides  asymmetrical  loading  to  learn  to  deal  with   imposition  of  real  world  forces  

1. One-­‐Step  Lateral  Shuffle  –  Single  step  lateral  core  shifts  either   right  or  left       TRAZER  2  NAVIGATION:     PERSONAL  TRAINING  –  SPORT  SPECIFIC     LATERAL  CORE  SHIFT  SERIES:   PROTOCOLS  1,  2  AND  3  BUILD  FOUNDATION  FOR   MOVEMENT.  PROTOCOL  4  ADDS  TOOLS.  PROTOCOL  5  TRAINS   ADVANCED  FOOT  PLACEMENT.  

For lateral  movement  to  the  right,  push  with  the  left  leg   while  simultaneously  lifting  the  right  foot  –  once  the   right  foot  strikes  the  ground,  immediately  explode  with   the  left  foot  to  the  left  target  

Don’t laterally  lean  the  body,  keep  even  pressure  on   both  feet    

Center core  between  legs/keep  back  flat/keep  feet   equal  distance  during  movement  

Derive energy  from  simultaneously  pushing  off  the  back   leg  and  bursting  with  the  lead  leg    

Arm action  –back  hand  moves  to  the  chin  area  as   forward  arm/hand  locks  down  in  the  direction  of   movement  

Slide the  forward  foot  and  balance  with  bent  leg  

Move back  foot  (the  foot  with  resistance)  to  knee  of   fixed  foot  and  hold  position  for  X  seconds  

3. Continuous  Lateral  Shuffle  –  Continuously  move  left  &  right   legs  with  arm  action  

4. Continuous  Lateral  Shuffle  to  Final  (front)  Cross  Over  –   Watch  count  of  laterals  in  upper  left  bar.  Continuous  shuffle  for   prescribed  number  of  movement  legs,  minus  one,  and  then   perform  crossover  step  for  the  last  leg.  

5. Lateral  Bound  with  Stabilization  –  Start  on  single  leg  and   bound  laterally  on  opposing  foot,  hold  for  X  seconds  and  repeat  to   opposing  side.  Use  ground-­‐mounted  barrier  (such  as  a  cone).  

6. Lateral  Bound  with  3  Hurdles  –  Move  laterally  over  the   hurdles;  maintain  a  proper  stance  with  feet  spaced  apart.  Use  arms   in  natural  swinging  motion  during  the  movement.  

8. Continuous  (front)  Cross  Overs  –  Move  laterally  by  stepping   over  the  forward  leg  with  the  rear  leg.    As  you  step,  your  hips  will   pivot  away  from  the  screen.    As  you  step  out  with  the  forward  leg,  

10: The  TRAQ  3D  Way   60  

hips will  shift  back  to  parallel  with  screen.    Repeat  until  you  reach   the  target  and  reverse  direction.  

9. Front  Cross  Over  with  Stabilization  –  Begin  at  start  position  

2. Front  Step  –  Single  core  shifts  via  stepping  forward  with  either  

balancing on  lead  leg.    Cross  step  over  the  front  of  the  lead  leg  with   back  leg,  extend  lead  leg  and  balance.    Repeat  until  you’ve  reached   the  target  and  reverse  direction.  

the left  or  right  leg    

10. Back  Cross  Over  with  Stabilization  –  Begin  at  start  position   balancing  on  lead  leg.    Cross  step  behind  the  lead  leg  with  back  leg,   extend  lead  leg  and  balance.    Repeat  until  you’ve  reached  the   target  and  reverse  direction.  


1. Drop  Step  –  Single  core  shifts  via  dropping  alternating  left  or  right   legs  backward  (reverse  lunge)  

Bend knee  going  back  to  floor;  front  knee  bends  so  that   shin  is  perpendicular  to  the  floor  

Explode forward  to  target  in  one  or  two-­‐step  motion,   depending  on  programmed  distance.    Swing  alternate  arm   forward  to  lock  into  place  as  you  set.  

3. Drop  &  Front  Steps  –  Continuous  performance  of  Drop  &  Front   Steps  without  pause  at  neutral  position  

4. Balance/Stability  Development  –  Balance  with  bent  knee  on   one  foot  -­‐  hold  position  for  X  seconds  

Step and  hold  with  bent  knee.    Return  to  center.  

5. Linear  Explosions  –  Accelerate  forward  and  back,  swinging  arms   and  locking  with  back  arm  at  chin.    Can  do  single  forward/back   direction  or  work  on  5  radii.  

AGILITY DRILL  SET  –  Cues  a  series  of  directional  movement  change—  

use PowerTRAQ  loading  where  appropriate.    Work  angles  so  that  your  core   is  angled  towards  center.     TRAZER  2  NAVIGATION:     PERSONAL  TRAINING  –  SPORT  SPECIFIC     AGILITY  CORE  SHIFT  SERIES:  

Leg goes  back  with  same  side  hand  going  forward    

10: The  TRAQ  3D  Way   61  


1. 45  Drop  Step  –  Allowing  hips  to  shift  to  45  degree  angle,  and   keeping  them  centered  over  your  feet,  step  back  at  45  degree   angle  –  if  left  leg  moves  back,  right  arm  moves  forward  

2. 45  Front  Step  –  Step  forward  at  45  degree  angle  –  if  left  leg   moves  forward,  right  arm  moves  back  

From start  position  at  back  center  field,  cut  randomly  left  or   right.  

Attack target  by  bringing  rear  knee  up  and  across  body  in  a   crossover  step  and  immediately  open  hips  up,  planting  on  the   forward  foot    

Continue crossing  the  field  to  each  of  3-­‐4  diagonal  targets   until  you  finish  the  zig-­‐zag  pattern  in  one  of  the  front  corners.  

Drop lead  foot  back  at  a  45  degree  angle  and  backpedal  to   start  position    

Complete 4  different  zig  zag  patterns  in  each  set.    

3.  45  Drop  &  Front  Steps  –  Continuous  Drop  &  Front  Steps   4.    Multiple  Angles  –  Working  from  an  athletic  stance,  and  keeping   your  center  of  gravity  height  as  constant  as  possible,  respond  to   cuing  to  move  to  and  from  center  in  up  to  8  directions.    

5.  Multi-­‐Directional  Lunging  –  Responding  to  random  cues   forward  and  to  the  sides,  lunge  to  target,  return  to  center.  

6.  Mini-­‐T  Drill  –  From  back  of  field,  explode  to  forward  target,  then  

VERTICAL DRILL  SET  –  Cues  a  series  of  jumps  and  bounds  –  include   PowerTRAQ  loading     TRAZER  2  NAVIGATION:     PERSONAL  TRAINING  –  SPORT  SPECIFIC     VERTICAL  CORE  SHIFT  1   WORKS  BOTH  STRENGTH  AND  ENDURANCE.  

randomly left  or  right.    Back-­‐pedal  to  start  position.      

7.  Shuttle  Drill  –  Respond  to  lateral,  forward  and  backward  cues  as   you  move  in  a  box  pattern  around  the  perimeter  of  the  field.     Reverse  direction  each  set.  

8.  Linear  Lateral  Drill  –  Respond  to  lateral,  forward  and  backward   cues  as  you  move  laterally  or  linearly.      

Core Elevations  –  Core  elevations  from  various  stances   • •

Breathe with  each  rep  –  contract  abs  &  stay  centered     Hands  rise  up  on  elevation,  or  hands  go  low  and  back  on   squat  

Elevations performed  in  various  stances  –  both  squat  and  counter-­‐ movement  jumps  are  performed.  

9. Drop  Crossover  &  Cut  (Zig  Zag)  –  

10: The  TRAQ  3D  Way   62  

PowerTRAQ Development   • • • • • •

Attach lateral  double  band(s)   Perform  sets  of  partial  squats  of  above  6  inches  travel  –   maintain  core  position   Jumps  where  the  feet  leave  the  ground   For  greater  loading  use  plyo-­‐box   Use  weighted  ball,  bar  across  shoulders,  or  dumbbells  to  load   drills   Center  mini-­‐tramp  for  multi-­‐jumps;  add  4  bands  to  intensify   plio  work.  

3. Jump and  Recover  –  Shift  left  or  right  to  start  position,  jump   as  high  as  possible,  swinging  arms  up  as  you  rise.    Land  softly,   balls  of  feet  first,  and  squat  to  clear  ring.  

4. Jump –  Standing  on  center  start  position,  jump  as  high  and  as   fast  as  possible,  with  as  brief  a  ground  time  as  possible.  

5. Plio Jump  with  Bands  –  Center  a  mini-­‐trampoline  over  the   calibration  position.    With  all  4  bands  attached  to  a  hip  belt,  jump   as  high  as  possible  for  time.  

6. Bounding –  Go  to  start  position  at  right  mid-­‐field.    Keeping  hips   Core  Depressions  –  Core  depressions  from  various  stances   • • •

Breathe with  each  rep  –  contract  abs  &  stay  centered     Hands  rise  up  on  elevation,  or  hands  go  low  and  back  on   squat   Drops  performed  in  various  stances      

1. Core Shifts  (Shift  &  Bump)  –  Stand  tall  to  calibrate  in  center  of  

field.  Squat  to  clear  ring,  back  to  standing.    Keep  butt  back,  shins   vertical,  pull  knees  apart,  feet  parallel.    Don’t  let  your  butt  go   lower  than  your  knees.  

square to  the  screen,  bound  laterally  3  times  across  the  field.    Up   to  hit  the  ball,  down  on  the  red  target.  Switch  directions.  Work  to   stay  on  the  mid-­‐line.  

7. Split Jumps  –  both  continuous  and  alternating  –  Jump  straight   up  after  an  initial  squat,  centered  over  the  start  position.    Land  in   a  lunge  position;  front  leg  bent  with  shin  vertical,  thigh  parallel  to   floor,  back  leg  bent  with  knee  pointed  to  floor.    From  this   position,  spring  straight  up  again,  switch  feet  in  mid-­‐air,  and  land   with  the  opposite  leg  forward  in  a  lunge  position.    Repeat.

2. Core Shifts  2  (Shift  &  Bump)  –  Plié  Squats.    Stand  tall  to   calibrate  in  center  of  field.    Squat  to  clear  ring,  back  to  standing.     Keep  butt  back,  shins  vertical,  pull  knees  apart,  feet  at  a  45   degree  angle.    Don’t  let  your  butt  go  lower  than  your  knees.  

10: The  TRAQ  3D  Way   63  


before the  TRAZER  intervals.  Cooling  down  on  TRAZER  after  completion  of   the  Burst  session  is  preferable  as  well.  

BURST TRAINING  1  -­‐  4  


TRAQ Burst  Training  Protocol  consists  of:   Six  20-­‐second  full-­‐speed  bursts  of  TRAZER  play  interspersed  with  rest   periods  of  10  seconds.     •

Recommended frequency  for  your  clients  is  three  to  five  days  per   week  during  a  minimum  of  a  six  –  8  week  cycle.    

Lower amplitude  versions  (less  stressful)  protocols  for  athletes  early  in   their  conditioning  program  increase  the  rest  period:   Six  20-­‐second  full-­‐speed  bursts  of  TRAZER  play  interspersed  with  rest   periods  of  30  seconds.     •

Six 20-­‐second  full-­‐speed  bursts  of  TRAZER  play  interspersed  with   rest  periods  of  60  seconds.    

As discussed  earlier,  it  is  essential  that  your  client  is  mentally  and   physically  prepared  to  undertake  this  rigorous  training  method.  For  those   clients  unprepared,  it  is  prudent  to  increase  the  rest  periods.     Ensure  your  client  properly  warms  up  approximately  five  minutes  prior  to   Bursting  –  it  is  preferable  that  the  warm-­‐up  be  performed  on  TRAZER  

10: The  TRAQ  3D  Way   64  


TRAZER 2  Sport  Simulator

Powerful tool  for  athlete  development   Revolutionary  capabilities   TRAZER  merges  patented  simulation  technologies  with  exercise  science  for   unprecedented  capabilities  to  measure  and  train  the  previously   immeasurable  key  components  of  sports  performance  -­‐  reaction  time,   movement  speed,  power,  acceleration  and  deceleration  and  dynamic   posture  (“athletic  stance”)  over  sport-­‐specific  distances  and  directions.  

Precisely control  movement  and  physiological  response   Computer-­‐controlled  athlete  progression  and  precise  measurement  allow   the  physiological  and  musculoskeletal  demands  to  be  controlled  to   maximize  results  and  minimize  injuries.  Precisely  control  the  direction,   distance  and  rate  your  athlete  travels  in  response  to  unplanned  movement   cues.  Capabilities  that  only  TRAZER  sports  simulators  can  deliver.    

Pre-­‐planned drills  can’t  replicate  game  play   Unpredictable  game  play  creates  completely  different  musculoskeletal   challenges  than  the  pre-­‐planned  or  controlled  movement  patterns   inherent  with  cone  drills  and  shuttle  runs.  

Practice as  you  play.  Continuous  high-­‐speed  tracking  measures  the   immeasurable   TRAZER  realistic  cues  prompt  a  sport-­‐relevant  movement  response,  while   high-­‐speed  positional  tracking  enables  real  time  measurement  of:    

For most  sports,  straight  ahead  running  is  a  small  part  of  performance   Sports  physicians,  therapists,  trainers  and  coaches  readily  agree  that  it  is   the  athlete  with  the  superior  ability  to  React,  Start,  Stop  and  Cut  who   excels  in  competition  and  is  less  likely  to  be  injured.  

Reaction Time  –  Elapsed  time  to  correctly  react  to  game-­‐like   challenges   Start  –  Measured  as  acceleration  (1st  step  quickness)   Stop  –  Measured  as  deceleration  (braking)   •

Realistic, reaction-­‐based  training  programs  are  the  hardest  to  design   And  with  the  exception  of  simple  straight-­‐ahead  running,  results  have  been   virtually  impossible  to  measure  objectively.  Yet,  weaknesses  in  these   capabilities  most  directly  relate  to  actual  game  performance,  as  well  as   injuries.      

Cut -­‐  By  tracking  the  athlete’s  body  core,  TRAZER  measures   changes-­‐in-­‐direction.  Remember,  it’s  about  fast  hips,  not  fast  feet  

Determine your  athlete’s  optimal  athletic  stance  for  immediate   performance  gains.   Simultaneously  tracking  vertical  changes  in  the  athlete’s  core  and   horizontal  movement  speed  accurately  determines  optimal  athletic  stance.   Once  determined,  real-­‐time  feedback  during  TRAZER  play  reinforces  the   athlete’s  stance  for  almost  immediate  gains  in  their  agility,  power,  balance  

11: TRAZER  2  Sport  Simulator   65  

and stamina,  while  eliminating  unnecessary  energy  expenditures  and   reducing  injuries.  

resistance both  in  real  time  and  progressively  over  time.  Monitor  cardiac   response,  reaction  time,  and  movement  speed  during  sport-­‐specific   resistance  training.    

“If you  can’t  measure  it,  you  can’t  improve  it”   British  scientist,  Lord  Kelvin  stated  the  obvious,  if  you  can’t  measure   something,  how  do  you  know  if  it  is  getting  better  or  worse?  A  stop  watch   provides  only  a  global  summary  of  overall  movement  capabilities.  You   need  TRAZER’s  accurate,  detailed  and  real-­‐time  reporting  to  optimally   manage  hardcore  athlete  development  programs.    

Dampen forces  on  joints  during  braking  and  abrupt  directional  changes.   PowerTRAQ  bands  build  functional  movement  capability  and   cardiovascular  conditioning  without  overstressing  joints.  Clients  work   harder,  and  therefore  get  better  faster,  with  reduced  risk  of  injury  and   joint  and  muscle  soreness.  And  Kids  and  adults  alike  tell  us  they  enjoy  the   spring-­‐like  response  of  the  cables.  

Quantify player  potential  and  detect  player  weaknesses   Use  TRAZER  to  document  and  resolve  bi-­‐lateral  movement  asymmetries  or   weaknesses,  and  to  determine  player  field  position.  

Train 1st  step  quickness  (“acceleration”)  and  braking/cutting   (“deceleration”)   The  athlete  responds  to  TRAZER’s  reaction-­‐based  cues  by  exploding  one  to   two  steps  in  the  correct  direction.  Real-­‐time  measurements  of  reaction   time,  acceleration  and  deceleration,  as  well  as  velocity  and  CG  elevation   provide  invaluable  feedback.  

Improve safety  and  enhance  motivation  and  compliance   Track  and  display  key  performance  and  physiological  parameters.  Motivate   and  control  with  display  of  heart  rate  and  caloric  energy  expenditure.   Provide  individualized  motivational  targets  while  automatically  limiting  the   demands  of  each  activity  to  match  current  fitness  level.       PowerTRAQ  3D  resistive  strength  and  power  training  with  real-­‐time   feedback  and  real-­‐world  challenges.   Build  sport-­‐specific  power,  speed  and  stamina  with  patented  TRAZER-­‐ based  3-­‐dimensional  functional  resistance.  TRAZER  combines  multi-­‐planar   resistive  cables  with  sport-­‐specific  movement  and  immediate  feedback  for   superior  outcomes.  

Progressively develop  linear  1st  step  quickness  and  braking   Attach  the  appropriate  PowerTRAQ  band  at  180  degrees  (directly  behind   athlete)  to  provide  resistance  during  forward  movement.  Proper  resistance   allows  the  athlete  to  maintain  proper  mechanics  while  building  strength,   power,  speed  and  stamina  during  the  acceleration  phase.     This  mounting  point  also  provides  opposing  resistance  to  reduce  the   braking  forces  to  minimize  stress  on  the  athlete  and  to  enable  quality   repetitions  without  breakdown.  

Specially calibrated  elastic  cables  are  attached  to  a  customized  TRAZER   Beacon  belt,  with  the  opposite  ends  secured  to  the  floor  at  four  mounting   points  at  the  edges  of  the  TRAZER  playing  field.  Quantify  the  effects  of  3D  

11: TRAZER  2  Sport  Simulator   66  

Front Attachment  of  PowerBand   Front  attachment  of  single  PowerTRAQ  band  “over-­‐speeds”  forward   movement,  and  increases  braking  forces  to  condition  the  athlete  for  sport-­‐ specific  eccentric  development.   Asymmetrical  attachment  of  PowerBand   Challenge  your  athlete’s  core  strength,  balance,  proprioception  and   technique  via  asymmetrical  loading.  Game  play  introduces  asymmetrical   loads  on  nearly  every  play.   TRAZER  Performance  Assessment  identifies  functional  movement  deficits   and  limitations   Reports  total  movements  in  each  vector,  reaction  time,  peak  velocity,  peak   power,  CG  range,  distance,  movement  accuracy.   (See  performance  report  on  next  page.)

11: TRAZER  2  Sport  Simulator   67  

11: TRAZER  2  Sport  Simulator   68  

TRAZER®-­‐driven, metrics-­‐based  training  programs   TRAZER  Simulators  generate  hard  data  to  manage  athlete  development   programs   Base  every  aspect  of  your  athlete  development  program  on  hard  data.   Monitor  moment-­‐to-­‐moment  key  performance  parameters.  Objectively   determine  athlete  compliance  with  your  exercise  prescription.  Implement   your  program  progressively  with  TRAZER.   Begin  with  unloaded,  easily  performed  TRAZER  reactive  movement  tasks.   Vary  the  intensity  and  complexity  of  movement  based  on  TRAZER   measurements  and  athlete  tolerance.  Complete  each  stage  of  the  program   based  on  the  rate  at  which  your  athlete  progresses.  

Keys to  TRAZER’s  metric-­‐based  simulator  training:   1.

Use TRAZER  to  elicit  reaction-­‐based  movements  within  vector   directions  –  for  example,  laterals  left  and  right  


Rely on  TRAZER  measurements  of  initial  accelerations  and   terminal  decelerations  for  each  vector  leg  to  assess  your  athlete’s   ability  to  effectively  start  and  stop  


Observe in  real-­‐time  elevational  changes  to  ensure  the  athlete’s   compliance  with  TRAZER’s  determination  of  his/her  optimal   athletic  stance.    


After adequate  unloaded  warm-­‐up,  apply  PowerTRAQ  bands.   Increase  or  reduce  acceleration  and  deceleration  forces   depending  on  band  placement  and  training  objectives.  Precisely   deliver  resistance  in  the  available  vectors  -­‐  0,  90,  180  or  270   degrees.  


Dampen deceleration  forces  by  imposing  resistance  in  line  with   the  acceleration  phase.  For  example,  for  accelerations  to  the  

athlete’s right  (at  90  degrees),  attach  a  PowerTRAQ  band  to  the   athlete’s  left  side  (at  270  degrees).  The  result  is  the  ability  to  elicit   more  repetitions  with  less  stress  on  the  joints.  And  control  the   resistance  to  ensure  proper  body  mechanics  for  “perfect   practice.”   6.

Amplifying the  braking  forces  provides  a  progressive  overload  to   condition  the  athlete  for  the  rigors  of  braking  and  cutting  


Upon completion  of  each  protocol,  review  the  Performance   Report  to  ensure  quality  repetitions  and  athlete  motivation.    


Periodically test  the  athlete’s  unloaded  (sans  PowerTRAQ)   performance  to  monitor  progress.  


Increase band  resistance  while  monitoring  athlete’s  heart  rate   response,  reaction  time,  and  movement  speed.  Monitor  CG  height   for  objective  measure  of  their  athletic  stance.  Continue  to   monitor  heart  rate  response  and  movement  speed  to  increase   loads  appropriately.  

10. Adjust resistance  according  to  tolerance  and  to  ensure  sufficient   training  time  at  a  given  resistance  for  physiological  changes.   11. Continue  progression  until  maximum  functional  improvement  or   other  specific  training  goals  are  achieved.   TRAZER  training  has  been  characterized  as  a  “SwimEx  for  dry  land,”  as  it   provides  functional  loading  without  the  stresses  of  “dry  land”  training.      Harness  the  incredible  power  of  sports  simulation   A  decade  of  research  in  the  use  of  sports  simulation,  resulting  in  10  U.S.   patents,  has  perfected  this  breakthrough  in  athlete  development.  TRAZER   sport  simulations  require  you  to  react  to  unplanned  movement  cues  in  all   directions,  just  like  in  real  competition.  No  more  pre-­‐planned  cone  drills.  

11: TRAZER  2  Sport  Simulator   69  

TRAQ 3D Sports Science  

TRAQ 3D Sports Science

Read more
Read more
Similar to
Popular now
Just for you