College Algebra Graphs and Models 6th Edition Bittinger Test Bank Full clear download (no formatting errors) at: http://testbanklive.com/download/college-algebra-graphs-and-models-6th-editionbittinger-test-bank/ College Algebra Graphs and Models 6th Edition Bittinger Solutions Manual Full clear download (no formatting errors) at: http://testbanklive.com/download/college-algebra-graphs-and-models-6th-editionbittinger-solutions-manual/ MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine the intervals on which the function is increasing, decreasing, and constant. 1) y 10

-10

10 x

(-1, 0)

-10

A) Increasing B) Increasing C) Increasing D) Increasing

on (1, ∞ ); Decreasing on (- ∞ , 1) on (- ∞, -1); Decreasing on (-1, ∞ ) on (-1, ∞); Decreasing on (- ∞, -1) on (- ∞, 1); Decreasing on (1, ∞ )

y

10 x

-10

-10

A) Decreasing on (- ∞, ∞) B) Increasing on (- ∞, ∞ ) C) Increasing on (0, ∞ ); Decreasing on (- ∞ , 0) D) Increasing on (- ∞, 0); Decreasing on (0, ∞ ) Answer: B

3) y 10

10 x

-10

-10

A) Increasing B) Increasing C) Increasing D) Increasing

on (- ∞ , 4); Decreasing on (-4, ∞ ); Constant on (4, ∞) on (4, ∞ ); Decreasing on (-4, ∞); Constant on (-4, 4) on (4, ∞ ); Decreasing on (- ∞ , -4); Constant on (-4, 4) on (- ∞, 4); Decreasing on (- ∞, -4); Constant on (4, ∞)

Answer: C 4) 5 4 3 2 1 -5 -4 -3 -2 -1-1 -2 -3 -4 -5

A) Increasing B) Increasing C) Increasing D) Increasing Answer: C

y

1 2 3 4 5 x

on (-2, 0) and (3, 4); Decreasing on (-5, -2) and (1, 3) on (1, 3); Decreasing on (-2, 0) and (3, 5); Constant on (2, 5) on (-2, 0) and (3, 5); Decreasing on (1, 3); Constant on (-5, -2) on (-1, 0) and (3, 5); Decreasing on (0, 3); Constant on (-5, -3)

5) 5

y

4 3 2 1 1 2 3 4 5 x

-5 -4 -3 -2 -1-1 -2 -3 -4 -5

A) Increasing B) Increasing C) Increasing D) Increasing

on (-3, -1); Decreasing on (-5, -2) and (2, 4); Constant on (-1, 2) on (-3, 0); Decreasing on (-5, -3) and (2, 5); Constant on (0, 2) on (-5, -3) and (2, 5); Decreasing on (-3, 0); Constant on (0, 2) on (-3, 1); Decreasing on (-5, -3) and (0, 5); Constant on (1, 2)

Answer: B Determine the domain and range of the function. 6) 5

y

4 3 2 1 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5

1 2 3 4 5 6 x

A) domain: [0, 3]; range: (- â&#x2C6;&#x17E;, 2] B) domain: [-2, 2]; range: [-3, 0] C) domain: [-3, 0]; range: [-2, 2] D) domain: (- â&#x2C6;&#x17E; , 2]; range: [0, 3] Answer: C

7) 6

y

5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1

1

2

3

4

5

6 x

-2 -3 -4 -5 -6

A) domain: (- ∞ , ∞); range: (- ∞ , 5] B) domain: (- ∞ , 3]; range: (- ∞, 5] C) domain: (- ∞ , ∞); range: (- ∞ , ∞) D) domain: (- ∞ , 3) ∪ (3, ∞); range: (- ∞, 5) Answer: A 8) 6

y

5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1

1

2

3

4

5

-2 -3 -4 -5 -6

A) domain: B) domain: C) domain: D) domain: Answer: D

[0, ∞); range: (- ∞, ∞ ) [0, ∞); range: [0, ∞ ) (- ∞ , ∞); range: [-3, ∞ ) [0, ∞); range: [-3, ∞ )

6 x

(5, ∞ )

9) 5

y

4 3 2 1 -5

-4

-3

-2

-1

1

2

3

4

5 x

-1 -2 -3 -4 -5

A) domain: (-3, 3]; B) domain: (-∞, ∞ ); C) domain: (-∞, ∞ ); D) domain: (-∞, ∞ );

range: (-∞, ∞ ) range: [-3, 3] range: (-3, 3] range: [-3, 3)

y

4 3 2 1 -5

-4

-3

-2

-1

1

2

3

4

-1 -2 -3 -4 -5

A) domain: (-∞, ∞ ); range: [0, 4] B) domain: (-∞, ∞ ); range: (0, 4) C) domain: (0, 4); range: (-∞, ∞ ) D) domain: [0, 4]; range: (-∞, ∞) Answer: A

5 x

11) 7 6 5 4 3 2

y

1 1 2 3 4 5 6 7x

-7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

A) domain: B) domain: C) domain: D) domain:

[-2, 2]; [-2, ∞); [-2, ∞); (-2, ∞);

range: [-2, ∞ ) range: [-2, 2] range: [-2, ∞ ) range: (-2, ∞ )

Answer: C 12) 7 6 5 4 3 2 1 -14-12-10 -8 -6 -4 -2-1 -2 -3 -4 -5 -6 -7

A) domain: B) domain: C) domain: D) domain: Answer: B

y

2 4 6 8 10 12

(1, 6); range: (0, 12) [0, 12]; range: [1, 6] [1, 6]; range: [0, 12] (0, 12); range: (1, 6)

x

Using the graph, determine any relative maxima or minima of the function and the intervals on which the function is increasing or decreasing. Round to three decimal places when necessary. 13) f(x) = x2 - 6x + 7 y

5 4 3 2 1 -3

-2

-1

1

2

3

4

5

6

7 x

-1 -2 (3, -2) -3 -4 -5

A) relative maximum: 3 at y = -2; increasing ( -∞, 3); decreasing (3, ∞) B) relative maximum: -2 at x = 3; increasing (3, ∞); decreasing (-∞ , 3) C) relative minimum: 3 at y = -2; increasing ( -∞, 3); decreasing (3, ∞ ) D) relative minimum: -2 at x = 3; increasing (3, ∞); decreasing (-∞, 3) Answer: D 14) f(x) = x3 - 3x2 + 1 5

y

4 3 2 (0, 1) 1 -5

-4

-3

-2

-1

1

2

3

4

5 x

-1 -2 -3 (2, -3) -4 -5

A) no relative maxima; relative minimum: -3 at x = 2; increasing (-∞, 0), (2, ∞); decreasing (0, 2) B) relative maximum: 1 at x = 0; no relative minima; increasing (-∞, 0), (2, ∞); decreasing (0, 2) C) relative maximum: -3 at x = 2; relative minimum: 1 at x = 0; increasing (0, 2); decreasing (-∞, 0), (2, ∞) D) relative maximum: 1 at x = 0; relative minimum: -3 at x = 2; increasing (-∞, 0), (2, ∞); decreasing (0, 2) Answer: D

15) f(x) = x3 - 12x + 2 (-2, 18) 20

y

16 12 8 4 -5

-4

-3

-2

-1

1

2

3

4

5 x

-4 -8 -12 -16

(2, -14)

-20

A) relative maximum: 18 at x = -2; relative minimum: -14 at x = 2; increasing (-∞, -2), (2, ∞); decreasing (-2, 2) B) no relative maxima or minima; increasing (-∞, -2), (2, ∞); decreasing (-2, 2) C) relative maxima: 18 at x = -2 and 0 at x = 0; relative minimum: -14 at x = 2; increasing (-∞ , -2), (2, ∞ ); decreasing (-2, 2) D) relative maximum: -14 at x = 2; relative minimum: 18 at x = -2; increasing (-2, 2); decreasing (-∞, -2), (2, ∞ ) Answer: A 16) f(x) =

1 3 1 2 x + x -x+1 2 2 5

y

4 3 (-1.215, 2.056) 2 1 -5

-4

-3

-2

-1

(0.549, 0.684) 1

2

3

4

5 x

-1 -2 -3 -4 -5

A) no relative maxima or minima; increasing (-∞, -1.215), (0.549, ∞); decreasing (-1.215, 0.549) B) relative maximum: 2.056 at x = -1.215; relative minimum: 0.684 at x = 0.549; increasing (-∞, -1.215), (0.549, ∞); decreasing (-1.215, 0.549) C) relative maximum: 0.684 at x = 0.549; relative minimum: 2.056 at x = -1.215; increasing (-1.215, 0.549); decreasing (-∞, -1.215), (0.549, ∞ ) D) relative maximum: 2.056 at x = -1.215; relative minima: 0.684 at x = 0.549 and 1 at x = 0; increasing (-1.215, 0.549); decreasing (-∞, -1.215), (0.549, ∞ ) Answer: B

8

17) f(x) = -0.06x 3 - 0.3x2 + 0.1x + 3 8 7 6 5 4 3 2 1

(-3.492, 1.547)

-8 -7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5

y

(0.159, 3.008)

1 2 3 4 5 6x

A) relative maximum: 1.547 at x = -3.492; relative minimum: 3.008 at x = 0.159; increasing (-3.492, 0.159); decreasing (-∞, -3.492), (0.159, ∞ ) B) no relative maxima or minima; increasing (-∞, -3.492), (0.159, ∞); decreasing (-3.492, 0.159) C) relative maximum: 3.008 at x = 0.159; relative minimum: 1.547 at x = -3.492; increasing (-3.492, 0.159); decreasing (-∞, -3.492), (0.159, ∞ ) D) relative maxima: 3 at x = 0 and 3.008 at x = 0.159; relative minimum: 1.547 at x = -3.492; increasing (-∞, -3.492), (0.159, ∞ ); decreasing (-3.492, 0.159) Answer: C Graph the function. Use the graph to find any relative maxima or minima. 18) f(x) = x2 - 3 y

x

A) Relative minimum of -3 at x = 1 B) Relative minimum of -3 at x = 0 C) No relative extrema D) Relative maximum of -3 at x = 0 Answer: B

9

19) f(x) = -x 2 + 2 y

x

A) Relative maximum of 2 at x = 0 B) Relative maximum of 2 at x = 0 and relative minimum at x = 3 C) No relative extrema D) Relative minimum of 2 at x = 0 Answer: A 20) f(x) = -x 2 + 6x - 7 y

x

A) Relative maximum of 3 at x = 2 B) No relative extrema C) Relative maximum of 2 at x = 3 D) Relative minimum of 2 at x = 3 Answer: C

1 0

21) f(x) = x2 + 8x + 14 y

x

A) Relative B) Relative C) Relative D) Relative

minimum of -2.2 at x = -4.1 maximum of -2.2 at x = -4.1 minimum of -2 at x = -4 maximum of -2 at x = -4

Answer: C 22) f(x) = 4 - |x| y

x

A) Relative minimum of 4 at x = 0 B) Relative maximum of 4.5 at x = 0 C) Relative maximum of 4 at x = 0 D) No relative extrema Answer: C

1 1

23) f(x) = |x + 4| - 2 y

x

A) Relative B) Relative C) Relative D) Relative

maximum of 2 at x = -4 minimum of 1.7 at x = -4 minimum of -2 at x = -4 minimum of 2.2 at x = -4

Answer: C Solve. 24) Elissa wants to set up a rectangular dog run in her backyard. She has 34 feet of fencing to work with and wants to use it all. If the dog run is to be x feet long, express the area of the dog run as a function of x. A) A(x) = 18x - x2 B) A(x) = 16x - x2 C) A(x) = 19x2 - x D) A(x) = 17x - x2 Answer: D 25) Bob wants to fence in a rectangular garden in his yard. He has 70 feet of fencing to work with and wants to use it all. If the garden is to be x feet wide, express the area of the garden as a function of x. A) A(x) = 37x2 - x B) A(x) = 34x - x2 C) A(x) = 35x - x2 D) A(x) = 36x - x2 Answer: C 26) A rocket is shot straight up in the air from the ground at a rate of 53 feet per second. The rocket is tracked by a rangefinder that is 499 feet from the launch pad. Let d represent the distance from the rocket to the rangefinder and t represent the time, in seconds, since "blastoff". Express d as a function of t. A) d(t) = 499 + 53t2 499 2 + (53t)2 C) d(t) = 499 2 + (53t)2 B) d(t) =

D) d(t) =

532 + (499t)2

1 2

27) Sue wants to put a rectangular garden on her property using 90 meters of fencing. There is a river that runs through her property so she decides to increase the size of the garden by using the river as one side of the rectangle. (Fencing is then needed only on the other three sides.) Let x represent the length of the side of the rectangle along the river. Express the garden's area as a function of x. 1 A) A(x) = 44x - x2 4 B) A(x) = 45x -

1 2 x 2

C) A(x) = 46x - 2x2 D) A(x) = 45x2 - x Answer: B 28) A farmer's silo is the shape of a cylinder with a hemisphere as the roof. If the height of the silo is 94 feet and the radius of the hemisphere is r feet, express the volume of the silo as a function of r. 4 A) V(r) = π(94 - r) + πr2 3 8 B) V(r) = 94πr2 + πr3 3 2 C) V(r) = π(94 - r)r2 + πr3 3 4 D) V(r) = π(94 - r)r3 + πr2 3 Answer: C 29) A farmer's silo is the shape of a cylinder with a hemisphere as the roof. If the radius of the hemisphere is 10 feet and the height of the silo is h feet, express the volume of the silo as a function of h. 500 A) V(h) = 4100 π(h - 10) + π 7 B) V(h) = 100 π(h - 10) +

2000 π 3

C) V(h) = 100 π(h2 - 10) + D) V(h) = 100 πh +

5000 π 3

4000 πh 2 3

Answer: B 30) A rectangular sign is being designed so that the length of its base, in feet, is 8 feet less than 4 times the height, h. Express the area of the sign as a function of h. A) A(h) = -8h 2 + 2h B) A(h) = -8h + h 2 C) A(h) = 8h - 2h 2 D) A(h) = -8h + 4h 2 Answer: D

1 3

31) From a 20-inch by 20-inch piece of metal, squares are cut out of the four corners so that the sides can then be folded up to make a box. Let x represent the length of the sides of the squares, in inches, that are cut out. Express the volume of the box as a function of x. A) V(x) = 2x3 - 60x 2 B) V(x) = 4x3 - 80x2 C) V(x) = 2x3 - 60x2 + 20x D) V(x) = 4x3 - 80x2 + 400x Answer: D 32) A rectangular box with volume 233 cubic feet is built with a square base and top. The cost is \$1.50 per square foot for the top and the bottom and \$2.00 per square foot for the sides. Let x represent the length of a side of the base. Express the cost the box as a function of x. A) C(x) = 2x2 + B) C(x) = 4x +

1864 x

1864 x2

C) C(x) = 3x2 +

932

D) C(x) = 3x2 +

1864

x x

Answer: D 33) A rectangle that is x feet wide is inscribed in a circle of radius 27 feet. Express the area of the rectangle as a function of x. A) A(x) = x 2187 - x B) A(x) = x2 1458 - x2 C) A(x) = x(2916 -x2 ) D) A(x) = x 2916 - x2 Answer: D 34) From a 15-inch by 15-inch piece of metal, squares are cut out of the four corners so that the sides can then be folded up to make a box. Let x represent the length of the sides of the squares, in inches, that are cut out. Express the volume of the box as a function of x. Graph the function and from the graph determine the value of x, to the nearest tenth of an inch, that will yield the maximum volume. A) 2.3 inches B) 2.8 inches C) 2.5 inches D) 3.1 inches Answer: C

1 4

35) From a 24-inch by 24-inch piece of metal, squares are cut out of the four corners so that the sides can then be folded up to make a box. Let x represent the length of the sides of the squares, in inches, that are cut out. Express the volume of the box as a function of x. Graph the function and from the graph determine the value of x, to the nearest tenth of an inch, that will yield the maximum volume. A) 3.8 inches B) 4.0 inches C) 3.7 inches D) 4.1 inches Answer: B 36) A rectangular box with volume 468 cubic feet is built with a square base and top. The cost is \$1.50 per square foot for the top and the bottom and \$2.00 per square foot for the sides. Let x represent the length of a side of the base in feet. Express the cost of the box as a function of x and then graph this function. From the graph find the value of x, to the nearest hundredth of a foot, which will minimize the cost of the box. A) 7.92 feet B) 8.63 feet C) 8.55 feet D) 8.44 feet Answer: C 37) A rectangular box with volume 517 cubic feet is built with a square base and top. The cost is \$1.50 per square foot for the top and the bottom and \$2.00 per square foot for the sides. Let x represent the length of a side of the base in feet. Express the cost of the box as a function of x and then graph this function. From the graph find the value of x, to the nearest hundredth of a foot, which will minimize the cost of the box. A) 8.49 feet B) 8.79 feet C) 8.83 feet D) 8.91 feet Answer: C 38) A rectangle that is x feet wide is inscribed in a circle of radius 20 feet. Express the area of the rectangle as a function of x. Graph the function and from the graph determine the value of x, to the nearest tenth of a foot, which will maximize the area of the rectangle. A) 28.3 feet B) 29.1 feet C) 27.9 feet D) 28.7 feet Answer: A 39) A rectangle that is x feet wide is inscribed in a circle of radius 32 feet. Express the area of the rectangle as a function of x. Graph the function and from the graph determine the value of x, to the nearest tenth of a foot, which will maximize the area of the rectangle. A) 44.5 feet B) 45.3 feet C) 44.9 feet D) 45.7 feet Answer: B

1 5

40) Elissa sells two breeds of dogs, Alaskan Malamutes and Great Pyrenees. She has 92 feet of fencing to enclose two adjacent rectangular dog kennels, one for each breed. An existing fence is to form one side of the kennels, as in the drawing below. Suppose the total length of the two kennels is x feet. Express the total area of the two kennels as a function of x. Graph the function and from the graph determine the value of x that will yield the maximum area.

A) 46 feet B) 48 feet 1 C) 46 feet 2 D) 45 feet Answer: A 41) Elissa sells two breeds of dogs, Alaskan Malamutes and Great Pyrenees. She has 114 feet of fencing to enclose two adjacent rectangular dog kennels, one for each breed. An existing fence is to form one side of the kennels, as in the drawing below. Let x represent the measurement indicated. Express the total area of the two kennels as a function of x. Graph the function and from the graph determine the value of x, rounded to the hundredths place, that will yield the maximum area.

A) 28.50 feet B) 19.33 feet C) 19.17 feet D) 19.00 feet Answer: D

1 6

For the piecewise function, find the specified function value. 42) f(x) =

9x, for x ≤ -1, x - 2, for x > -1

f(-8) A) -72 B) -10 C) 6 D) 72 Answer: A 43) f(x) =

x - 8, for x < 2, 4 - x, for x ≥ 2

f(0) A) -8 B) -6 C) 2 D) 4 Answer: A 4x + 7, for x ≤ 0, 44) f(x) = 7 - 4x, for 0 < x < 4, x, for x ≥ 4 f(5) A) -13 B) 4 C) 27 D) 5 Answer: D 6x + 1, for x < 1, 45) f(x) = 7x, for 7 ≤ x ≤ 9, 7 - 5x, for x > 9 f(7) A) 7 B) -28 C) 46 D) 49 Answer: D 4x + 1, for x < 9, 46) f(x) = 9x, for 9 ≤ x ≤ 12, 9 - 5x, for x > 12 f(-9) A) -81 B) -35 C) 37 D) 54 Answer: B Graph the function.

1 7

47) f(x) =

1, for x â&#x2030;Ľ 1, -3 - x, for x < 1 y

6 4 2

-6

-4

-2

2

4

6 x

2

4

6 x

2

4

6 x

-2 -4 -6

A) 6

y

4 2

-6

-4

-2 -2 -4 -6

B) 6

y

4 2

-6

-4

-2 -2 -4 -6

18

C) y

6 4 2

-6

-4

-2

2

4

6 x

2

4

6 x

4

6 x

-2 -4 -6

D) y

6 4 2

-6

-4

-2 -2 -4 -6

x - 5, for x > 0, 4, for x â&#x2030;¤ 0 6

y

4 2

-6

-4

-2

2 -2 -4 -6

19

A) 6

y

4 2

-6

-4

-2

2

4

6 x

2

4

6 x

2

4

6 x

-2 -4 -6

B) 6

y

4 2

-6

-4

-2 -2 -4 -6

C) 6

y

4 2

-6

-4

-2 -2 -4 -6

20

D) 6

y

4 2

-6

-4

-2

2

6 x

4

-2 -4 -6

-1 - x, for x â&#x2030;¤ 2, 1 + 3x, for x > 2 10

y

5

-10

-5

x

5

-5

-10

A) 10

y

5

-10

-5

5

x

-5

-10

21

B) 10

y

5

-10

-5

5

x

5

x

5

x

-5

-10

C) 10

y

5

-10

-5

-5

-10

D) 10

y

5

-10

-5

-5

-10

22

50) f(x) =

x+2 -8 -x + 4

for -8 â&#x2030;¤ x < 3 for x = 3 for x > 3 y 10

5

-10

-5

5

10

x

-5

-10

A) y 10

5

-10

-5

5

10

x

5

10

x

-5

-10

B) y 10

5

-10

-5 -5

-10

23

C) y 10

5

-10

-5

5

10

x

5

10

x

4

6 x

-5

-10

D) y 10

5

-10

-5 -5

-10

Answer: C 3x + 2 51) f(x) = x 2x - 1

for x < -2 for -2 â&#x2030;¤ x â&#x2030;¤ 3 for x > 3 24

y

16 8

-6

-4

-2

2 -8 -16 -24

24

A) 24

y

16 8

-6

-4

-2

2

4

6 x

2

4

6 x

2

4

6 x

-8 -16 -24

B) 24

y

16 8

-6

-4

-2 -8 -16 -24

C) 24

y

16 8

-6

-4

-2 -8 -16 -24

25

D) y

24 16 8

-6

-4

-2

2

6x

4

-8 -16 -24

Answer: D 1 52) f(x) =

x-2 2,

, for x â&#x2030; 2, for x = 2 y

6 4 2

-6

-4

-2

2

4

6 x

2

4

-2 -4 -6

A) 6

y

4 2

-6

-4

-2

6 x

-2 -4 -6

26

B) 6

y

4 2

-6

-4

-2

2

4

6 x

2

4

6 x

2

4

6 x

-2 -4 -6

C) 6

y

4 2

-6

-4

-2 -2 -4 -6

D) 6

y

4 2

-6

-4

-2 -2 -4 -6

27

53) f(x) =

x2 - 9 , for x â&#x2030; -3, x+3 7,

for x = -3 10

y

5

-10

-5

x

5

-5

-10

A) 10

y

5

-10

-5

5

x

5

x

-5

-10

B) 10

y

5

-10

-5

-5

-10

28

C) 10

y

5

-10

-5

5

x

5

x

-5

-10

D) 10

y

5

-10

-5

-5

-10

54) f(x) =

x2 - 16 , for x â&#x2030; -4, x-4 -7,

for x = 4 10

y

5

-10

-5

5

x

-5

-10

29

A) 10

y

5

-10

-5

5

x

5

x

5

x

-5

-10

B) 10

y

5

-10

-5

-5

-10

C) 10

y

5

-10

-5

-5

-10

30

D) 10

y

5

-10

-5

x

5

-5

-10

Answer: B x2 + 3x + 2 55) f(x) =

x+2

, for x â&#x2030; -2, for x = -2

-7, 10

y

5

-10

-5

x

5

-5

-10

A) 10

y

5

-10

-5

5

x

-5

-10

31

B) 10

y

5

-10

-5

5

x

5

x

5

x

-5

-10

C) 10

y

5

-10

-5

-5

-10

D) 10

y

5

-10

-5

-5

-10

32

56) y = x 7 6 5 4 3 2 1 -7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

y

1 2 3 4 5 6 7x

A) 7 6 5 4 3 2 1

y

1 2 3 4 5 6 7x

-7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

B) 7 6 5 4 3 2 1 -7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

y

1 2 3 4 5 6 7x

33

C) 7 6 5 4 3 2

y

1 1 2 3 4 5 6 7x

-7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

D) 7 6 5 4 3 2 1 -7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

y

1 2 3 4 5 6 7x

1 x 2 7 6 5 4 3 2 1

-7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

y

1 2 3 4 5 6 7x

34

A) 7 6 5 4 3 2

y

1 1 2 3 4 5 6 7x

-7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

B) 7 6 5 4 3 2 1

y

1 2 3 4 5 6 7x

-7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

C) 7 6 5 4 3 2 1 -7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

y

1 2 3 4 5 6 7x

35

D) 7 6 5 4 3 2

y

1 1 2 3 4 5 6 7x

-7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

Answer: C 58) y = 3 x 7 6 5 4 3 2 1 -7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

y

1 2 3 4 5 6 7x

A) 7 6 5 4 3 2 1 -7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

y

1 2 3 4 5 6 7x

36

B) 7 6 5 4 3 2

y

1 1 2 3 4 5 6 7x

-7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

C) 7 6 5 4 3 2 1

y

1 2 3 4 5 6 7x

-7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

D) 7 6 5 4 3 2 1 -7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

y

1 2 3 4 5 6 7x

37

59) y = 2 x 7 6 5 4 3 2 1 -7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

y

1 2 3 4 5 6 7x

A) 7 6 5 4 3 2 1

y

1 2 3 4 5 6 7x

-7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

B) 7 6 5 4 3 2 1 -7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

y

1 2 3 4 5 6 7x

38

C) 7 6 5 4 3 2 1

y

1 2 3 4 5 6 7x

-7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

D) 7 6 5 4 3 2 1 -7 -6 -5 -4 -3 -2 -1-1 -2 -3 -4 -5 -6 -7

y

1 2 3 4 5 6 7x

Answer: D 60) y = 1 + x 8

y

4

-8

-4

4

8 x

-4

-8

39

A) 8

y

4

-8

-4

4

8 x

4

8 x

4

8 x

-4

-8

B) 8

y

4

-8

-4

-4

-8

C) 8

y

4

-8

-4

-4

-8

40

D) 8

y

4

-8

-4

8 x

4

-4

-8

Answer: C 1 61) y = x -2 2 8

y

4

-8

-4

8 x

4

-4

-8

A) 8

y

4

-8

-4

4

8 x

-4

-8

41

B) 8

y

4

-8

-4

4

8 x

4

8 x

4

8 x

-4

-8

C) 8

y

4

-8

-4

-4

-8

D) 8

y

4

-8

-4

-4

-8

42

Write an equation for the piecewise function. 62) y 6 4 2

-6

-4

-2

2

4

6

x

4

6

x

-2 -4 -6

A) f(x) = B) f(x) = C) f(x) = D) f(x) =

-3, for x ≤ 0, 3, 3,

for x > 0 for x ≤ 0,

-3, for x > 0 3x, for x ≤ 0, -3x, for x > 0 3, for x < 0, -3, for x ≥ 0

Answer: B 63) y 6 4 2

-6

-4

-2

2 -2 -4 -6

A) f(x) = B) f(x) = C) f(x) = D) f(x) =

2, for x < 0, x, for x ≥ 0 2, for x ≤ 0, -x, for x > 0 2, for x < 0, -x, for x ≥ 0 2, for x < 0, -2x, for x ≥ 0

43

64) y 6 4 2

-6

-4

-2

2

4

6

x

6

x

-2 -4 -6

A) f(x) = B) f(x) =

6, for x < 0, x2 , for x ≥ 0 6, for x < 0, ∣x ∣ - 5, for x ≥ 0

C) f(x) =

6, for x ≤ 0, x2 - 5, for x > 0

D) f(x) =

-6, for x < 0, 2 x - 5, for x ≥ 0

Answer: D 65) y 6 4 2

-6

-4

-2

2

4

-2 -4 -6

A) f(x) = B) f(x) = C) f(x) =

-x2 , for x ≤ 0, x - 2 , for x > 0 x2 , for x ≤ 0, - x + 2 , for x > 0 x2 , for x ≤ 0, - x - 2 , for x > 0

D) f(x) =

- x - 2 , for x < 0, x2 , for x ≥ 0

44

66) y 6 4 2

-6

-4

-2

2

4

6

x

8

x

-2 -4 -6

-x + 3, for x ≤ 0, - x, for x > 0 x + 3, for x ≤ 0, - x, for x > 0 x - 3, for x ≤ 0, -x2 , for x > 0

A) f(x) = B) f(x) = C) f(x) =

x + 3, for x ≤ 0, x, for x > 0

D) f(x) = Answer: B 67)

y 8 6 4 2 -8

-6

-4

-2

2

4

6

-2 -4 -6 -8

A) f(x) =

4, for x < -1, x2 , for x ≥ -1

B) f(x) =

4, for x < -1, x3 , for x ≥ -1

C) f(x) =

4, for x < -1, 2 x - 1, for x ≥ -1

D) f(x) =

4, for x < -1, 3 x - 1, for x ≥ -1

45

68) y 6 4 2

-6

-4

-2

2

4

6

x

6

x

-2 -4 -6

A) f(x) = B) f(x) = C) f(x) = D) f(x) =

2x - 3, for x < 3, 2x + 3, for x ≥ 3 x - 3, for x ≠ 3, -2, for x = 3 2x - 3, for x ≠ 3, -2, for x = 3 2x - 3, for x ≠ 3, -3, for x = 3

Answer: C 69) y 6 4 2

-6

-4

-2

2

4

-2 -4 -6

A) f(x) = B) f(x) = C) f(x) = D) f(x) =

-3, -2 ∣ x + 2 ∣ + 4, -3x, -2 ∣ x + 2 ∣ + 4, -3, -2 ∣ x + 2 ∣ + 4, -3x, -2 ∣ x + 2 ∣ + 4,

for x ≤ -4, for x > -4 for x < -4, for x ≥ -4 for x < -4, for x ≥ -4 for x ≤ -4, for x > -4

46

70) y 6 4 2

-6

-4

-2

2

4

6

x

6

x

-2 -4 -6

A) f(x) = (x - 3)2 - 5 2 B) f(x) = (x + 3) - 5, for x ≠ 3, 2, for x = 3 x 3 5, for x ≠ 3, C) f(x) = 2, for x = 3 2 D) f(x) = (x - 3) - 5, for x ≠ 3, 2, for x = 3 Answer: D 71) y 6 4 2

-6

-4

-2

2

4

-2 -4 -6

A) f(x) = B) f(x) = C) f(x) = D) f(x) =

-x, for x ≤ 1, 2x + 1, for x > 1 -2x, for x ≤ 1, x + 2, for x > 1 2x, for x ≤ 1, x + 1, for x > 1 -2x, for x ≤ 1, x + 1, for x > 1

47

For the pair of functions, find the indicated sum, difference, product, or quotient. 72) f(x) = x - 2, g(x) = x - 4 Find (f + g)(1). A) 4 B) 0 C) -4 D) 8 Answer: C 73) f(x) = x2 - 9, g(x) = 4x + 8 Find (f + g)(4). A) 31 B) 79 C) 19 D) 15 Answer: A 74) f(x) = 3x2 - 4, g(x) = x - 3 Find (f - g)(5). A) 79 B) 69 C) 63 D) -76 Answer: B 75) f(x) = x + 5, g(x) = -4x2 + 17x - 6 Find (fg)(4). A) -18 B) 2 C) 702 D) 70 Answer: A 76) f(x) = 3x - 3, g(x) = 4x2 + 14x + 4 Find (f/g)(-3). 2 A) 3 B) 6 C) - 2 3 D) 2 Answer: B

48

77) f(x) = x2 - 1, g(x) = 2x + 1 1 Find (f/g) . 2 A) 0 B) C)

2 3

1 2

D) does not exist Answer: D 78) f(x) = x2 - 1, g(x) = 2x + 1 Find (f/g)( 3). 4- 3 A) 13 B)

3- 1 2

C)

3 3+2 5

D)

4 3- 2 11

Answer: D 79) h(x) = x - 1, g(x) = Find (h + g)(11). A) 9 B) 14 C) 19 D) 13

x-2

Answer: D 80) f(x) = x + 2, g(x) = Find (f - g)(-2).

x-7

A) 7 B) 9 C) does not exist D) 0 Answer: C 81) h(x) = x - 2, g(x) = x + 6 Find (hg)(-3). A) -1 3 B) does not exist C) -5 -

3

49

82) f(x) = 5x - 9, g(x) = 7x - 4 Find (f - g)(x). A) -2x - 5 B) 2x + 5 C) 12x - 13 D) -2x - 13 Answer: A 83) f(x) = 8x2 - 7x, g(x) = x2 - 4x - 21 Find (f/g)(x). 8x2 - 7x A) x2 - 4x - 21 B) C) D)

8- x 21 8x - 7 -4 8x x+1 Answer: A

84) f(x) = 8 - 9x, g(x) = -5x + 9 Find (f + g)(x). A) -4x + 17 B) -14x + 17 C) 3x D) -5x + 8 Answer: B 85) f(x) =

3x + 3, g(x) = 16x - 9 Find (fg)(x). A) ( 3x + 3)( 16x - 9) B) (3x + 3)(4x - 3) C) (4x - 3)( 3x + 3) D) (3x + 3)(16x - 9) Answer: A 86) f(x) = 8x + 6, g(x) = 6x + 9 Find (fg)(x). A) 14x2 + 108x + 15 B) 48x2 + 54 C) 48x2 + 108x + 54 D) 48x2 + 45x + 54

50

College Algebra Graphs and Models 6th Edition Bittinger Test Bank Full clear download (no formatting errors) at: http://testbanklive.com/download/college-algebra-graphs-and-models-6th-editionbittinger-test-bank/ College Algebra Graphs and Models 6th Edition Bittinger Solutions Manual Full clear download (no formatting errors) at: http://testbanklive.com/download/college-algebra-graphs-and-models-6th-editionbittinger-solutions-manual/ People also search: college algebra graphs and models 5th edition pdf college algebra graphs and models pdf college algebra graphs and models bittinger college algebra graphs and models 5th edition free download precalculus graphs and models a right triangle approach 6th edition pdf college algebra by bittinger beecher e

51

50

College algebra graphs and models 6th edition bittinger test bank