Issuu on Google+

La Zebu Forte Overture Roger Zare

Copyright Š 2008 Published by Roger Zare Music, ASCAP


La Zebu Forte Overture

Roger Zare

Allegro h = 80

Violin I

Violin II

Viola

Violoncello

Double Bass

                    pp                   pp

    

                            mf

pp

                        mf                    

 

 

  

p

f

   

pp

pp

 7

Vln. I

                                                                  pp

mf

pp

div.

                                               pp mf pp

Vln. II

Vla.

Vc.

Db.

div.

                         

pp

non div.

       pp    

mf

  

  

  

  

  

  

  

  

  

pp

  

  

    mf  

  

  

  

  

  

  

mf

 12

Vln. I

  

     pp

 

Vln. II

         

Vla.

pp

Vc.

Db.

    

  

     pp    pp



                        cresc. poco a poco

(non div.)                                        pp cresc. poco a poco non  div.                         unis.

 

p cresc.

   p cresc.   

p cresc. Copyright © 2008

 

 

 

 

                                       

         

 

 

 

 


Vln. I

                                                                               p                                     

Vln. II

Vla.

f

    

ff

               f ff              

p sub.

f

 

Vc.

 

     

Vla.

Vc.

Db.

3

  pp

     3

                

Vln. II

f

pp

25

Vln. I

     

  

       

 

 

p

ff

21 div.    Vln. I                                      Vln. II                                  3 3 3   Vla.               

pp

ff

3 3                       

                 p

ff

f

f

Db.

3 3                       

Vc.

Db.

3

A

16

       f 3 3           3

            

unis.

                                     

            div.          pp 

3

f

  

   

   

    pp

   

pp

            

            



f                                             f                                                                  f                      div.

                 3

3

f

f


                          B

staccatissimo div.

4 29

Vln. I

  

Vln. II

3

3

ff p staccatissimo

3

3

              ff

3

3

p

3

3

                                f

                

                    f   3                           

Vla.

Vc.

f Db.

                             3 3  f div.

unis.

fp

div.

             fp       

Vln. II

Vla.

Vc.

    

Db.

    fp

fp





p

3



3

 3



              f

             

f



f

3



      

f

mf

     f p sf                       

div. a 3

Vla.

       f

Vc.

mf

       f

Db.



f

 

3

3

3

3



     

 

non div.                    3

3

3

3

                   

                  

3

3

3

 

3

    

                  div. a 3             p sf                

                 p  mf sf p sf                                                         mf        

   

unis.

                   C                   f

Vln. II

 

    

div.                                 

37

Vln. I

f

33

Vln. I

3 3

f



f

mf

         


41

Vln. I

  

Vla.

p

f

 

    

                3



 D                 

  

3

               ff mf        

 Vln. I

 

 

 

 

 

 

 

ff

Vla.





     

 

5



            

       ffp    

 

 

 

  

ffp snap pizz.

                      fp ff fp

     sf

  

     

ff

p

  

               

 

ff

                              mf ff





fp

50

5

            3                   

   

ff

ff



ffp

    

                       

    

    

f

    

       

ff

3

Vln. II



3

ff mf

Db.



             

  

     

45

ff

Vc.



3

ff mf

Vla.



     

    unis.                  

               

   

Db.

Vln. II

div. a 2

    

Vc.

unis.                     

 

               

Vln. I

  

           

Vln. II

  

p

   

  p

sf

div.

    sf

    

            p sf p sf p sf                                                                         

mf ff 3                      3                Vc.    mf ff arco  3   3                         Db.        p 3 sf p sf mf

ff

         

 p

  

sf


6 55

Vln. I

p

  

Vln. II

Vla.

Vc.

Db.

 Vln. I

                   E                     

      mf       

div.

  

unis.

mp

p

 unis.           

p mf p mp                          mp                              mp                     mf

p

p

            60

   

      3 3          mp p 3

3

3

                    p 3

3

3

3

                              pp  pizz.               pp

3

                  p pp

                     pp 3 3              Vla.                                p 3 3 3  Vc.                                           Db.               65 6 5                                       Vln. I                                    3

Vln. II

3

3

3

                  

3

3

3

pp

Vln. II

ff

5

sf

5

5

                             pp ff

Vla.

Vc.

Db.

3

  

3

    3

         sf

                                                              pp 

ff dim. poco a poco

3

3

3

3

                   arco           pp

3

3

              5

  

3

3

              5

3

3

            ff dim. poco a poco         ff dim. poco a poco

  

3

      

3

        


7

l'istesso tempo

Overt Metrical Fugue 71

Vln. I

3

3

3

3

3

3

3

3

                                                5

                      

Vln. II

3

5

Vc.

3

3

                    

3

                   

  

                  ppp

3

3

    ppp

3

3

3

5

                                           

Vla.

Db.

3

  

5

             3

  

3

ppp

                    p ppp p          

5

ppp

 77

Vln. I

 

Vln. II

Vla.

      

Vc.

Db.

mp

                  

  

     

   

                                p

p

p

 82

Vln. I

 





Vln. II





                                             mp                                         

Vla.

Vc.

Db.

p

p



         mf

 

      

mf


8 87

Vln. I

 

F

                    mp  p p                                p mp                                               

  

Vln. II

Vla.

Vc.

 

p

Db.

cresc.

 92

Vln. I

  



    

                         

Vln. II

Vla.

p

  p

       p     

   

  

 

Vc.

p

Db.

 

  p

    

  p

         mp



mp

3

       

                       mp



   

   

   

mp

                        

     

   



           mp           mp

G                        Vln. I          f sf div. gli ss.           unis.                 Vln. II     p f                                  Vla.     f sf                                 Vc.   f              Db.       f 96

          

p

 pizz. arco        

p

  f

       

arco    pizz.         p

f

       


3                          mf  p  3 3                             

100

Vln. I

Vln. II

p

Vla.

mf

pp

p                              mf

                            3

Vc.

pp

Db.

 Vln. I

Vla.

pp

     105

  

p

mf

       

        

Db.

 Vln. I

    

p

Vc.

mf

  

     

pp

mf

p

mf

   

p

     

              

f

 

mf

              pp

fp

   

p

3

3

  

  p

mf

mf

   p mf      

 

sf

    

mp

p

sf

                      

pp

   

       p

pp div.

p

poco

f

Db.

   

                                  p subito pp                   f

Vla.

  

3

          

mf H p   109                                      f

Vln. II

3

3

   

3

3

    

  p

3

    unis.                            3 3 p mf                           3 3 mf                                p sf p  sf                             3 f mf mp 3                  

mf

3

Vc.

pp

mf

                

f

Vln. II

3

p

9

                     

p

       pp

pizz.

p


10 113

Vln. I

  

Vln. II

                              

Vc.

pp

  



  

p

mf

Vln. II

 

Vla.

3

3

3

3

121

  

mp

 

 

3

   

pp

pp



  

pp

    

p

mp

p



 

mf

mf

              mf p               mf p

mp

     

3

  

   

 3 3 3                           3 

f

   

mf

pp

                  fpp                       p arco 3

       Vla.        p f p f                     Vc.                    Db.         div. a 3

p           

I



pizz.

            

                                 

mp

Vc.

Vln. II

3

mp

p

117

Vln. I

3

pp

                                             p arco                                     

Db.

3

  

  pp                           

pp

Vln. I

                       

Vla.

Db.

     

  

          fpp

              

       

mf

        mf

                       mf

                                

fpp

mf


                                         Vln. I      f sf sf fp                            Vln. II                                   f                         Vla.  126

                     f

Vc.

                      f

Db.

 Vln. I

               

Vln. II

 

Vla.

p

 

Vc.

p

Db.

 Vln. I

Vla.

Vc.

p

   

     

  sf

      3

f

f

       



 p

 p

   

sf

   

sf

   

sf

  

unis.

         

           

f

                  

f

p

     f

  p

f

 

mf

         

   

        

            

f

     

 

                                      

          

f

sf

                                  

f

sf

sf

   



3

11

  

p

            p

3

mf

f

p

f

sf

134

 

  

                     

    

J

                     

p

f

Db.

sf

sf

 

p

Vln. II

  



   

p

 div.    

f

sfp

p

 

sfp

p           

f

               

    

             

        

f

130      

   

  

 p

      f

p

    f

  f

 

mf

sul pont. div.

  

sfp sul pont.

 

sfp

   

3


12

                 K         

     

138

Vln. I

ff

                   

     

3

Vln. II

ff

      

Vla.

  

sfp

     

Vc.

Db.

 Vln. I

Vln. II

Db.

Vc.

Db.

div.

sul G

             

       

 

ord.  gliss.     ord.

    

 gliss.   

 

unis.

 

pp

mp

pp

 

 

  

pp

f 3

 

 

p

  

mf

 

p

               

p

     

ord. div. . s s li g

                           

 

fpp

pp

unis.

ff 

 

 

 glis   s.  pizz.       

  



  

 

ord.

gliss.

 

            

  

Vla.

 

                       pp 

       sfp   

sul pont.

 

f

      

sfp

                sf             pizz.    

150

Vln. II



       sfp                   

unis.

 

Vc.

sfp

 

div.

            

Vln. I



144

Vla.

sfp

 

   

     

sul pont.

div.

     pp

f

  

f

             pp           arco              

  

unis.

pp

  


         156

Vln. I

L

13                   

3

ff             

Vln. II

Vla.

ff

 

Vc.

     sfp

Db.

sfp

mf

  

      

arco

sfp

sfp

          

  

    

 

   

 

pp

Vla.

Vc.

mf

 



  



 

arco

              

pp

 3 3 3 3 3                      p mf pp sfz p mf                                 

   

  

 

 

sfp

    

sfp

sfp

p

f

  

 div.      f

 

M

     

  

    

sfp

    

 

167

Vln. I

pp

sfp

sfz

sfp

Db.



sfp

pizz.

Vln. II



pizz.

162

Vln. I

pp

div.



                          

3

pp

 

sfp

3

Vln. II

 

p

Vla.

   Vc.     Db.  

f

3

 

pp pizz.

  

sfp

 

sfp

3

    

p

    

3

f

  

unis.

 p                        

p

        f      pp

mp


14

N

172

Vln. I

 

Vln. II

                    unis. p

                               Vc. p p f                        Db.    

Vla.

pp

mp

     pp

p

   

mp

 

p

f



pp

f

   mp

    

 Vln. I

177                         p pp

Vln. II

Vla.

       Vc.     p             Db.     Vln. I

Vln. II

mp

  

  

  pp

mp

   

                                     p f p

 

arco

p

f

                    

  

  

             cresc.             cresc.

  182                                                       f fp f pp mp                                                                p f p f

Vla.

  

        

Vc.

Db.

f

p

    f

p

   

f

p

     f

p

arco                         

      

  

    

     

f

mf

mf

pp

mf

      

f

       

f


187

Vln. I

 

 sfp    

Vln. II

f

    

Vla.

 Vln. I

      

          

     

    

p

  

ff

  

3

3

3

                      mf                   3

3





ppp



       f

     

f

 

                                   

             p

                                                      

Vla.

Vc.

Db.

p

15                

ff

192    

Vln. II

   

ff p                          ff

 

Vc.

Db.

    O              ff  f             









mf

 

      

                                  p pp mp p                                               p pp mf sf                                                 

197

Vln. I

Vln. II

Vla.

Vc.

Db.

p

div.

 

unis.

sf

 

pp

mf

 


16 202

Vln. I

           

     

div.

pp

                

Vln. II

p

Vc.

207

     

Vln. II



  

pp

mp

 

pp

mp

  

p

f

p cresc.

p

f

p

f

p cresc.

                          

Vc.

Q                    

                                   3 3 3 3  fff pp subito unis.

 

f

 f



              

fff

               

fff



ppp

 snap pizz.    



ppp

               

f

  

fff pp subito

f

pp div.

                            

Vla.

fff

f

                            

                        sempre pp                                                       sempre pp               

212

Vln. I

p



f

                 

pp

Db.

      

unis.

p

 Vln. I

3

pp mp                                                      p 3 3 p cresc. f                                        

Vla.

Db.

P                      mf         pp mp

 

Vln. II

Vla.

Vc.

Db.

mp

 



mp

   

 

  

 


                                          mf 217

Vln. I

                 

Vln. II

 

Vc.

Db.

 222

Vln. I

 

R

 

              p p





f

 

                         p

 Vln. I

f

          

Vla.

f

Db.

f

     

f

      

f arco

 



f

     

arco

               p

f

      

p

             

p

 p          

         f

    5

       

f

              

            

Vc.

sfz

 

 

         

p

226            

Vln. II



arco

   

sfz pizz.





p

Db.

    

  

mf

 

p

Vc.



   

Vla.

 



Vln. II

 

mf

                          

   

 

Vla.

17

     pizz.

f

f



3

5

3

3

  p

  

  

f

f

          

                    

div.             

p

    

 p

 p

        

unis.

3

   f

   f

  ffp

 

ffp


18 230

Vln. I

 

             3

         ff

S  3                                     3

p

3                    3 3 ff p f                           3 p f p ff ff                

Vln. II

Vla.

Vc.

sfp

Db.

   

f

  

 p

p

Vc.

 Vln. I

Vln. II

        

 

f

    

 

f

    

    

  

239

pp

     

Vla.

                     

mp

 

 



pp

 

 

                      p

Vc.

p

  

p

f

  

       

p

 p

 

ff

p

       

ff

 

        3

 

p

f

f

 

    

       

    

p

               f ff              f ff              

  

    sf

5

ff

 

             

          p          p

Db.

p

                  

Vla.

Db.

 

sfp

     

Vln. II

f

 

235

Vln. I

sf

f

   3

3

               p

f

p

f

3 3                3

 

      3

   

pp

 



3

 

pp

T                              fp p                      mf f pp sf pp sf div.                   f  pp sf sf  pp                               fp

               fpp



       


19

                                               cresc. poco a poco                                                      cresc. poco a poco 243

Vln. I

Vln. II

       pp         unis.

Vla.

Vc.

pp

        cresc. poco a poco           

    

 

  

           

cresc. poco a poco

Db.

                                cresc. poco a poco

 247

Vln. I

 

     

Vla.

Vc.

Db.

 Vln. I

           

  

                  

  

                  

  

   

              

  

  

  

          

           

  

           

       

             

                  

       

3

  

   

  

      

   

U                                    251    f

 

Vln. II

ff pp

                  ff pp              

Vla.

Vc.

 

3

3

3

3

ff pp

f

                f             f

3

3

3

3

    

f

3

p

pp div.

3

3

     f

pp

3

3

3

3

f

pp

3           3

                       

                         

            

ff pp

pp

                               

ff pp

Db.

  

       

                             

            

                 

Vln. II



      

pp


20 256

Vln. I

 

div.

Vln. II

                         

                             

V

 pizz.

       

ppp

Vla.

pp

ppp

Vc.

Db.

pizz. div.                pp

261

Vln. I

  

         div.

pp

        

Vln. II

         

Vla.

sf

      f

3

3











 



 



 

 

5

                 f

Vc.

 

Db.

 




W Poco meno mosso (h = 68) arco, 265 last chair solo, 3

sord.  con        pp

Vln. I

   

 

Vln. II

Vla.

Vc.

  

 

 

   271

 

  



 

 

pp

 







fp





mf

3

pp

 pizz.

  ���         

         sf

X

 

arco

                     

Vla.

w

mf

3                      w

Vc.

mf pizz.

    mf

3

pp

fp

p

f

3

3

ppp

          f

  

Poco meno mosso (h = 68)



 pp

 pp



  

 

ppp

h

mf

     

3

           

                               

Vln. II

3

pizz. pp

fp

3

sul pont.

h

3





sfp gli altri: arco, sul pont.





  

     

fp

   

pp

 



last chair solo, arco, con sord.

  



fp gli altri: arco, sul pont.

3

3

pp

 

last chair solo, arco, con sord.

pp

3

gli altri: fp arco, sul pont.

           



 pizz.

fp

last chair solo, arco, con sord.



   

fp gli altri: arco, sul pont.

         

Vln. I

Db.

 

 

Db.

21

Tempo I (h = 80)

 

  

  pp

 

f

f


22 276

  

   

Tempo I (h = 80)

fp sul pont.

Vln. I

 

  

 

pizz.

div.

pp

fp arco, sul pont.

 

 

 

fp

   





Vc.

fp

sfp arco, sul pont.

 sul pont.

Y

281

 

 

3

       

mp

ppp

 

3

        mp

3

pp

   

ppp



 

  

    

                

 

mf

ppp



 

 

 

 

pp

Vc.

pp

p tutti con sord. arco

tutti con sord. arco

    

 

3

p

 

pp

ppp

pizz.

   

3

                 mf

Vla.

Db.

3

     

pp

Vln. II

pp tutti pizz.

Poco meno mosso (h = 68)



pp

Vln. I

     

senza sord. pizz.3

fp

 fp

Db.

div.



             

arco, sul pont.



pp

  

pizz.

               

fp

Vla.

              

fp

Vln. II



 



p tutti con sord. arco

 p


287

Vln. I

  

  

Vln. II

Vla.

 

Vc.

Db.

   

   

 

   

   



 

23 Tempo I (h = 80)

poco cresc.

 

   

    

  

   



   

 

 

          arco



poco cresc.

Z

 

  

pp

 

  

pp

 294

Vln. I

    

Vln. II

senza sord.          f

          

p

 

Db.

    

ff

    

     

ff

p

senza sord.

f

     

  

              p

                              

  

f

Vc.

p

senza sord.

               

Vla.

      

ff

p

   

p

 p

f

 299

Vln. I

AA

cresc. poco a poco

3                        

             

Vla.

 

Vc.



  

  

3



3                                     3 3 pp

             

Vln. II

Db.

 

pp cresc. poco a poco

3

3

3

3

3

                        

3

ppp cresc. poco a poco

                                ppp

   

cresc. poco a poco

                             

ppp cresc. poco a poco


24 Vln. I

                                   

304             5

Vln. II

5

5

                            

   

            

 

5

Vla.

ff

3

ff

 

w

                  

ff

Vc.

            ff

Db.

          



ff

3

 

 

3





3

 

 

 

3





  





3

 

 

3





3

 

 

 

3







BB                                                                    3 3 3 3 307

Vln. I

p

fff

Vln. II

5 5 3 3 3 3      3 3                                               

fff

Vla.

5

    

fff

Vc.

3

3

3

3

                           3

sim.            fff

5

3

p

                          fff

Db.

p

3

3

3

3

5

3

3

3

                         

 

   

 

p

p

 



3

    3




313

Vln. I

3 3

    

Vln. II

3

sul pont.

       

 

sul pont.

f

3

3

(sul E) ord.

320

  



n ord.

p

n

3

3



 

n

p

arco

 

326

 

Vln. II

f

      

Vla.

Vc.

Db.

3

3

div.

 

            3

3

3

3

   

pizz.

sfz

pizz.





div.

 

sfz



 

 mp

                                         mp

3

3

  

3

3

    pizz.

pp

 

f

3

pp

3

            

 Vln. I

      

unis.

 

p

3

  



            

3

f



 

Vc.

3

f

Vla.

3

     

  

Vln. II

pp

     

   

     

Vc.

Db.

f

div.

Vln. I

 

                                                        

Vla.

Db.

     

  

       

25

CC

 

3

mf



 

 

 

             3

p

pp

3

arco                     

 

p

3

3

3

ppp

 

 


Roger Zare: Le Zebu Forte Overture