Page 1

Gerald Levinson

Now Your Colors Sing for double string orchestra (2011)

MERION MUSIC, INC. Theodore Presser Co., Sole Representative 588 No. Gulph Road . King of Prussia, PA 19406 www.presser.com


Instrumentation

Left orchestra

Right orchestra

Violins 1

(minimum 4 players)

Violins 3

(minimum 4 players)

Violins 2

(minimum 3 players)

Violins 4

(minimum 3 players)

Violas 1

(minimum 2 players)

Violas 2

(minimum 2 players)

Violoncellos 1

(minimum 2 players)

Violoncellos 2

(minimum 2 players)

Contrabasses 1 (minimum 1 player)

Contrabasses 2 (minimum 1 player)

The work may be performed by 24 solo strings or by larger string orchestras. Duration: ca. 14 minutes

First performances: Orchestra 2001, James Freeman, conductor Philadelphia International Festival of the Arts April 8 and May 1, 2011

Program note: This work was written for Orchestra 2001 and the Philadelphia International Festival of the Arts. In keeping with the Festival’s theme of French culture it is dedicated to the memory of the composer Olivier Messiaen (1908–1992) and the pianist Yvonne Loriod-Messiaen (1924–2010), two people who were dear to me, and who were of course hugely important to the world of music as great artists and teachers. I wish to celebrate their visionary and vibrant artistic partnership, in which Loriod was not only the brilliant and sensitive dedicatee and first exponent of much of Messiaen’s music, but also his muse, whose fiercely intelligent, fearless approach (she was trained as a composer) stimulated his most radical explorations into new musical territory. The resulting enormous expansion of his musical thought and vocabulary in turn formed a crucial influence on younger generations of composers, whom Loriod championed as well. The title quotes a remark by the Russian painter Leon Bakst (a leading artist in the circle of Diaghilev’s Ballets Russes, closely involved in the creation of such seminal works as The Firebird and Daphnis et Chloé) on the occasion of a visit to the Paris studio of his recent former student Marc Chagall. It encapsulates one of the most striking characteristics of Messiaen’s music -- his focus on color as a primary compositional element (inspired in part by such predecessors as Debussy and Ravel) – and the synaesthetic fusion by which Loriod enabled his colors to sing. A spatial, antiphonal conception underlies this work, in which the two orchestras merge into one only occasionally, such as in the chorale in the middle and at the end. Sounds may gently dissolve from one side to the other, or call distantly across the space, or engage in rapid-fire crosscutting. The sound world is suffused with complex, luminous, cloud-like harmonies, sometimes animated by inner pulsations inspired by natural phenomena such as the polyrhythms produced by a field of crickets. The entire work is underpinned as well by a single cantus firmus-like melody, heard at first in fragments, which only emerges fully in a chamber-music passage just before the end. In two vigorously angular rhythmic sections, a two-note birdlike motive from the very opening gradually flowers into a takeoff on a bristlingly polyryhthmic tune called “Maloya,” by Ivoirian musician Aly Keita. In tribute to Messiaen’s ornithological enthusiasms, the work is also populated by birdsong, ranging from my own transcriptions to stylized abstractions, and includes one or two which I notated in the garden of his composing cottage, as well as his rendition of the call of a “loriot” (oriole), a whistled version of which was the signal the Messiaens used to call to each other.


to the memory of Olivier Messiaen and Yvonne Loriod-Messiaen

Now Your Colors Sing Spacious, quiet (q = 50)

 

solo 1

   

OFFSTAGE L

pp

Gerald Levinson

                

p

ppp

Vuota



     

mp

(2011)

      mf

Violin 1

  

Violin 2

  Viola 1

6 4

5 4

4 4

6 Spacious, quiet (q = 50) 4

5 4

4 4

 

Violoncello 1

Contrabass 1

 

 

solo1

OFFSTAGE R

5

    mp

Violin 3

Viola 2

  Violoncello 2

Contrabass 2

 

5

      

mf

solo 2

div. in 3

(ONSTAGE)

5

5

          p

con sord., non vibrato

con sord., non vibrato

con sord., non vibrato

 

niente

   

niente

Violin 4

Vuota

6 4

5 4

 div.

con sord., non vibrato

niente

  

niente

  

con sord., non vibrato

con sord., non vibrato

 

 

niente

   

niente

div.

  

con sord., non vibrato

con sord., non vibrato

 

niente

  

niente

4 4


2

  5

Vn. 1

solo 1

solo 2

 

  



          pp

5

        mp

5

5

mf

  

Vn. 2

Va. 1



con sord., non vibr.

 

 

niente

 div.

con sord., non vibr.

5 4

 

mp

niente

 

 

con sord., non vibr.

niente

 div.  

Vc. 1

con sord., non vibr

Cb. 1

 

Vn. 3

    

5

       

n

niente

niente

n

n

      

n

niente

6 4 

  

    

 mp

p

solo 2

       ppp

    

3 4

mp

4 4

     

   

 mp

niente

mp

niente

niente

mp

mp

mp

mp

mp

5 4

 

niente

niente

niente

niente

 mp

niente

n

mp

n

n

mp

n

         n

  

mp

n

mp

n

mp

n

mp

n

mp

n

 

  

 

   

 

  

 

n

n



    n

    n

   

3 4



5

mp

n

6 4

4 4

        

mf

Va. 2

mp

5 4

solo 1

 

Cb. 2

4 4

Vc. 2

con sord., non vibr.



4 4

n

niente

mp

 

n

   



niente

 

Vn. 4



5

p

  

niente

mp

niente

con sord., non vibr.

niente



3 4

n

niente

6 4



  

mp

  

n

niente





  

mp

niente

niente



mf

mp

 

con sord., non vibr.

4 4



niente

div. in 3

con sord., non vibr.



n

4 4


3

  10

    

solo 1

   solo 2   

Vn. 1

5

 

mp

(Loriot)

3

n

n



mp

n



2 4

n



pizz.

n



3 4

mp

Vc. 1

n



Cb. 1

 

solo 2

n

3

3

      mp    

   

3

             p5 mf 

mf

5

 

4 4

        n

2 4 

 tutti, div.

            

   

    n

 Vc. 2

 

2 4

   

   

n

Cb. 2

      pizz.



    

  

ff sffz

     sffz pizz.      pizz.

ff

ff sffz

     pizz.

sffz

4 4

3 4

2 4

4 4

3 4

arco

     

arco

     

        ff

3 4 

arco



    

Vuota

solo 1 6

        p

ff

return to stage

arco

        ff

 

arco

     

 

ff

arco

      ff

3 4

arco

      ff

ff sffz pizz.

2 4

arco

pizz.

ff sffz

 

ff

ff sffz

n

    

     ff sffz pizz.      

     

ff

pizz.



n

Va. 2

      sffz pizz.        pizz.

arco

      

pizz.

sffz

 

ff

        

     

arco

pizz.

arco

        

sffz

n

div. in 3

n

     

ff

pizz.

sffz

mp

solo 1

Vn. 3

Vn. 4

n



4 4

arco

arco

sffz

mp

return to stage

pp

ff

sffz

5

      

ff

pizz.



solo 1

ff

sffz

mp

      

ff

pizz.

sffz

Vuota

       

sffz



    

arco

               sffz pizz.        

arco

ff

sffz

mp

tutti, div.

pizz.       sffz pizz.         pizz.

mp

Va. 1

3

          f 



4 4

p

mp

 

mf



 Vn. 2

    



arco

 

   

ff

arco

      ff

arco       

ff arco

        ff

         arco

ff

2 4

4 4

3 4


4

 

A

   15

solo con sord.

con sord.

 

Vn. 1

con sord.

   

Vn. 2

 

3 4

 

Cb. 1

4 4 

Vn. 3



Vn. 4 Vn. 4

 

 

3 4

Va. 2

   

Vc. 2

Cb. 2

    

A





 









pp

 pp

 pp



 

 









 



  





pp

4 4



pp





pp



pp

   



       

    



        

    

solo 2 non vibr.

solo 3 non vibr.

solo 1 non vibr.

    ppp     ppp

solo 1 non vibr.

   ppp

4 4 

  

solo 1 non vibr.

   ppp

solo 2

  

non vibr.

5 6

                      

6

3 4

5



      

4 4

     













solo 2 non vibr.

3

5 6

5

    

3

5



5

     

solo 2 non vibr.

5

3

ppp

5



3 4   

4 4

3 4 

  



   



           



            

5

ppp

solo 2 non vibr.

3

solo 3 non vibr.

solo 1 non vibr.



solo 2

 

3 4

   ppp

   

3 4

  

 

5 6

6

                 5

5

5



              



  



   





  

solo non vibr.

   

solo 1 non vibr.

ppp

solo 2

non vibr.

ppp

non vibr.



3

5 6

4 4

5

3

5

non vibr.

ppp

5

ppp

4 4

         

ppp





              

   

solo 1 non vibr.

ppp

pp





5

ppp

pp



   

non vibr.

ppp





     

3 4 

          

   

solo 1

ppp

pp

unis.

pp

unis.





pp

unis.

unis.



ppp



 

pp

con sord.



pp

unis.

4 4 

pp

con sord. tutti, unis.

 



con sord.



pp

3 4

  





ppp

unis.



pp

 



  

pp

altri, unis.

 



Va. 1

Vc. 1

pp

 

4 4




  20

                 5

mp sub. ppp

 



5

molto

        

                         

mp sub. ppp

Vn. 1

5

    arco      sffz ff pizz.     arco      pizz.

3

3

3

sffz

molto

mp sub. ppp

  arco        

molto

sffz pizz.

Vn. 2

4

Va. 1



5

5

molto

tutti div. pizz.

solo 2

              



 



5

3

3

3

molto

mp sub. ppp

   

4 4

  Vc. 2

 

 

5

5

   sffz

tutti div. in 4 pizz.

ff

ff

arco

   arco       sffz sffz pizz.

ff

ff

5 sffz 8   pizz.

ff

                        sffz 6

6

molto

arco

div. tuttipizz.   arco

ff

                        sffz mp sub. ppp molto ff pizz.    arco           mp sub. ppp molto ff sffz tutti div.  pizz. arco          ff mp sub. ppp molto sffz 5

5

5

 mp sub. ppp

arco       pizz.

molto



   

    

      



   

  

 

     

     

  arco      



   

ff

pizz.   arco                    sffz  molto ff tutti div. in 3   pizz.   arco          sffz ff pizz.    arco       5

mp sub. ppp

Va. 2

  arco      pizz.

sffz

ff

B 1. solo

      

       

sffz

molto

6





                 

 

arco

pizz.

5

mp sub. ppp

      

 arco       

5 8  

molto

        

mp sub. ppp

Vn. 3

5

mp sub. ppp

ff

pizz.

sffz





sffz

4 4

arco

    ff

molto

   

molto



ff

pizz. arco         sffz ff

solo 1

mp sub. ppp

Vn. 4

sffz



 

   

tutti div. pizz.

molto

mp sub. ppp

   sffz

5



ff

  arco 8 pizz.                     

mp sub. ppp

Vc. 1

pizz.

     

ff

mp sub. ppp

Cb. 2

ff

  arco        sffz  5 5 5 mp sub. ppp molto ff tutti div. in 3  arco  pizz. 6 6 6                                        sffz ff mp sub. ppp molto  pizz.   arco        4 5 sffz  sffz

              



Cb. 1

ff

tutti div. in 4 pizz. arco

     

           

 unis.

 



    

                                  

 pp



pp



pp



pp

 unis.



pp



pp

  

       

solo 2 senza sord.

    3



  solo 3  



    

mf

non vibr.



ppp

non vibr.



solo 4

ppp

   

solo 1













    





non vibr.

ppp

   

solo 3



non vibr.

ppp

solo 2

3 4

non vibr.

ppp



   



   

non vibr.

solo 1





ppp

solo 2









non vibr.

ppp

   

solo 1

non vibr.

ppp

   

solo 2























pp

 pp

5 4



pp



pp



pp



pp



pp

senza sord.





    

    



    

solo 3

ppp

    

solo 4

   

   

solo 1

ppp

    

solo 2

non vibr.

ppp

solo 3

3 4

  

non vibr.

ppp

   

non vibr.

solo 1

ppp

   

solo 2

non vibr.

ppp

   

non vibr.

solo 1





ppp

   

solo 2









   f

non vibr.

ppp



       

solo 2

non vibr.

unis.



senza sord.

solo 1

ppp

unis.

3 4

non vibr.

pp



ppp

non vibr.

pp

B



pp

pp



pp

 unis.  

senza sord.

6

non vibr.

unis.

5 4

pp

unis.

5

(solo 1)

f

pp







pp

       



5 4



pp

pp





 unis.  

pp

       

 

mf

5


6 1  solo  

    

24

solo 2

  Vn. 1

p

solo 4

 

p

 

 

3

3

5

5

5

         3

3

3

5

solo 3

5 6

5 6

p

                solo 1

5

5

5

 

solo 1

Cb. 1



 

solo 3

 

solo 1

 

solo 3

 

solo 1

  Va. 2

 

solo 2

Cb. 2

solo 1

pp

 



 



 



 



pp

4 4



pp





 



 



 

pp





 



 

pp



pp

6

        mf

     p

               5

 

5

          3

p

3

3

p



                5



5

p 6

5 6

5 6

6

                     p

    5

p

               

5

5

5



 

pp

  ppp

  ppp

                    



solo 2

5

  

 

ppp

 

altri, unis

 

pp



pp

tutti, unis.

 

  

     



 



 



  

   



ppp

   



   



 







 





 





   





  





 

  





 

  





 

  





 

tutti, unis.

tutti,unis.    

pp



pp



pp



7 8

7 8

5

 

 

  







 





pp

      

pp

pp

  

5



 

        sf sf   

   

4 4

  

pp

ppp

ppp

5

pp

 

5

mp sf

  

4 4

       

        

 



pp



pp

 tutti, unis.





 

solo 1

Vc. 2

      mf    

con sord.

3

solo 2

Vn. 4

pp

5

5

solo 4



5

mf

solo 2

pp

 tutti, unis.



solo 2

 



Vn. 3

ppp





tutti, unis.



  



ppp

solo 2

Vc. 1



ppp

6

                

p

 

ppp

ppp

p

Va. 1



p

            

pp altri, unis.

ppp



 



solo 1

solo 2

con sord.

             Vn. 2

(solo 1)

f

               

solo 3











    

     

    

7 8


7

C

Vn. 1

Vn. 2

Sturdy, rhythmic (q = ca. 80-86)  28  via sord. 2 soli                f  via sord. altri              f  via sord. 1.              

 div. in 3

 

via sord.

7 8

f

2.3. a2

 

solo

 

altri

via sord.

Va. 1 via sord.

      f      

 

Vc. 1

Cb. 1

 

via sord.

 



  



5 4 

   

f

     

f via sord.

   

   

(unis.)

      f     

   

f

 

5 4

 

sul tasto, non vibr.

via sord.

2 soli

         

f

4 4



via sord.

 

altri

   

     

4 4

 Vn. 4

 

 Va. 2

 2 soli 

via sord.



      f solo





5 4

sul tasto, non vibr.

via sord.

     

altri

 

via sord.

div. via sord.

    

via sord.

C

 

     

f

      f      f

               



 

pp

    



 

f

 f

  

5 8

pp





 

sul tasto, non vibr.     

 

1.

tutti div. in 3

2.3.

   

   

   

        f

          f    

  

          f

tutti, div.

       f        f        f

 

   

 

f

    

     f     

  

 

  

f

2 4

 

 

       f     

           

5 8 

 

     

   

              

   

      

 

        



6

 

ff

 

 

ff

ff

    

5 8  ff

         

               ff

             

ff

6

          

ff

2 4

6

 

  

 

 

 

 

f

f

 f

 f





    

f

  f

  f





 

6

           ff

6

6

6

              



6

6

 

 

          

6

          

 



tutti, div.

ff

    

2 4

               ff

   

f

f

tutti, div. in 3

4 4



  

f

f



   

2 soli sul tasto, non vibr.

          f          

   

 

   



         



   

altri

f

Cb. 2



pp

 

Vc. 2

pp sul tasto, non vibr.

pp

via sord.

7 8



pp

   

f sul tasto, non vibr.

via sord.

   

f

f via sord.

       f       

  

f

pp

Vn. 3

          f

f



 

sul tasto, non vibr.       

f



Sturdy, rhythmic (q = ca. 80-86)

7 8

          f          

f

   

f

f


8

     34                6

 

           ff

sf

ff

6

 

sf

 

                 ff sf

6

sf

6

f sf

6

         ff

  

sf

f sf

             6 ff

 

sf

           

Va. 1

ff

6

f sf

 

sf

sf

ff

Cb. 1



            6

Vc. 1

  

sf

6

ff

ff

3

      3

      

ff

Va. 2

 

 div.  

     ff

div.

 

Vc. 2

5 8

 

     

5 8     

5 8

     

 

    ff

3



  

f

sf



3

3



            

3

3



             

3

sf



3 4



3

               3

             3



          3



3

sf





f

 

f

  f

f

  

   

f

 

 

f

    

4 4

       

f

  f



 

 

     

sffz

   

3 4

sffz

 

   

sffz

     

   

sffz





sffz



f sf



      

    

      sffz       sffz

     sffz       

f sf

sffz



 

 

f sf

3

 3           3

 



  

f sf

sf

              

 





f sf

sf

3





f sf

sf

3

 

f sf

sf

3





f sf

3

             

 

f sf

3

sf

f

   

3 3





ff

   





            

sf

ff

Cb. 2



3 3

ff





ff

 





ff

 





3

     

in 3 div. 



3

3

  

f sf

     

 

Vn. 4

 

   

 div.

Vn. 3

f sf

sf

  



f sf

            ff



f sf

             6 ff



f sf

tutti, div. in 3

Vn. 2

 

f sf

             ff



f sf

tutti, div.

Vn. 1



   

sffz

3 4   

 

           

 

          

 

sf

6

6

sf

           6

sf

          

 f sf

 f sf

 f sf

6

  



  

     

sf

           6

3 sf 4

         6

sf

6

      

        

sf

         sf

6

6

         

sf

 

f sf

 

f sf

  f sf

  f sf

 f sf



        

f sf

sf

f sf

6

 

                 

4 4 

  

3 4



non vibr., sul tasto

2 soli

pp

 solo 1



 

4 4



pp

solo 2

non vibr., sul tasto

 



solo 3

 





 

non vibr., sul tasto

pp

non vibr., sul tasto

pp

3 4

 

solo 1



solo 2



 

     pp  



non vibr., sul tasto

pp

  

pp


9

  38

Vn. 1

D

    mp sf

div.

    

mp sf

   

  

mp sf

    mp sf      

       sf        sf

       sf

div. in 3

Vn. 2

3 4

 Va. 1

mp sf

  

mp sf

  

div.

mp sf

Vc. 1

    

   





mp sf

Cb. 1

mp sf

3 4

 

 

sf



 

   



  

sf

 

2 4





 

3 4

     

 

     

ff

      3

     

ff

3

mp sf

                6 sf sf

              ff sf 6 sf mp sf      mp sf

mp sf

            sf

6

mp sf

                 ff sf sf 6

Vc. 2

Cb. 2

 

 

   

D

               

tutti, div.

ff sf

6

mp sf

sf

            

ff sf

6

mp sf

sf

f

  

mp sf

6

sf



   sf 



         sf



    

    

sf

  

 sf 

 





sf

sf

sf

      

   

   

sf

sf

sf

6

sf

sf

       

f sf

f sf

 

6

6

          div. in 2

f sf

6 6

       

f sf

 

f sf

6 6

        

f sf

 

         

f sf

6 6

        

f sf

mf



   mf



   mf



    mf



  

    

 



 



 



  

mf

mf





2 4

mf

   mf

  

mf

2 4

     mf

 

 

    

     mf

 

 

    

     mf

 

 

    

    mf

 

 

     

   

mf

 

 

     

    

 

 

 

 

    

 

 

 

 

    

 

 

    

    

 

 

 

  

    







 

div. in 3

3 4  

    

  

3 4

       







 

   

sf

 

           

        



sf

3

3



 

                 6



sf

sf

3





             

f



6

3



sf

              sf f

div. in 3

mp sf







mf

3 4

sf

           6 sf



  

sf

3

f

              6 ff sf sf mp sf                     6  ff sf sf

ff sf

               



sf

6

3

f





  

f

3

    

2 4 

                sf

sf

6

3

ff

2 4

f



 

                  sf

 

sf

6

f

      

6

 



 

sf

3

3 3

ff

tutti, div. in 2

               

ff

sf

tutti, div.

Va. 2

 

3

ff

sf

3

ff

sf



     

ff



3

  

sf

 



 

6

3

f

     

 



f

ff

 



3

3

          

3

     

 

 tutti, div.

ff

ff





     

 

   sf   



Vn. 3

Vn. 4



  sf 

sf

     div. mp sf       



 

mf

mf

mf

mf

mf

2 4


10

    43

Vn. 1

      Vn. 2

Vc. 1

Cb. 1

 

    



 

  

  

 

  



 

 

   

 

 

  

 

 

    

  

 

  

  

  

 

  

  



   

  

Vn. 3

  

 Va. 2

         f 6

          f

5 8

         

          6

f

         

6

f

        

    

solo 1

mp

  

solo 2

 

mp

solo 1

     mp

 

5 8



ff

ff



 





ff

tutti, div.in 3



 

 

ff

 solo 1

     mp



  

5 8

 

 

 

 

   

mf

 

 

 

   

mf



 

 

 

     mf



 

 

 

     mf

 

 

 

   

    

 

 

 

  

     







  

mf





 tutti, div. 



ff

 



 tutti, div.   

     

ff

Cb. 2

mf

 

 



 ff



     





  

mf

 

 

   

  

ff

ff

Vc. 2

   

6

f

tutti, div.    

solo 2

  mp

         

 

 

3 4

mf

6

f

 

 

  

     

6

 

  

     

     

6

ff

mf

         f

2 4

   

6

f

  

mf

6

6

 

    

         

  

2 4

f

   

 

           f

 

  

 

Vn. 4

 

 

    

2 4

Va. 1

 

    

    



 



 

 





 

 







 

  





 







 







  

mp solo 2

mp

solo 1

mp

solo 2

 

mp

 

 

3 4

2 4

solo 1

mp

    

 

mf

 

    

 

 

 

      mf

 

 

mf

 

  

  

 

  

     

mf

 



2 4

 

 

    



 

    

 

  

    



 

mf

    f

    

f













  

  





f

 



f

 

 

f





f

     

mf

f



f

mf

mf

 

 

 

f

   

mf







2 4

mf

 



3 4



 



 

solo 1

     

f


11

E

   

Vn. 1

 tutti f

f



   f

f

 Va. 1

tutti

 

 

f

 



 



Vc. 1



 

tutti

 

Cb. 1

   

      

Vn. 3

            

Vn. 4

     

Va. 2

    Vc. 2

Cb. 2

 

 

 

E

     mf sf



 

mf sf

sf

     

 

mf sf

 



 

 

sf



 

mf sf

sf



   



mf sf

sf

      

mf sf

sf

    sf

 

    



   

mf sf

mf sf

 

  

 

 

  

  





     mf

     mf

     mf

f

tutti

mf

     

    

 

  

 

  

  

      

mf

 

  

  

 

 

  

   

mf



 



  

      mf



 

 

    

 

 

  

 

  

mf

  

 

    

     mf

    

   

mf

sf

sf

    

5 8

    mf

tutti

 



mf

mf

  

 

 

 

 

 

 

    

   

    

mf

 

mf

 

 

mf

 

 

 

2 4

   

 

    

 

5 8

  





  



 

     

   

2 4

mf

    

    

   

  

f

f

3

3

    f

3

div. in 2

       3

solo 1

mp

solo 1

     mp

3

solo 2

solo 1

     mp

5 8

solo 1

     mp

5 8



solo



mp

 

     f

    

    

2 4

f

       

2 4  

tutti, div.





       

mf (non cresc.)

   

 

   

 



       

 

    

 

    

 

    

 



5 8

 tutti, div. in 3

 

 

mf (non cresc.)

mf (non cresc.)

 tutti, div.

mf (non cresc.)

mf (non cresc.)

     3

f

mf (non cresc.)

f

f

     

mf (non cresc.)

  mp

     3

f

      

solo 2

    

3

 

mp

mp

    

f

mp

f

2 4

      

f

solo 2

    

mf

 

  

solo 2

 

mf

 

 

       

mp

 

 

 

 

solo 1



mf

 

 

    

solo 1

tutti, div. in 3

f

5 8

    

 

f

     mf

    

 tutti

mf

 

 

     

 

    

    

mf

   



mf sf

  

 

f

solo 2

 

 

  

  

mf

sf

mf sf

 

 

f

solo 1

 

   

 

mf

sf

 

 

    

f

    

solo 1

solo 2

  

mf

 

 

 

mf

  

f

mf

 



f

     

 

f

mf

 



  

    

 

f

tutti

mf

 

 

  

    

 

 

  

Vn. 2

 

 

48

mf (non cresc.)

mf (non cresc.)

f

  



mf (non cresc.)

2 4


12

              53



div.  tutti,            6

mf sf

Vn. 1

mf sf

sf

sf

6



tutti, div.in 3

 f

6

             mf sf sf

Vn. 2

f

             mf sf sf



2 4

f

         

mf sf

sf

6

tutti, div.

  

              mf sf

 

sf

sf

6

tutti, div.

Cb. 1

Vn. 3

             

Vn. 4

 

2 4

Va. 2

     

 

   

    Vc. 2

Cb. 2

mf sf



6

       

mf sf

6

       

      

6

6

         

 

    

5 8 

mf sf

       mf sf

6

6

      

           mf sf

  

 

 

 

 

 



   

  

       

   

    

f sf

    

  





      f sf        f sf       

f sf

sf

     

sf



      

3 4

      

sf

    

f sf

      

             

sf

 

f sf

sf

sf

 

 

      

sf

f sf

6

6



 

f sf

mf sf

        

f sf

6

      

mf sf

 

f sf 6

mf sf

 

5 8

       

mf sf

mf sf

     

 

 

f

2 4



f

 

    

  



sf

f

6

mf sf



          mf sf

Vc. 1

5 8

f

         

 

 

f

6

 

    



6

Va. 1

 

f

sf

6

 

f

            mf sf

      

 

3 4    

 

   

3 4  

     

     

sf

     

sf

   

sf

    

 







 

sf

 



      sf

2 4

sf

 

sf

 

sf

 

sf

 

      

   

sf

 



sf

 

f sf

2 4

3

f sf

f sf

3

    

3

f sf

    f

     

   

  

f

 

f sf

 

3

      f

f sf

3

      f

3

       3

       f

3

     

f

      f

3 3

             

f

3

 

      

5 8

f

6

      

            f

f sf

3

6

3

f

5 8

f

       

  

 



       

6

        f

    



f

    



          

  

  

 

       

f

5 8

f sf

f

sf



f sf

         f

f

 

sf

 

f sf

3

f



sf



3

     



sf

  

 

3

sf



f sf

3

        

    



        f



 

f sf

f



   

sf

2 4



sf



f

f

    



      



sf

  

f sf

3

   

3

       3

f



sf

    

f

    



      



sf

    



 

sf





   

sf



       

  

f sf

  

  

f sf



  

f sf

  f sf

 

            

f sf

   f sf

6

6

3 4

          f

f sf

6

 

6

       f 6

           f

6

          f 

             

 

3 4

               

3 4


13

  58

Vn. 1

F solo  



 

p sub.

 Va. 1

 



p sub.

 



 

  



 

solo

   

   p

 

div. in 3

     

4 4

p sf

 

               sf p

               sf p

3

  p

altri

              sf p 3

  p

 

3

p

sf

  p

p

  

solo



p

3

4 4 

 

unis.



 



   f sub.   

  



4 4

  

 

 





(tutti)

f sub.

  

6

6

  

5 8

         p  sf tutti           

ff

   

 

ff

6

           

p sf

ff

6

  

ff

6

6

6

ff

            

6



5 8

    tutti

ff sub.

   

   

ff sub.

 

  

    ff sub.

 

5 8

 

 

    

 

 

(solo)

p

 

 

         

4 4

 

 

 

 

 

 



      ff sub.       ff sub.  tutti     

4 4

4 4

ff sub.

p



tutti

ff sub.

 

    ff sub.

    

p



 ff

ff sub.



  

tutti

p sf

ff

ff

          

tutti



      

p

f sub.



6

3

f sub.



            

 

solo

ff

         

p sf

f sub.

altri

solo

F

6

f sub.

6

3

solo

 



f sub.

sf

p sf

p sf

3



6

 

solo

3

     

  

ff

6

p sf

tutti

p sf

6

tutti          

p

   

tutti, div.

6

      

sf

solo

3

3

p sf

       

p sf

3

             3

3

     

                6 p

Va. 2

p sf

  

           p sf

p sf

   

3

Cb. 2

tutti, div.in 3

 

altri, div.

 

3 4

Vc. 2

p

Vn. 3

p

             tutti

 tutti, div.    

3 4

Vn. 4

p sf

 

p sub.

    

p sf

 

3

 



solo

p sf

solo

Cb. 1

 

p sub.

p sf

3

  

solo

solo

Vc. 1

p sf tutti, div.

p sf

 

3 4

 

 Vn. 2

    

tutti

ff sub.


14

  

  62

Vn. 1

  

div.

  

 

Vn. 2

 

div. in 3

  

4 4

  

  

Vc. 1

 

     

 

 

div. in 4

 

solo 1

 

pp

 solo 2  solo 3

4 4

Vc. 2

 

Cb. 2



 div.

 

 solo 1 



pp

 



  

           

        

mp

mp

mf

      

mf

mf

mp

 

3 8

  

    

3 4

 

3

 



 

       3

 

  

 

  

        mf

mf

 

 

mp



3 8

      

 

 

 

3 4

 

mp

  

    mf

  

 

 

tutti div. in 3

  

3

   

  

   

mf 3

mf

 



3 8

         unis                 div.

         mf

  

mp

 



 

3 4

 tutti div. 

 

 





  

3

  div.         3

mf

3

3   3         

mf

  

      

             

mf

      mf

                mf mf

mf

mf



mp

3

mf

mp

  

3

mf

mp

 

mp

  unis     

 

3

mf

  

mf

 

 

mf

mp

   

3

mp

   

2 4

3

mp

f

sffz

     mp

       mf

 

    

mf

mf

  

mp

   

mf

mp

f

f

3

mf

 

f

      

2 4

3

        

mp

 



3

mp

        

    

mf

div.         

     unis.

mp

           

div.

unis.

mp

mp

sul D

solo 2



     

mp

f

pp



sul G

pp

 

sffz



pp 

Va. 2

       sffz       sffz      



sul G

Vn. 4

mp sul G

     sffz     sffz     sffz 2  4    

       

4 4

Vn. 3

sffz

div.

sffz



div.

Va. 1

Cb. 1

  

      sffz   div. in 4          sffz  

                mf

mf

mp

  mf

  mf

 

 

     


15

G    68

Vn. 1

 

 

1.2.

Vn. 2

  

   

 

  

f

div. in 2





               3

3

3

3

3

f

         

div.

3

3

3

f

3            3

Cb. 1

3

f

           3

  

3

      f

 

f

1.2.

div. in3. 3

Vn. 4

 

Vn. 4

K = e> (q = 120-128) <e * NB

       

 div. in 2

f

        

  

div.



f

 

f

f

  

3

  3

3

     



sfp



sfp

sfp







   

 



 

 







sfp

sfp

sim.







sfp

sfp

f

3

G

 

pizz.        

 

pizz.          

mf

 

 

pizz.          

mf

  



sim.

4 4

     

  

   

     

  

     

     

   

    

     

  

   

     

   

   

    

   

     

3 4

mf

    

f

pizz.        

   

        

4 4

     

f

  



        mf

  

    

       

     



pizz.

     

       

f

3

mf

mf

 

sim.

       

f

       

pizz.

     

f

sim.

sim.



 

 sim.



       

pizz.

mf



sfp



sim.



sfp

       

pizz.

mf





sfp

sfp

  

  



sim.

sfp

    

         

f

Cb. 2

sfp

         

f

3

3         

Vc. 2



f

f

div.



   

        

3         

Va. 2



f

a2

 

3

f

div. in 4      

Vn. 3

sim.

sfp

f

           3

Vc. 1

sfp

sfp

  

f

 div.

sfp

3.

 

Va. 1





 

f



sfp

a2

div. in 3

f

div. in 4

 

K = e> (q = 120-128) <e * NB

     







 

  p

 

 p

 

p





 p







p

p

  

    

               

   

    

3 4

* Downbeats and other strong beats, as well as barlines, should receive no particular stress or emphasis. The true rhythmic groupings are given by the accents.

4 4

p

 p







p

3 4


16

74        

sf

Vn. 1

1.2.

3.

sf

      

       

1.2.

  

Vn. 4

Vn. 4

3 4





  Vc. 2

Cb. 2

 



3.

  

Va. 2

sfp

sfp







 

  

sfp

        f

     

sfp







sfp

sfp

sim.







sfp



    





  



   

         

       

   

         

f

      f

         f

 f

   

 

            

 



    

 



 

sf

sf

mf

sf

sf

pizz.

        mf

sf

sf

pizz.

4 4

         

mf

sf

sf

pizz.        

mf

sf

sf

mf

sf

sf

5 4

pizz.         pizz.          

mf

sf

sf

mf

sf

sf

pizz.          

sim.

    

   

f

 

mf

pizz.         

 



sim.

f

f

   

        



   

1.2. unis.

sim.

sfp

    

       

pizz.

 





sfp

f

3.

 

sim.



sfp



sim.

  



  





 sim.

arco



 

sfp

 



arco

sf

 



arco

sf

 

sim.

arco

        

   



  

 

sfp

sf

Vn. 3

sfp

arco

sf

3 4

arco

       



 sim.

sfp

sfp

      

Cb. 1





sf

Vc. 1

sfp

arco

       

Va. 1

sfp

sfp

sf

3 4



arco 

      

Vn. 2



arco

     

  

     

  

   

   

4 4    

   

     

   

     

  

    

   

     

  

   

  

     

   

   

    

           



  

  

    

  

   

 

    

5 4

4 4

 







p

1.2. div.

  p

3.

  

   







 



p

 

 p



 p

 

 

 

p

   



p

p

 p



5 4


17

H

 

         

          

80

Vn. 2

 

p

sf

Vn. 1

 

1.2.

5 4

Va. 1

          sf



arco

3.



         

2 4

sf

         

arco

 arco

 

5 4



Vn. 4

 

5 4

 

Va. 2

   

 

      









 

 











 

2 4

 







p sf

                   

p sf

  

p sf

H

       

 

3 8







1.2. div.

unis.



















   

 





     







   









 

p sf

sf

         

         

      

  

sf

    

     sf

  

sf

sf

   

 

f

  

f

            

3 8

3 4

sf

           

   

sf

sf

      

f

sf

sf

   sf

 

    sf

   sf

3 4

               sf

sf

             sf

sf

         sf

  

sf

             sf

sf

   

  

    

  

sf

sf

sf

sf

  

sf

sf

   

3 4

                       sf sf

sf

f

f

 

sf

sf

sf

   

      

f

 



sf

sf

                     

p sf

   

3.





3 4

   

sf

p sf

   

 

p sf



p sf

 

 

p sf



f

 







2 4 





p

Cb. 2

p

arco

Vn. 3

Vc. 2



 

arco

 

Vn. 4



p

sf

Cb. 1



          



       

p

          

3 4

arco

p

sf

Vc. 1

p

 







sf



 p

sf



f

arco

         

    

f

p

sf

div. in 3







arco







arco



3 8

3 4



p



p

 

p



p

 

  p

  p

  

  p



p



p


18

    

  

  

  

    

  

 

           

  

    

    

 

        

  

   

    

  

    

  

    

  

 

      

  

    

    

  

       

  

       

87

Vn. 1

unis.

Vn. 2

 Va. 1

  Vc. 1

Cb. 1

div. in 3

     

         

 

 3.

div. in 3

Va. 2

Vc. 2

Cb. 2

  



 



 

 

 

 

 

  

    

  

4 4

    



  

Vn. 4

    

   

 

1.2. unis.

Vn. 4

  

 

  

Vn. 3

4 4

  

    

   

4 4

  

 

 









 









 







  



  

 



 



 

 mp



 





 mp









 





 





 

   

div.

mp

mp

  

mp

3 4



mp















mp

                   

mf

sf

sf

pizz.         

sf

3 4

sf



           

   

p

p

p

 p

 p

               

                 mf sf sf sf

     

mf

sf

sf

         sf

sf

         sf sf

pizz.                  mf sf sf

sf

sf

sf

sf

sf

3 4

      sf

        sf

                mf sf sf

       

pizz.          

        

pizz.

sf

sf

          pizz.

mf

sf

sf

         sf

sf

sf

sf

        

2 4

sf

sf

pizz.

pizz.

2 4

p

         sf

mf



p

sf

sf

  

p

p

pizz.

mf

 

  

 mp

mp

      

  

sf

sf

         sf

2 4


19

  









92

Vn. 1



 





Vn. 2



 

2 4



3 8

I 









    

 











    

 







          

 







       

 







    

 

f

f

       f



 







 





 





     

 

 











     

 

 

















    

f









 



 Vc. 1

Cb. 1

 

2 4

   Vn. 3

arco

   

 

    

mf sf

  Vn. 4 Vn. 4

1.2.

div. in 3

 

2 4

 

arco

 

Vc. 2

 

Cb. 2

         

arco

    

arco

     

arco

   

mf sf

  

arco

arco  

mf sf

f

    

sf

sf

              

3 8

                

                    sf

  

 

   

   

   

  

  

  

sf

    

f

mp sf

f

     

f

mp sf

     

       f

     

        f

f

    

mp sf

    

I

3 4

f





 



 



 

 





 

 



 















 







mp unis.

mp

mp



mp



mp





 



mp sf

mp

   



 

mp sf



f

mp sf





f

mp sf

       

3 4

     

mp sf

f

sf

sf

mp sf

            f   f

sf

    

div.

unis.

mf sf

       

f

                       

   



sf

arco

mf sf

  

mf sf

 

3 8

                    

mf sf

Va. 2

     

f

f

      

mf sf 3.

sf

f



              

mf sf

arco

3 4

f

f

 

      

Va. 1

1.2. unis.

div. in 3



 

 

mp

 mp

 mp

    


20

   99

   

 



        

Vn. 1

         1.2.

Vn. 2

3.

       

 

    







 

  

    



 





  



  

 

 

 









   

   

 



 



   

 p

 

   

 p



 

4 4

















      p



2 4

3 4





  

 

     p 







  



 



4 4

  

 

 

 

 



 

   

  

     

mf pizz.

 

pizz.

mf

 







  







pizz.



4 mf 4



 

  

 

pizz.     

pizz.   

mf

pizz.   

2 4

3 4 

2 4

pizz.     

  



  

 

  

 

mp sf

             

      

mp sf

     

4 4

mp sf

     

mp sf

     

 

mp sf

mp sf

 

  

  







  

  

   

  



   

  



  



3 4

4 4

  

4 4

           



 



  

 



 



  

 

 

pizz.

mf

     

    

mf

mf

mp sf

mp sf

pizz.

mf

Cb. 2











 



 





  



  

    

mp sf

mf

 

      p 

  



      p 





 

  



  

 

3.

 



 

 



p



     p

 

1.2.



 

 





p



 





    



        

 

Vc. 2

 

    



div.

 

Vn. 3

Va. 2

      



   

Vn. 4



 

  

Vn. 4

  



Va. 1

Cb. 1



    

 

Vc. 1



mf


21

  104

J

       sf

f

      

Vn. 1

sf

f

          sf

f

        sf

f

         sf

Va. 1

f

f

         sf

    

Vc. 1

f

Cb. 1

      

4 4

   Vn. 3

Vn. 4 Vn. 4

sf

arco

   

arco

 

arco

 

mp

 

arco

 

arco

 

arco

 

arco

 

arco

J

   mp

 

  mp

Va. 2

Cb. 2



mp

4 4

Vc. 2

  mp

arco

   

    

 

   

mp

    

mp

mp

   mp

 

sf

   

      

             

  

   

3 4

      

   

sf

    

     

 

  

  



   

      

div.

sf



   

      

sf



      



sf

sf

 

sf

sf

 

3 4

sf

     



          

 

sf

 

sf

sf

sf

sf

   

sf

     

3 4

     



 



 

cresc.

cresc.

cresc.

cresc.

sf

cresc.

cresc.

cresc.

cresc.

     





2 4

 



              

sf

      

   

         

   

5 8

  

   

       

f sf





5 8

          f sf



 

 

f sf

f sf

 

 

  

 

f

f

 

f

f



 







 





 

 

3 8

f

f

 



3 8

f sf

        

sf

 

          

mf sf

2 4

mf sf

   

   

 

 

sf

        sf





5 8

sf



 

          

        

sf

sf

cresc.

 

mf sf

mf sf

 

 



 

2 4

  

            

           

sf



sf

sf

sf

 

sf

sf

sf

    

sf

sf

mp sf

sf

   

sf

   

 

sf

     

sf

mp sf

   

   

sf

mp sf

sf

     

mp sf

       sf

mp sf

mp sf

3.

4 4

mp sf

1.2.

Vn. 2

     

  

f

f

f

3 8


22

e = 100

      sffz pizz.       108

pizz.

 

sffz

Vn. 1

div. in 4 pizz.

   sffz pizz.      sffz

     

arco

ff





solo 1

ppp

solo 2







ppp



 



 



 



 

  ff  

ff

 

3 8

   ff

p

sffz

div. in 4

sffz

      sffz pizz.      sffz pizz.

3 8

pizz.

   

unis. arco

  

   

arco

ff



arco

ff

arco

5 4

3 8



              

2 4 

      



2 4 



      

        

6

  

6

        

 

        

 

 







Vc. 2

sffz

sffz

Cb. 2

sffz

arco

ff

  ff

ff

        pizz.

ff

ff

 arco         pizz.

 

  ff

   

 

     

ff

3 8

sffz

Vuota

       sffz  pizz.        pizz.

div. in 4

sffz

    

pizz. altri

   

   





6 4

ppp

ff

ff

 

arco

   arco

arco

 

(last desk) 2 soli

3 8



ff

ff

 

   

ppp

  



ppp

   arco        pizz.

sffz

ff

  arco          pizz.

    sffz pizz.    

pizz.

pizz.

 

sffz

6 4

ff

sffz

sffz

e = 100

 

 

ppp

 ff  arco       sffz ff  pizz.  arco     

  

 

 



sffz





 

pizz.

sffz

  

ff

 arco        





 

 arco        

sffz

                   

  

 

pizz.

6

ff

altri

       



arco

pizz. 6

pizz.

solo

6

 

 

ppp

   



 

ff

3 8    



 

2 soli

         

6

ff arco

(last desk)

6

 



6

 

arco

pizz.  arco        sffz ff pizz.  arco       

sffz

        

  

2 4 

altri

6

 

 

sffz

       

 

 

   

       

6

   sffz pizz.     pizz.

6

e = 100

pizz.

sffz

6

 

ff

  

Vuota            

ff

ff

    

ff

ff

ff

 arco       



ff

ff

   

 

tutti

  

  

  

3 q = 80 8

arco

  

  

ff

      sffz  ff pizz.  arco         sffz

    

ff



 

 

  



  

ff

(q = 50)

    



 

ff

solo





  

ff

5 4



ff

arco

ff



tutti, div. in 3

 

unis.   arco           ff

       sffz pizz.      

Va. 2

 

ff

pizz.

 pizz.



arco

3e = 100 8 

Vn. 4



ff

        sffz

ff



ff

         sffz

Vn. 3

5 4

 arco       

pizz.

tutti, div. in 4





ppp



ff

   

  

Cb. 1

ff

  

pizz.

 ff

arco

ppp

sffz

   

  

pizz.

pp

arco

solo 3

Vc. 1

ff

solo 2

 

     

   

ppp

Va. 1

6

arco

   

3 8

q = 80 solo

ff

solo 1

Vn. 2

(q = 50)

ff

    

arco

ff

 

arco

  

  

ff arco

ff

6 4


23

  114

Vn. 1

    

  Vn. 3

q = 44-50

solo 1

solo 2

     pp    

3

3

3

    

3

pp

solo 3

 

 

3

 

Vn. 4



2 4

6 4

 

    

p

(last desk)

4 4



mp

2 4

 



 







2 4

q = 44-50

solo 1

3

        pp  3

4 4 

Vuota

2 4 5

5

             solo 2  p           p

5

 

solo 3

3

 





 





(last desk) 2 soli





6 4

K

  

 

solo

Vuota

        mp

3

3

5

  

Vn. 4

Vuota

2 soli

Vn. 2

Va. 1

K

p

4 4 

  3

 

4 4

Vuota

 


24

 

         

118

solo 1

                   

Vn. 1

mp



 

3



solo 3

5

  p

 

5

 



4 4

 





(solo 1)

3 4

2 soli

 

 

ppp

solo 1

solo 2

5

   p 

 

solo 3

mp

     

  5



  

      

mf sf

5

mf sf

4 4









solo 1

solo 2

  

  

ppp

 

ppp

 

ppp

 





5

3 4



 

 





 





 

 

    

3

p

5 5



solo

5

        mf sf



2 soli desk)  (last



5

      

 solo 4

Vn. 4

  

     

mf sf

 

5

         

6

 

mp

3 4

mf



4 4

ppp

sul tasto, non vibr.

3



  

 

sul tasto, non vibr.

      

5



p







3

   

 

solo 2

     



Vn. 3

Vc. 2

Va. 2

       mf

 

Vn. 4

3

3

 

 



p

5

 (last desk)

Va. 1

Vc. 1

3

2 soli

Vn. 2

p

mf

solo 2

3

mf




25

  

    

121

  Vn. 1

3

mf sf

   

mf sf

3

mf sf solo 4

3

sf

solo 1       5

3

3

3

sf

5

5

sf

  

4 4

  

(solo 1)

(solo 2)



  

(2 soli)

Vc. 1

Cb. 1

 

sul tasto, non vibr.

 

ppp

4 4

1  solo       solo 2

 

 3

Vn. 3 solo 3

 

    

 

mp

Vn. 4

2 soli

  

(solo 1)

Va. 2

   

(solo 1)

Vc. 2

Cb. 2

  

(solo 2)

   

3

     

solo

        

3

3             3

3

          



  

3 4



 

3

 



       

5

5

4 4

poco

poco

                         mf

5

5



mf

5

 

 

   

  5

 



3 4

   

 



p sub

  

(ppp)











5

 

mf sf

5

sf

5

(ppp)

  

        

5 4

(solo 1)

  p

      

       



5

         

5



6

      mf sf

     

f





(ppp)



poco

poco

poco

sul tasto, non vibr.

ppp

 









 

p sub

mf sf



 

5(ppp) 4

poco

5



f

3 4

           mf sf

mp

3

      

 

 

3

3

 

  

  

sf mf

5

3



sf mf

       

  

3

sf mf



mf sf

mf sf

(last desk)

 

          

solo 4

  

5

3

sf mf

mf sf

  

mp



          

sf

(last desk)

 

       

3

 2 soli

Va. 1

  

             

  

Vn. 2

   

3          3

mf sf

3

  

3

3

    sf

    

mp sf

sf

   

   

           

poco

   



5(ppp) 4 (solo 1)

   p

       




26

senza misura * 

L

   125

ppp

 

ppp

altri

*





ppp

ppp



*

  

 

 



p

4 4













5 4

6 4

ppp



*

solo



   

 pp

 

 

ppp

* Each player independently repeats the note on the given or similar rhythms, freely, in any order.

senza misura **  **

ca. 10"

ppp



 



pp

 

solo 2

ppp **

6 4



  

    

3

pp

 

3

3

ppp



**

tutti, div.** in 3

ppp

   

  

solo 1

5 4

ppp

   

4 4

tutti, div.** in4

Vn. 3



ppp

**



ppp



 

ppp

Va. 2



 

4 4

 

 

** altri

 

1 solo

  

**



ppp



solo 1





ppp



ppp

L ** Each player independently repeats the note on the given or similar rhythms, freely, in any order.

5 4

 

ppp

Cb. 2

pp

 

 

Vc. 2

   





 

  

Vn. 4



tutti, div.* ppp

altri

ppp

 

Cb. 1



tutti, div.* ppp

Vc. 1

ppp

 

 

solo 2

2 soli

Va. 1

ppp

 (last desk)

 

solo 1

*

 

Vn. 2

tutti, div. in 4 *

   

*

  Vn. 1

ca. 10"

   pp



 









 



   

6 4


27

 

Poco più mosso

128

Vn. 1

  Vn. 2

  Va. 1

6 4 

 

 

 

p

   

    



 

 p

tutti div. in 4

 

p

Vc. 1

Vn. 3





 

  



 

 

  

 



 

  

 



 

  

 Vn. 4

 Va. 2



 tutti div. in 4 

6 4 

p

 p



p

 

 Vc. 2

Cb. 2

  

   







  

 

  

  

 

 

  

 



 

  

 



 

  

 

     

f

  

   



           



 







 

 



 

 





 

 

    







 

 







 

  

 

     

mp

mp

  mp



  





 

f

2 4

       

3f 8

      f

        f

f

f

 

2 4



3 8

 

 

 

 



  

   



 



 

 



 

 



2 4





 

 

 

 



 

 



 

 













mp

mp



mp

3 8



mp

  

 





f



mp

f

     



mp

 





 

mp

p

 

 



mp

 

tutti div.

 



p

 



p

 

poco rit.

  

p

 



mp

 

p





 

mp

 



tutti div.



q = 52-56



p

 

mp

   

  



mp

 

tutti div. in 3

6 Poco più mosso 4 

     

p

mp

mp

 

p

 

Vn. 4



p



mp



tutti div.

  

 

tutti div.

   



p

   

poco rit.



p

Cb. 1

 

tutti div. in 3

p

q = 52-56

 



 

f

f

f

f

    

f

f

f

f

 f


28

M   133

e = 100

solo 1

solo 2

Vn. 1

solo 3



     

2 8

5

3 8

2 8

3 8

 

 

  

  

   

      

     

      

   

 

 

    

 

   

    

   

     

     

  

 

 

  

  

   

    

     

  



 

  



   

   

dolce mp sub.

     

quasi solo

2 8

   

    

    

    

    

   

mf

dolce mp sub.

 

quasi solo

mp

mf

3 8

 

 

 





   

    

   

 

 

    

    

    

  

 

dolce mp sub.

dolce mp sub.

M

mp

quasi solo

mf

mp

 



 



mp



 

 

    dolce mf

    

  

quasi solo

Cb. 2

5

dolce mp sub.

Vc. 2

mf

    

dolce mp sub.

Va. 2

      

     

dolce mp sub.

Vn. 4

5

dolce mp sub.

Vn. 4

mf

mf

e = 100

Vn. 3

        

quasi solo





   

2 8

quasi solo



    

mf

  

   



   



 

 

 

    

   



 

    

      

mf

mp

3 8


29

solo 1   

140

solo 2

 

   



 5

 





  

   

5

Vn. 1

 

5





f

5



    

solo 3



           5 f        mf dolce    5



 







5

5

f

 tutti, div. in 4          5

3 8

4 8

2 8

4 8

   

  

 

mf dolce

mf dolce

  

3 8

Vc. 1

  

 

  

  

Cb. 1

3 8

Vn. 3

       

Vn. 4



     

   

     



      

    

     



   

   



 

  

        

Cb. 2

  

quasi solo

  

   

2 8

mf

   

  

   

  

 

        

4 8

mp

quasi solo

Vc. 2

4 8

     

3 8 Va. 2

2 8

    

 

Vn. 4

4 8

mf

mp

   

  

   

  



   

 

    

 

 

       

    

    

    

   

mf

  

  

 

           

         

mf

     

       

    

   mp

 

  

mp



   mp

 

 



mp

mf

quasi solo

    

    

mf

mf

quasi solo

quasi solo

    

  

  

mf

   

     

mf

f

mf

mf

3 8

mf

   

mf

mf

   

mf

mf

   

5

3 8

    

    

f

mf

   

mf

4 8

mp

mf

mf

  

mf dolce

 

solo 3

f

f dolce

   

quasi solo

mf dolce

mp

5

mf

quasi solo

div.

mf

mf dolce

 

mp

solo 2

mf

mf dolce

   

     5

mf

  

   

   

 

mf

mf dolce

div.  

Va. 1

mf dolce

div. in 3

mf

mf

mf dolce

Vn. 2

mf dolce

   

    

solo 1

mf



 

mp



 



mf

mp

 



 



mp

mf

    

 

mp


30

       

N

    

 

     

 

   

 

     

 

146

solo 1

p

Vn. 1

p

tutti, div. in 4

p

p

    p

Vn. 2

      p

 

p

Va. 1

p

  

 

 

p

    p

Cb. 1

 

       

 

5

N

 







    



   



      mp



mp



mp

tutti, div. in 4

mp

5

mp

3

3

3

        

tutti, div. in 3

     



  

   



  

     mp



  

  



  

  

 

3 8

mp

   mp

mp

quasi solo





 



mf

mp

mp

3 8 

2 8

       

  

            

 



  

    

      



  

  

        



 

    

   





1.2. unis.

3 8

        

   

mf

 

 



mf

   

 

mf

 

  

  

 

mf



 

  

   



 

  

mf

  mf

mp



mp

  

 

   

 

mf

    mf

  

  

mp

5

   

mp

  

        

 





mp

mp

   

 

3

5

 

  

mp





   

   

  

mp

    

  

3

  



 

mp altri, div.

 

 

3



    

 

    

3



  

    

  

3



 

2 8

 

3

    

3

       f

     

   

2 8

5

   

Cb. 2

5

    

Vc. 2

      

solo 4

solo

5

        

 

   

Va. 2

f

 

Vn. 3

Vn. 4

solo 3

     

Vn. 4

f

   

   

solo 2

5

       

f

    p

Vc. 1

f

       



 

  

   

mp sub.

mf

   

mp sub. div.

mf

mp sub.

   

mf

    mf

mp sub.

  

  

   

   



mp sub.

mp sub.

quasi solo

mf sub.

mp sub.

f

  

mf

mp sub.

  

  

quasi solo

 

   mf

  

mf



 mf

 


31

   152

 

 

Vn. 1

 

 

  Vn. 2

   

         



 

   

 

  

    solo 1 f solo 2

     3

f solo 3

    

f

solo 4

 

   

   







 



 

3

3

mp

  

3

      f

mp

poco accel.

5

      f

mf

5

           3

mp

f

3

3

mp

f

5

5

f

  Vc. 1

 

  

   

  

  

 



 

5

4 8

1.2. unis.

 tutti, div. in 3

     

 

 

  

 

     

  

  

       

  

 

    

   

1.2. unis.

 

   

   

mf

   

Cb. 2

 

        

      

       

 

    

    

      

           

mf

       

< e = 120 = q >

      

mf

      

3.

mf

       

Va. 2

Vc. 2

mf

mf

Vn. 3

Vn. 4

     

        

      

4 4

       

      

mf

  

Vn. 4

    

     

Va. 1

 

mf

mf

mp

tutti, div in 4.

3                 3

     

mf

solo 1

f

    

             f

3

  

    

   

   

 

    

 

 

       

   

 

       

div.   

  

  

   

4 8

          f

   



         f

    



          f

   



 

4 8

  

   

    

ff

      



     

f

     f

f

f

     f

f

 

f

   

quasi solo

f

       f

f

quasi solo

quasi solo

< e = 120 = q >

poco accel.

ff

    f

                           

     f

 

  

 

    

   

    

 

   

      



f

f

f

4 4



    

4 4


32

O < e = q > = 120

157 pizz.           

arco     

pizz.          

        

    

          

mf

Vn. 1

arco

mf

          mf pizz. 3.

         mf

4 4

pizz.          

3 4

mf

Va. 1

arco

  

arco

pizz.            

mf

           

   p      p

Vn. 4

Vn. 4

4 4

   p

Va. 2

  p

  

Vc. 2

Cb. 2

 p

 

p

  p

   p

O



          

       

3 4 

pizz.          

sf

sf

mf

      sf

sf

pizz.           

       

  

          

       

  

   

sf

sfp

sf

sf

arco

        

  

      

sf

mf

mf

sf

f



        



       

f

f

         f

      

f

sf

sf

sf

sf

    

    

3 4 

  p

 

 

 

      p

 

4 4

 p

3 4



arco

arco



sfp

arco 



sfp arco

sfp



arco

f

 

  

      f

 

      f

 

 

      f

  

f

 

 

p

  

p

 

    

 

  p

  

f

 

      f

    p

     

 

   

   

  

  

 p



 

  

arco

  

   

    



sfp

p

   

arco

sfp

4 4

    



arco

sfp

sf

f

      

sf

sf

mf

f

f

sf

pizz.

arco

       



3 4

sfp

sfp

sf

arco      

f

3 4

      sf



arco

sfp

sf

sfp





mf

pizz.

       sf

       

sf

sf

sf

     

       



sf

sfp

4 4

sf

pizz.           

< e = q > = 120

Vn. 3

4 4

 

mf

sf

      

sf

mf

sf

sfp

sf

    

mf

    p

sfp

arco     

  

pizz.



sfp

 

sf

pizz.          

arco

mf

Cb. 1

sf

sfp

pizz.          

Vc. 1

  

mf

pizz.

sfp

pizz. 1.2.

Vn. 2

sf

sfp

pizz.

      

   

      

          f 

f

   

   


33

    162



pizz.

sfp

Vn. 1

pizz.



sfp

mf

   

sfp

mf

 

 

  

   pizz.



   pizz.

mf

  

  

pizz.

sfp

Vn. 3

 



    

 

3.

 

Cb. 2

  

 

Va. 2

     

   



        

            



 

 

 sf





sf



 

 



2 4

 

  

3 4

 

sf

            arco

                    mf arco         

arco

           arco

 

  



 

sf



  

arco

arco

  

       

sf

mf

            

(arco)

 



2 4

   

   p sub.

   

    p sub.  div.       p sub.      p sub.

         



              





 



p sub.

    

p sub.

 

p sub.

    

p sub.

 

      

   

 



mf

   



     p sub.     

    

   





3 4

2 4

                          

mp



mf

mp

         

1.2. unis.

mf

3 4



      

mf

     

mf

         mf

     

      mf

mf

   

mf



mp



sf

       

           

sf

     

    

    

      

              

sf

  

sf

sf

     sf

  sf

   

sf

sf

   

sf

sf

mf

          

sf

mf



sf

sf

sf

         

     

   

sf

mf

arco

     sf

mf

sf

 

          arco

1.2. div.

sf

sf

 

mf

sf





 

sf



mf

1.2. unis.

 

Vc. 2

sfp

  



mf

 



sf

sf

sf

 

 sf

   

mf

 

sf

mf

sfp

   

mf

 

Vn. 4

pizz.

sfp

Vn. 4

  

sfp

mf

Va. 1

Cb. 1

pizz.

sfp

Vc. 1

 

pizz.



  

sf

mf

  

Vn. 2

  

sf



 



 



 



 



 

mp



mp





 



 

mp



mp

  mp

    mp



 



 


34

P

167   

 

  



sf mp

Vn. 1

sf mp

1.2. unis.

 

sf mp

Vn. 2

3.

sf mp.

sf



 sf mp

sf mp

sf mp

 

sf mp

  sf mp

sf mp



sf mp



  

sf mp

f

         f

      

sf mp

sf mp

sf mp



sf mp.

sf mp.

sf mp



 

sf mp.

sf mp

              Vn. 3



  

sf mp

  

sf mp

Cb. 1

 

 

sf mp

 pizz.          

   sf

  

  

  sf mp

sf mp

Vc. 1

sf mp

 

sf mp

Va. 1

f

f

Vn. 4

3.

          

Vn. 4

f

          f

Va. 2

 

        

 

        

pizz.

sf

 

6 8

sf

f

pizz.        

f

sf

 

 pizz.        

   

sf

f

sf

 

        

 

 

pizz.

sf

f

sf

sf

         f

        

              

                          

f

6 8

       f        f

f

f

P

     

    

f

1.2. div.

         f        f

    

         

arco

f

f sf

 

     

arco

 div. in 3 mf

f

       

       f sf

f

 

 

arco

f

      

arco

f

         arco

f

  

mf

f

     



 

 

arco





 

mf



 

mf

3 8

 

mf



6 8        

 div. in 4 f sf

 arco         

sf

f

sf

       

   

  

   

f

      

  

        

       f

          

  

 

pizz.

        

         

sf

          

      

arco

f

pizz.

        

f

Cb. 2

sf

f

sf

       f

          

Vc. 2

sf

f

1.2. unis.

          

sf

pizz.        

 

   

      

        

                          

     

 

          



sf

  

  

      

     



  

f sf



 



       

sf



f sf

      



3 8 

f sf



      

f sf

 



         

f sf

  



        f sf

  ff

sf

  div.          

f sf

sf

  

 

 

 

ff

 

sf

ff

        

unis.         sf      



 div. in 2

f sf

f sf

 

 

div. in 4

3 8



  ff

   


    172

ff

   ff

Vn. 1

   ff

   ff

  

ff

  ff

Cb. 1

 

  ff

  ff

 

3 ff 8

    

  

   

Vn. 3

    

   ff

   

Vn. 4

ff

3 8

   

    ff

Va. 2

   ff

       

Vc. 2

Cb. 2

ff

 

 

 

Vc. 1

 

ff

3 ff 8

 

 

  

Va. 1

 

ff

  

Vn. 2

 

   

           

senza misura   



 

sffz



*

*

*

 

*

 

*

*

*



*



 



sffz

 



sffz

 



sffz



sffz

  

 

sffz

 

sffz

 

 

sffz

 

sffz

 

 

senza misura

 

sul A **

solo 1

         

ca. 3"

5

mp

pp

 

pp

pp

 pp

 pp

 pp

 pp

 pp

pp

pp

ca. 7"

* Tutti except solo violin: Each player independently repeats the note on the given or similar rhythms, freely, in any order.

ca. 5"

 

solo 1

3

3

  

**

sul D, G

 

pp **

  

 )

(

pp **

  

(  ) pp

  

 

**

( ) pp

  

 

**

sul G

pp

 

**

pp **

  

(  ) pp

 

**

   

  

() pp

  

**

 ) 

(

pp

  (  )

**

3

     mp    

pp

  

  

*

sffz

  

  

 



 

*

sffz

  

  

 ca. 5"

ca. 7"

sul A

pp

** Tutti except solo Vln. 3: Each player independently makes crescendos to a sharp cutoff, from pp to ff , of durations from q to h., and repeats continually after short pauses (eighth rest to dotted-quarter rest).

ca. 3"

35


36

177        

ca. 4"

Q

q = 56

      

p

 

 

pp

  

 

pp

  

pp

  

     

Vn. 3

rit.

dim. rit.

 

dim. rit.

dim. rit.

 Vn. 4

  

Va. 2

  Vc. 2

Cb. 2

 

ca. 4"

6

p

pp  

dim.

dim.

dim. rit. dim. rit. dim. rit.

dim. rit. dim. rit.

dim. rit. dim. rit. dim.



dim.

2 4

 Vc. 1

  

  

     pp

  

  pp

 

  pp

 

pp

pp

3 4

pp

 



 

pp

3 4

dim.



pp

pp

dim.

pp

pp

 

dim.

  

  

pp

pp

tutti div in 3

   div. in 2

dim.

pp

    

pp

dim.

Va. 1

pp

dim.

Vn. 2

  

dim.

Vn. 1

accel. poco a poco

    

q = 56

 

 

pp

 

 

    

pp

 

 



  















 pp

pp





pp

pp

2 4

pp  

pp

 

p



pp

tutti div. in 3



3 4

  

3 8

   



3 8

accel. poco a poco

  

  

  

3 4

p



p

pp

     

pp

 

pp

3 pp 4  

 

pp

  

pp

pp   pp

 

pp

 pp









pp



pp



 

 

 

 





pp





2 4

     

pp









p

pp



p

div. in 2



 

 

  

     pp

 

  

 

 

pp

  

 

 

 

pp

pp

  

Q

  

pp

3 8 

  p

 

p

 







p

p

  

p

3 4


37

(accel poco a poco)

  183

3

3

mp

Vn. 1

     

       3

      3



















3

3 4

3

3

      

 













 



 

3 4

Vn. 3

     

      

3

3

3

mf

3

mf

      3

      3

3 4

 3

3      

 Vc. 2

Cb. 2

 

 

3

div. in 4

  3

  3

  3

3





 

 

   

   





mf





 

 

mf

 mf





   

5 8



 

  

 

  

ff

ff



  







     









   

    

3

    

 

 

  

 

 

 

 

 

    

3

3

sf



3



sf

3 4

sf

            sf   ff sf 3 3 3                sf 3

3

3

ff sf

               ff sf sf 3

3

3

                  ff sf sf

              ff sf

ff

ff

  

  

ff

   

 

         3 ff sf 3   sf 3            3  3 ff sf  sf 3            3 3 

ff

     

 

ff sf

 

ff

 

 

3 Pesante q = 72 4

      

f

ff

      

ff

f

 

ff

f

  

ff

ff

f

mf



3

mf

ff

f

mf



 

     

 

 

     

  

  

3 4

ff

   3



 

ff

 

  

3



 

 

ff

      

  

ff



 

  

ff

3



      

    

f

f

 

3



3

3

5 8

3

3

    

3

    

3

mf

3

f

     

mf

     

3

3

mf

3

    

      

mf

f

3

mf

Va. 2

3

mf

Vn. 4 Vn. 4

3



 

ff

3

3



 

  

        

3

3

mf

f



 

ff

f

        

  





ff

       

3

mf

   

f

     

3



Pesante q = 72    



ff





3

3

mf

 

(accel poco a poco)

5 8

     

3



3

mf

 

mp

Cb. 1



mf

3

  



f

       

mp



mf

3

ff

f

        3

mp



3



       

mp





mf



mf

mp

Va. 1

Vc. 1



 

  



f



f

mf

mp

Vn. 2

3

 

div. in 4   

      

f

mf

3

mp



mf

3

mp



 

3

3

3

3

3

3

sf

             ff sf  sf 3

3

3

             3

ff

3

sf

3

sf


38

   187

Vn. 1

 

  Vn. 2

 

 

  3

 

  3

  3

 

6

sf

  3

3

  3

  

6

sf

   

3

         

sf

6

sf

  

   3

      6

     

sf

           6 sf

          6

   

sf

   

3

sf

1 4

6

3

6

               6 sf

6

             sf 3

                6 3

sf

6

                 sf 3

   3

sf

solo



pp

6 4



mp with Vn. 1 solo, always slightly more present than the rest

1 4

       = 100

 unis.    arco       sffz div. in 4 pizz. unis.   arco           sffz  pizz.  unis. 1.2.  arco      div. in 3

sf

3

4 e 8  pizz.

Vuota

sf

                 sf





solo





pp

      

sffz

              6

sf

   

    

               6

sf

sffz

sffz

             

4 4

       

(arco)

6

3

       

(arco)

                

        

     

sf

3

      

solo

sffz

(arco)

3

                     3

       

 (arco)               

3

            6

sf

sffz

sf

sf

   

   

   

sffz

(arco)

3

 

sf

6

mp with Va. sola, always slightly more present than the rest

      unis.     

4 8 

3

sf

6

Cb. 2

sf

 

unis.

sffz

1 4

  

          

      

(arco)



solo

sffz

3. (arco)

3

   sf

6

div. in 3

    

  

3

1.2.

sf

Still, distant (q = 50)

(arco)

3

sf

(arco)     unis.             

sffz

    

sf

            

Vc. 2

div. in 4

3

6

Vuota

sf

          

6

Va. 2

sf

sf

Vn. 4

    

 

6

Vn. 4

sf

      

         

3

6

sf

Vn. 3

       

sfz

 

    

sf

sfz

Cb. 1

        

sfz

sfz Vc. 1

sf

sfz

sfz

 

6

sfz

sfz Va. 1

        

R

e = 100

       

4 Still, distant (q = 50) 4

6 4

4 4

6 4

                

sffz

   

pizz. 3.

4 8 

sffz pizz.

  

sffz

    

pizz.

sffz

arco

 

     

      

arco

       

arco

 pizz.  arco           sffz

pizz.  arco        

sffz pizz.

 

sffz

      

arco

R


39



  192

Vn. 1

solo

Vn. 2

Va. 1

Vc. 1

Vn. 3

  

 

solo

6 4 solo



Vc. 2

solo

Cb. 2

 p 



solo



ppp













   



solo

   

p

4 4

   



 







 



 

Va. 2

 

 

  



 



solo

 



solo

  









ppp

 

 





4 4

3 4



 

  

 

4 4









6 4 

 



 





  











  198

Vn. 1

Vn. 2

 

Va. 1



Vc. 1

Vn. 3

Va. 2

Vc. 2

Cb. 2

 

 

4 4

  

 

  

 











 





 



 





 



 

  







 

 



  



4 4 

 

 

 

S

6 4









 



  



4 4 

 

 







   





 



  

 

 







5 4

  

S





 

 




40

 

solo 1

  204

 



Vn. 1

altri, div.

solo

 



Va. 1

4 4

  3





5

solo

 



solo

 

    



 ()

  

 



solo 1



 

3 4   

3

 

Va. 2

Vc. 2

Cb. 2

3



3

 div. in 3 



  



solo





 

 

 )

(



 

ppp

6

5

5

5

5 4

 





ppp



ppp

  



3 4

ppp

 

5

      mp sf  

ppp

    

6 4





altri



ppp

  



tutti, div.   ppp



  

 

sul E

ppp



solo

6



 

  



4 4

3 4

 altri, div.

 



6 4

Vn. 4

 

Vn. 3

5 4

5

             



6

ppp tutti, div.

5

                

ppp

5

solo 2

3

              

4 4

3

            

ppp



5

 

 



5

        

3

ppp

3

 

 

6 ppp 4

 

3

ppp

altri

 Vc. 1

          mp sf                 





 altri, div.

Cb. 1

 

5

solo 2

Vn. 2

 

 

actual pitch

ppp

  

5 4


41

  209

1 solo 

3

Vn. 1

    

solo 2

 



mp sf

altri, div.



 

Va. 1

 Vc. 1

Cb. 1

div.

 

 Vn. 4

 

Va. 2

 

Vc. 2

Cb. 2

2 4

5 4 

5

3

5

3

6

5 4

2 4



 

 

 



 

 



 







 

 



  



 







 



  



 









 



 



 





 

 



 







 



 



 













 







 

  



 



 

mf

mf

Vuota

6

5 6

5

5



 







 

 



 



 





 



 



 

 

 



 

mf

 



 







 

 













  



 

 

  









 







 























 mf

tutti, div. in 4

mf

mf

tutti, div. in 3

6

                        

 

5 6

mf



2 4

5 4

mf

mf

mf

5



mf



mf

mf





mf

T

  

div.

div.

 

3

                             



5 4 

5

3

5

5

 

div. in 3                                    5



                    

5



tutti, div. mf

div. altri,                 3

     mp                            5

mf

6

5

 

mf





mf

solo 2

 

mf

5

solo 1

5

5



mf

6

5 4

Vn. 3

6

5



mf





 





tutti, div. in 3

              



mf

                  6

5

solo

altri

5

 

mf

               5



 

 

            

div. altri, 

mf



 

3



tutti, div. in 4

5

3

          3

5 4

3

5

                5

 

 

solo

Vn. 2

T

Vuota

   

    

   

 

 

    

 

 

Vuota

1 4

4 4

1 4

4 4

Vuota

1 4 



   



 



 

4 4


42

3 3 3          mp   

solo 1

214

solo 2

 

         mp sf

5

 

Vn. 1

                         

altri,div. ppp

ppp

3

ppp

Va. 1

5

3

3

3

5

5

5

5

ppp

6

6

6

6

ppp

5

5

5

ppp

 

5 4

5

Cb. 1

 

4 4

5 4

 solo  

       3

3

           

 Vn. 3

mp

       

ppp

5

5

altri, div. in 3

  

ppp

3

3

           

ppp

        

 ppp

5

5 6

6

ppp

5

5

              ppp 

4 4

 

Va. 2

 

Vc. 2

Cb. 2

 

ppp

3

 

                5

5

      

5

              3

3

3

                                   5

             

Vn. 4

5

6

5

6

6

                      5

5

5

                             

5 4

 

 



 



 



 





 







 













 

 





 



 













 

 







  



 

 



 

 

 







 



 



 











 









  





mf

mf

mf

mf

mf

 mf

  

mf

mf



















mf

mf



 

mf

mf

 

mf

mf

mf



   

  

   

 

6 4











 

6 4

6 4





 







ppp

   

ppp



     



   

ppp

ppp

   

4 4



4 4

   



ppp



ppp

     



   



   

ppp



 



ppp





   

ppp

 

  

  

ppp



mf

 





mf



 

tutti, div. in 4

 





mf

 

mf

 Vc. 1



mf

                    

 

6

5

mf





tutti, div. in 4

mf

                          





  

mf

mf

                     

 

3

5

ppp

4 4

5

                          



5

                      



5

                



Vn. 2

5

     



   

ppp





ppp

4 4


U

 

218

      

*

 Vn. 1

Vn. 2

mp









Cb. 1

niente

niente  

 

    

3 4

  

  

  

niente

niente

*



 

 



 

 

       solo

mp

   

3 4

  

niente

 

niente



 





niente

 



 



 

Va. 2

**

4 4

3 4



 

**



 

**



**

 

   



niente

**





 

  

mf

  niente   

 

   

niente

  



6 4



mf

mf

 









niente

   

mf

niente









niente

niente

 

niente

mf

mf

  

 

mf

niente

niente

 niente

niente

   

mf

niente

mf

niente

  

niente

 

niente



niente

   

mf

mf

U ** All harmonics: Each player independently makes crescendos to a sharp cutoff, from ppp to mf , of durations from q to h., and repeats continually after short pauses (eighth rest to dotted-quarter rest).

mf

 

mf

mf

   

mf

mf

  

mf



mf

    

 

niente

p

     niente

   

p

        mf

    mf

    mf

  

   

  

   

  

   

   

niente

niente

p

p

p

p

   

niente

p

mf

mf

 

mf

 

mf

 

   

  

mf

 

mf

 

niente

 niente

 

 

    p

 

mf

  

p

 

 

    

 

5 4

mf

   

niente

 

p

    

niente



p

    

niente

6 4

5 4



niente

   niente

 

niente

mf





 



 



niente



mf

mf

mf

niente

 

niente



niente

tutti, div. in 4

 

**

 

niente

 

  

6 4 

* All harmonics: Each player independently repeats the note on the given or similar rhythms, freely, in any order niente

4 4

mf

 

niente

niente



 

 

  



niente

 

niente

niente

 

mf

  

niente

 

  

 





 

tutti, div. in4

  



 



Vn. 3

Cb. 2

niente







  





Vc. 2

 

*

 

Vn. 4



niente

 

niente

*

4 4



*

Va. 1

Vc. 1

 

*

3

  

43

5 4


44



  222

 

 

Vn. 1

5 4

 

   

 

Va. 2

  Vc. 2

   

 

niente

niente

     niente        

niente

5 4

niente

         

niente

   

niente

   

niente

niente

Cb. 2

 

   

   

 

 

   

 

 

 

 

 

 

 

 

  

   

niente

sul A

  sul A 

 sul G    

niente

 niente

sul G    

          

        

 

 

mf

 

mf

 

niente

     niente     

 

 

niente

    

mf

niente

mf

 

    

 

 

   

     

mf

  

   

 

  



 mf



mf



 

mf

 

mf

mf

 

mf

  

mf

 

solo 2

3

3

niente





niente

niente

 niente

 

  

niente

mf

niente



mf

niente







mf

mf



niente

 

mf

mf

mf

5



 

niente

 niente

 

niente

niente

  

niente

 niente

 niente

 niente

niente

  

   



p

    p



tutti, div. in 4

   p   

 

p

    p



    p    



    p    



p



      

p

   

 

   

p

  



  

p

p



 

   

     

mf

 

mf

   

 

 

   

niente

niente

    niente    

niente

     niente niente      niente niente     

niente

solo 1





       mf

niente



mf

   

 

mf

niente

niente

  

mf

niente

 

mf

niente

 

mf

niente

 

 

 

niente

  mf

niente

niente

   sul A 

 

sul A

Vn. 4

 

 

niente p

Vn. 3

niente p

niente

 

 

niente p

niente

niente p

 

 

niente p

sul G

niente p



sul G

 

niente p

  

 

 

niente p

 

 



 

niente p

5 4 

Va. 1

 

Cb. 1

niente p

 

Vc. 1



niente p

 

Vn. 2

 

 

   

mf

 

mf

  

mf

 

   mf   

       

  

niente

       

mf

ppp

f

ppp

f

 

ppp

f

ppp

f

                ppp

      ppp

  

f

f

ppp

f

    

ppp

f

ppp

f

4 4

5 4 

niente

mf

niente

mf

     

niente

 

mf

   ppp

niente

mf

      

f

ppp

f

 

  

               niente

  

  

mf

4 4

ppp

  

f



mf

ppp

f







mf

ppp

f



mf





ppp



f

mf

ppp

f



 

mf

ppp

f

mf

ppp

f

ppp

f

  

mf

   



4 4

 

 

   

5 4

mf

ppp

mf

 

ppp

 

f

mf

ppp

f



 

mf

ppp

mf

ppp

5 4

f

 

f

f


  

     

225

  Vn. 1

       f

   

   

      

5 4

     Vn. 3

    

Vn. 4

 

 div.

 

5 4

  Va. 2

Cb. 2

  f

pp

dim. al niente

pp

dim. al niente

dim. al niente

 

pp

f

f

pp

f

pp

       

*

     

*

mf

  

pp

pp

  f

f

  

f

2 4

4 4 *

 

pp

f

pp

f

pp

f

pp

pp

  

 

    f

 

pp

 

pp

f

 

 

pp



pp

f

poco

mf

   

pp

mf

pp

     mf

pp

 

pp

mf

poco

 

dim. al niente

  dim. al niente

  

dim. al niente

dim. al niente

senza misura ca. 12"

pp

dim. al niente

pp

dim. al niente

f

  

pp

dim. al niente

pp

dim. al niente

**

f

   

**

f

pp

  

5

      

mf

pp

dim. al niente

**

pp

pp

2 4

f

4 4

  f

pp

 

   f

pp

  

 

pp

f

  

poco



**

pp

f

 

poco

 

3 4

  

 

f

 

4 4

   f  ** 

pp

f

 

6

**

pp

f

pp

* Each player independently repeats the note on the given or similar rhythms, freely, in any order

Vuota

pp

f

f

2 4

 

 

      

3 4

pp

f

f

dim. al niente

 

 

pp

 

f

dim. al niente

f

 f  

pp

pp

f

mp

*

f



    

*

 

 

  

dim. al niente

f

 

 

pp

*

solo OFFSTAGE R

altri,

Vc. 2

f

pp

f

Cb. 1

 

f

altri, div.

5 4

Vc. 1

ca. 12"

f

 

   

Va. 1

pp

* 

solo OFFSTAGE L

 Vn. 2

Vuota

senza misura

f

pp

pp

pp

f

pp

f

pp

 

pp

f

dim. al niente

3 4

         

poco

poco

poco

poco

poco

        

   

 

mf

pp

mf

pp

    mf

    

pp

mf

pp

  

pp

mf

** Each player independently repeats the note on the given or similar rhythms, freely, in any order

dim. al niente

 

dim. al niente

 

dim. al niente

 

dim. al niente

dim. al niente

45

Profile for Theodore Presser Co.

Gerald Levinson: Now Your Colors Sing  

Now Your Colors Sing - Gerald Levinson

Gerald Levinson: Now Your Colors Sing  

Now Your Colors Sing - Gerald Levinson

Advertisement