Behzad Ranjbaran: Moto Perpetuo

Page 1

MOTO PERPETUO for Solo Violin and Strings

Solo Violin

Behzad Ranjbaran

Presto ( q = 144- 160)

   

                             

f con brio

        

                                          f con brio             

Violin I

Violin II

f

Viola

   





    

    

 







 

f

Violoncello

Contrabass

S.Vln

f

f

                      7

f

Vln II

Vla

Vln I

Vc.

Cb.



  



  



f

f

f

        

     

    

      p

    

p

  

 

 p   p

     

     p

   

  

               

sim.

     

 

  

 

  

  

    

 

  

 

  

 

           

   

Copyright © 2001 by Behzad Ranjbaran

   

     


2

13

        

   

       

Vln I

    

   

   

 

  

Vln II

     

   

   

 

   

S.Vln

      

Vla

mf

     

Vc.

mf

Cb.

       mf

        

      

Vln II

Vla

Vc.

     

 

    mf

p

   

       

    

   

   

   

   

                              

         

     

    

          

 

     

p

20

      

Vln I

Cb.

             19

S.Vln

  

            

      

    

            

                     

           

     

   

     

   

p


S.Vln

25

Vln I

              

      

     

   

     

            

Vc.

   

       

         

    

Vla

S.Vln

     

Vln II

Cb.

            

mf

    

                     

    

Vln II

Vla

Cb.

34



  

p

      p



         

   

 

 

 

f

f





 f

f

p

   

  

Vc.

    

   



p sub.

   

     

   

    

     

  

p sub.

   

    



  

      

mf

f

Vln I

mf

     

31

mf

     

    

mf

           

     

  

3

f

    


4

37

S.Vln

 

Vln I

Vln II

Vc.

S.Vln

   

 

43

  

Vln II

       

 



42

              mf sub.

   

   

 

mf sub.

   

 

 

 



 

 

 

  

  

mf sub.



mf sub.

                       cresc. mf sub.





mf

      

    

Vc.

   

    

Vla



         

                           f

 

Vln I

Cb.

 

Vla

Cb.

          

    

          f 

     

     cresc. mf

 

 

   



  

  

   

     

mf

cresc.

mf

cresc.

      


49

S.Vln

Vln I

Vln II

Vla

 

  

50

 f

      

      





 

  

    

           

 

 

 

f

Cb.

S.Vln

Vln I

Vln II

Vla

Vc.

Cb.

             

    



  

 

      

f

               

f

 

      

      

 

f

     

55



 



f

Vc.

         

f



5

 



f

  

sim.

             

          

   

 

 

  

 

     mf

           mf

   

60

 



 



 

mf




6

          

     

    

    

61

S.Vln

mf

 

Vla

Cb.





        

f

 

mf sub.

     

    

f

     



     

mf

     

f

mf

    

mf

    

     

f sub.

f

     

Vln II

Vc.

Vln I

    

                

 

     

    

      

mf

     

67

S.Vln

     

Vln I

               

mf sub.

f

Vln II

      

Vla

f

Vc.

Cb.

      f

70

     mf

    

mf

    

mf

      mf

           

                   mf

       

f

 f

 f

        mf

 mf



mf

f

mf



f

  f

  mf

mf

 

        f

 f

f

  

f

 





f

f


S.Vln

73



Vln I



Vln II



Vla

Vc.

Cb.

                                                      



 

    

 

 

 

   

 

      















































7

 

79

         norm.

S.Vln

ff

Vln I

Vln II

Vla

Vc.

Cb.

 

 

        











ff

ff



       



                         

              





pizz.



                pizz. ff                               pizz.  ff                                    

ff





 


8

                          

85

S.Vln

             arco    

Vln I

Vln II

        

Vla

Vc.

Cb.

S.Vln

Vln II

Vla

Vc.

Cb.

       

p

   

  

    

p

p

p

p

      p

   

   

  

  

     

    

  

  

   

    

            

     

      

arco

 

p

p

      

       

     

            

   

    

     

      

   

   

   

    

       

   

   

    

    

   

     

   

sim.

Vln I

            

           

      

91

  

arco

    

89

     

  

   

 


         

       

             

     

    

       

     

      

97

S.Vln

Vln I

Vln II

Vla

Vc.

Cb.

S.Vln

Vln I

Vln II

Vla

Vc.

Cb.

9

       

         

    

mf

   

  

   

   



 

 

 

 

  

  

 

    

                         



 

   

     espress.

       

                   

   

       

                    

     

    

mf

 

   

 

      

 

mf

       

   

 

mf

   

 

   

   

    

    mf

  

   

103

   

mf

   

101



 

   

   

    





espress.

   

             


10

112                              109

S.Vln

       

f

Vln I

Vln II

Vla

Cb.

S.Vln

Vln I

Vln II

Vla

Vc.

Cb.

 

Vc.

 

                

 f

       

115

                     

    

    

                     

    

     

f

                      

f

        

            

       

            

             

  

             

       

     

                     

 f



f

          

 

 

   

     

        

     

          

        

     



 

 

     



     


       121

S.Vln

Vln I

 

Vla

Cb.

  

    

Vc.

     

      

127

S.Vln

Vln II

Vla

 

    

Vc.

 

 

       

   

11

    

    

   



                                 f         

   



 



   



  

        

           

Vln I

Cb.

                

      

Vln II

 

124

        

          

 



   

 

 

                 

 



   

  

    

            p sub.

      

       





p sub.

                    p sub.

   p

          

           

       

       

  

p sub.


12

   

133

S.Vln

   

             

Vln I

Vln I

Vln II

Vla

Vc.

 

    

   

               

          

  

     

    

 







f



f

         

           

    

   f

f

         

     ff

         

         

 



 

 

 

 

  

 

 

f

139

Cb.

 

 

 

f

         

  

Vc.

 

p

Vla

S.Vln

Vln II

Cb.

            

136

ff

 



 

       

 

 

   f

       f

    

        

f

    



    

   f

        

  

f

    


13

147

145

S.Vln

Vln I

Vla

    

                 pp

f

Vln II



Cb.

S.Vln

Vln I

Vln II

ff

  

 

 

Vla

   

  

 

pp

 





p

p

 

  

pp



    

 p

 p



p

         p

pp

Cb.

   

mf

pp Vc.

p



p

                



     



                

    



pp

  pp

 

    

pp

p

pp

ff

151

 

 

leggiero

pp

 

 

pp leggiero

ff

Vc.

p espress.

 

 p

 


14

157

S.Vln

Vla

Vc.

Vc.

mf

      

   





       mf

      

 









 

  



  

 



 

            



mf

     



     f

  

 

 

    sim.

   

      

mf

      f

 

mf

f

           

mf

f

   

 

mf

                

Vla



      

  

      

Vln II

    

          

163

Vln I

Cb.

     

       

Vln II

S.Vln

 

 

Vln I

Cb.

161

f

f

       mf



f



  

       mf



   mf

 

    


       169

S.Vln

Vln II

f

   

        

Vln I

       

f

mf

Vc.

Cb.

S.Vln

Vln I

Vln II

Vla

Vc.

Cb.

f



mf

  mf

           

      

172

f

       

Vla

      

 

 

mf

      f

     f sub.

     f

175

   



 

            

     

mf

15

    



cresc.

   

 cresc.

f

              mf cresc.               cresc. mf  

mf

       

         

       

      

   

    

       

     

    

   

      

     

    

        

 

f

f

mf

f

               f 

                 f           f

   

                         

                  



 

     


16 S.Vln

 

Vln I

Vln II

Vla

Vc.

Cb.

S.Vln

Vln I

Vln II

Vla

Vc.

Cb.

181

                 

  

  



  

     



      





 

   

 

   



f

  

    

 

                               

  

 

 

  

mf sub.

 

  

 

 

  

 

mf sub.

mf sub.

       mf sub.



  

 

  

 

    

 

   

 

f

        

       

   

 

 

   

  

 

   

 

   

   

 

 

 

  

   

        

      

             

   

   

    

       

       

   

   

   

   

   

  

 

f

f

 f

 f

187

 

     

                

   

   

   

   

   


S.Vln

  









Vla

Vc.

Vln II

Vla

Vc.

 



  



 

199

Vln I

Cb.

     

Vln II

S.Vln

193

Vln I

Cb.

17

   

 



   





  







  

  







  



  



 



  

   

 

   

  

    

      



           (norm.)

mf

 

 

     mf

 

   

  

 

   

mf



 

  

 

  f



  







 

         

            f

            f



  

 

f





f

   

 



mf

 

 



      

mf

    

 

     

 

 

 



 

 

 

 

 

mf

mf

mf

mf


18

        

               

205

S.Vln

Vln I

Vln II

Vla

  

 

   

  

 

   

Vc.

Cb.

  

  







ff

 

  

 

ff

 ff

   



 



ff

                                          sim.

Vln I

            

Vln II

Vc.



  mf

    

          

        p sub.

       p sub.

 

       

    

 

  





  

mf

mf

p

p

       

        



 

 

f

p



            

mf

               

Vla

Cb.

    

 

210



 

 

ff

211

S.Vln

   



  



   

   

 

ff

     

   

 

  

   

   p

    p


        217

S.Vln

Vln I

     

Vln II

mf

Vla

Vc.

Cb.

S.Vln

 

  

       

      

Vln II

Vc.

                 

222                 

        

   

              



 

      

 

        

      p

p

 

 

              

             

mf

p

    p

   

  

  

  

p

             

        

p

       

   

          

Vla

 

223

Vln I

Cb.

    

19

     

     

   

     

   

 



mf

p

p


20 S.Vln

 229       

Vln I

    

 

231

       

f

p

Vla

Vc.

Cb.

S.Vln

 





    

   



         p sub.

Vla



f sub.



  

              

    f sub.

    

                 sim.

        



p sub.leggeiro

             p leggiero

Vln II

f

235

Vln I



 







 

 

 

     





  

 

  

               

             

   



    

   



 

 p

Vc.

Cb.

p

 

f sub.

     

   

                       

             

Vln II

               

p


21

         

241

S.Vln

    

Vln I

   

Vln II

 

243

   

      

 

 

 

Cb.

S.Vln

            

       

 

 

    

   

  

250

pp

         f

Vln II

  

Cb.

  

   

  

 

p

p

   

 

  

    

pp

espress.

Vln I

Vc.

  

  

f

247

Vla

p sub.

    

      

f Vc.

     

f

 

Vla

 

f espress.

   

  

f espress.


22 S.Vln

253

Vln I

Vln II

 

Vc.

Cb.





    



    

 

 











f espress.

Vln I



f espress.

    f espress.

260

 

    

259

S.Vln

 

Vla

       

 

    

f

 

   

pizz.

p

p

Vln II

 

Vla

 

     pizz.

p

Vc.

Cb.





  

  

  

f

   f

p

p


265

S.Vln

       

Vln I

 

Vln II

Vc.

S.Vln

 

Vc.

     f

pizz.     

 

     

 

  p

 

  

f

    

p

   

f

270

p

pizz.

p

   

f

  

f

  

  

f

Vla



  

     

Vln II

   

p

271

Vln I

Cb.

   

      

Vla

Cb.

   

23

  

   

 

   

   

   

   

f

 



  

f

f

   

   

f pizz.

f


24 S.Vln

277

arco

    

Vln I

  

   

 

   

   

   

      

  

                                      arco

                                 

    

f

arco

Vln II

Vla

Vc.

Cb.

S.Vln

    

arco   

    

    

     

    

    

f

arco

 

  

  

  

  

 

                

 

      

        

                                           



     







 

    

    

Vc.

      

    

    

Cb.

      

    

    

                



     

Vla

               

f

Vln II

    

arco

f

283

Vln I

f

                                          

                

                


S.Vln

289



        

Vln I



        

Vln II

 

Vla



         

               

Cb.

S.Vln



mf

mf









                                            sim. mf p sub.                                  

Vln I

297

mf

p

                           

Vln II

mf

 

Vla

 

Vc.

Cb.





mf

295

f





                     



      

mf

mf Vc.



25

 

 



p

           p

            p

mf

         

mf

                 

mf

    

mf

mf


26

 305                                             301

S.Vln

p

Vln I

          

          

Vla

Vc.

Cb.

Vln I

Vln II

p

  

           p             

f

           

Vla

Vc.

Cb.

308

        

 f

    

  

 

    

mf sub.

 

      





 

 

      

 

f

 

 

 

  

 

  

  

f

   f

   

   

f

 

   

           

f

cresc.

mf

             

   

f

       

  

     

                                  

cresc.



     

                         

mf sub.

cresc.

  

    

f

           

            

p

f

p

S.Vln





mf sub.                 f mf sub.             

p

Vln II

mf sub.

f sub.

   

  

 


S.Vln

315

        

Vln I

Vla

Vc.

S.Vln

f

                    

 

 

 



 



 

 



                    

   mf

Vln II

Vla

Vc.

    f

        mf

f

mf

f

      

   mf

   

  

       

  

f

  

        f               

                  f              f

f

                                             

      

mf

    

f

         

mf

f

322

Vln I

Cb.

                                                    

                            

Vln II

Cb.

     

27

319

   f

                  

mf

f

mf

f

mf

mf

                

        

              

                       

f

     

f

                


28

                         329

S.Vln

Vln I

Vln II

Vla

Vc.

Cb.

 



         



       

     

Vln I

Vln II

   

   

    

    

   

        

    

         

    

    

    

    

       

339

     

         

        

                



      

                



    

        

    

       

    

       

   

Vla

Vc.

                

Cb.

     

   

                 

   

    

    

               

336

S.Vln

                                                

     

     

    

  

         

    

          

    

           

     

   

     


          342

S.Vln

Vln I

Vln II

                  

  

     

p sub.

       p

        

  

p

             

Vla

p

Vc.

Cb.

S.Vln

             p

   

      p

                   f

          

  

                 

Vln I

     

   

       

    

   

   

cresc.

Vln II

cresc.

Vla

 

Vc.

Cb.

 

   

 

     

   

      

   

   

cresc.

cresc.



ff

   

cresc.

ff

   

 

ff



ff



ff

    347                cresc.

         f

   

          

   

        

   

f

f

         f

    

   

f

          348                            ff

29

 











        

Molto largamente

 

     

    

         

  

        