Thermal system design and simulation ebook pdf

Page 1

Thermal system design and simulationeBook PDF

Visit to download the full and correct content document: https://ebooksecure.com/download/thermal-system-design-and-simulation-ebook-pdf/

THERMALSYSTEM DESIGNAND SIMULATION

This page intentionally left blank

THERMALSYSTEM DESIGNAND SIMULATION

P.L.DHAR

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

AcademicPressisanimprintofElsevier

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom ©2017ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizations suchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformation ormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesfor whomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN978-0-12-809449-5

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/

AcquisitionEditor: LisaReading

EditorialProjectManager: MariaConvey

ProductionProjectManager: SusanLi

Designer: MarkRogers

TypesetbySPiGlobal,India

CONTENTS Preface vii 1.Introduction1 1.1 OutlineoftheBook4 Reference 6 2.MathematicalBackground7 2.1 LinearAlgebraicEquations8 2.2 NonlinearAlgebraicEquations13 2.3 EquationFitting32 2.4 DifferentialEquations39 2.5 LaplaceTransformation52 2.6 AnalysisofUncertainty62 2.7 EngineeringEconomics64 References 71 3.ReviewofFundamentals73 3.1 Thermodynamics73 3.2 FluidFlow 99 3.3 HeatTransfer115 3.4 MassTransfer140 References 146 4.ModelingofThermalEquipment147 4.1 HeatExchangers147 4.2 HeatandMassExchangers203 4.3 ReciprocatingDevices242 4.4 RotatingDevices254 4.5 ThermoelectricModules267 4.6 OtherApplications274 References 295 5.SystemSimulation297 5.1 InformationFlowDiagram298 5.2 SolutionMethodology311 5.3 Off-DesignPerformancePrediction333 v
vi Contents 6.SystemSimulation:CaseStudies349 6.1 IndustrialRefrigerationPlant349 6.2 CombinedCyclePowerPlant357 6.3 LiquidDesiccant-BasedAir-ConditioningSystem(LDAC)373 6.4 Epilog 382 References 383 7.IntroductiontoOptimumDesign385 7.1 GeneralFormulationofanOptimumSystemDesignProblem386 7.2 OptimumDesignofaComponent399 7.3 Epilog 403 Reference 407 8.OptimizationTechniques409 8.1 AnalyticalMethods409 8.2 NumericalMethods440 References 466 9.CaseStudiesinOptimumDesign467 9.1 ThermodynamicOptimization467 9.2 OptimumDesignofComponents480 9.3 OptimumDesignofThermalSystems501 References 513 10.DynamicResponseofThermalSystems515 10.1 DynamicsoftheFirst-OrderSystems515 10.2 HigherOrderSystems535 10.3 TransportationLag538 10.4 PrincipleofSuperposition543 10.5 ControlSystemAnalysis546 10.6 DynamicsofDistributedSystems562 11.AdditionalConsiderationsinThermalSystemDesign583 11.1 Erosion-Corrosion583 11.2 VibrationandNoise585 11.3 StochasticConsiderations591 11.4 SystemDesignConsideringPart-LoadOperation595 11.5 EnvironmentalConsiderations595 11.6 SystemDesignforMultipleObjectives596 11.7 CommercialSoftwares597 References 599 Index 601

Themethodologyofdesignofengineeringsystemshas,overthelastthreedecades, undergoneamajorshift—fromanart,wheretheexperienceofthedesignerwasof paramountimportance,toasciencewithrigorousoptimizationprocedureschoosing thebestpossibledesignfromamongawidevarietyofdesignsgeneratedbyasoftware. Thermalsystems,becauseoftheircomplexity,badlyneededsuchatooltohelpthe designers.Thisbookdocumentstheproceduresthathavebeendevelopedoverthese yearstobringaboutthistransition.

Ihadtheprivilegeofintroducinganewcourse“ThermalSystemSimulationand Design”forpostgraduatestudentsofThermalEngineeringatIITDelhiabout25years ago.Itwasprimarilyasharingofmyownresearchwork,andofmyotherresearch studentsatIITDelhi.Graduallyasthecoursetookshape,itsscopewaswidenedbased onthefeedbackfromthestudents.Atthattimetherewasjustonebookavailableon thistopic,namely“DesignofThermalSystems”byProf.W.F.Stoecker.Thisexcellent bookwastherecommendedtextbookforthecourse.Asthecoursedevelopeditwas noticedthatmanyoftheconceptsthatwehaddeveloped,likeuseofinformationflow diagramstosimplifythesimulationprocedures,noveloptimizationmethodssuitable forthermalsystemsimulation,etc.,werenotadequatelycoveredinthisoreventhe othertext“DesignandOptimizationofThermalSystems”byProf.Y.Jaluria,which waspublishedin1998.Duringthecourseofourresearchworkwehaddevelopedthe detailedsimulationproceduresforvariousequipmentusedinrefrigerationsystems,in thermalpowerplants,andnoveldesiccant-basedcoolingsystems.Theonlyreferences availablewiththestudentsforstudyingtheseweretheoriginalresearchpapersorthe PhDthesesandtheresearchmonographon“ComputerSimulationandOptimization ofRefrigerationSystems”writtenbymeandmyformerresearchstudentDrG.R.Saraf. Assimilarcourseswereintroducedatmanyotherinstitutes,theneedaroseforanupto-datetextwhichincorporatedallthetopicsdiscussedinthesecourses.Thisbookis writteninresponsetothatneed.

Ihadgotthefeedbackthatmyearliermonographonrefrigerationsystemsdesign wasbeingreferredbythedesignersintheindustry,andsothepresentbookhasbeen writtenkeepingtheirneedsalsoinview.

Thebookhasbeenenrichedbythefeedbackofhundredsofstudents—manyofthem professionalengineersfromtheindustry—whotookthiscourse.Myformercolleagues Prof.M.R.RaviandProf.SangeetaKohli,whohavealsotaughtthecoursemanytimes overtheseyears,gavemanyvaluablesuggestions.Manythankstoallofthem!Thanks

PREFACE
vii

arealsoduetoMr.HarshSharmawhopainstakinglytypedthefirstdraftofthebookin LaTeXsoftware.

Ihopethebookwillbeusefultoboththestudentsandthepracticingengineers interestedinthisexcitingfieldofgreatpracticalimportance.Anysuggestionsforits improvementwouldbegratefullyacknowledged.

P.L.Dhar

viii Preface

Introduction

Thedesignofthermalsystems—bethesepowerproducingsystems,likeathermal powerplant,orpowerabsorbingsystems,likeacentralair-conditioningplant—has traditionallybeencarriedoutusingthumbrulesbasedlargelyonexperience.Overthe years,consortiumsofexperiencedengineershavebeenformedbyreputedpublishers, aswellaswell-establishedprofessionalsocietieslikeASMEandASHRAE,toproduce authoritativehandbookstohelpdesignsafeandfunctionalsystems.Thesehandbooks givevaluableinformationonthelikelyrangeofvaluesofimportantdesignparameters, butthefinalchoiceofthevaluesofvariousdesignparametersforatypicalapplication stillrestswiththedesignengineer.Anyengineerwouldnaturallywishthathischoiceof designparametersshouldresultinan“optimumdesign”—thatwhichbestsatisfiesthe requirementofhisclients—beitminimizationofthecost,weight,orfloorarea,orthe maximizationoftheefficiency,coefficientofperformance,etc.Thisdemandsthatalarge numberofalternativedesignsbeobtainedandevaluatedwithrespecttotheoptimization criterion.Traditionallyeventoarriveataworkabledesignofathermalsystem,withits numerousinterconnectedcomponents,hasbeensuchalaborioustaskthatrarelyany attemptwasmadetoarriveatthe“optimumdesign.”Manycompaniesdidmodifytheir equipmentdesignsprogressively,onthebasisoftheperformanceofearliermodels,and thusslowlythedesignswereimprovedovermanygenerationsof“models.”However, overthelastthreedecades,thepossibilityofdoinghighspeedcomputationthrough desktopcomputershasmadecomputer-aideddesigncommerciallyviable.Thedesigners canthusaimatobtainingoptimumdesignsofthermalsystems.Increasingcompetition andrapidlyincreasingcostsofenergyhave,infact,madethistaskimperative.

Toappreciatethedifferencebetweena“feasibledesign”andthe“optimaldesign” letusconsiderasimple,commonlyencounteredproblem:designofaheatexchanger, say,forrecoveringwasteheatfromthefluegasesleavingadieselgenerator(DG)setto producesteamforuseinalaboratory.Thefirststepinthedesignprocesswouldbeto specifytheamount,thetemperature,andpressureofthesteamrequiredinthelaboratory. Letusassume,forthesakeofillustration,thatthelaboratoryrequires5kg/minofdry saturatedsteamatapressureof2bar.Knowingtheminimumtemperatureofwaterin winter,say10◦ C,wecancalculatetheamountofheattransferthatshouldoccurinthe heatexchanger.Themassflowrateandthetemperatureofthehotgasesexitingfrom ThermalSystemDesignandSimulation

CHAPTER1
©2017ElsevierLtd.
Allrightsreserved. 1
http://dx.doi.org/10.1016/B978-0-12-809449-5.00001-2

Fig.1.1 FintubeheatexchangerforrecoveringheatfromDGsetexhaust.

theDGsetatthedesignconditionswouldbeknownfromitsperformancedata.Now, usingthisdataweneedtodesignasuitableheatexchangerforthisapplication.

Thefirststepindesignwouldbetochoosethetypeofheatexchanger,fromamong variouspossibilities[1].Thisisusuallydonebythedesignengineeronthebasisof hisexperience,keepinginviewvarioussystemicconstraints,likethetypeoffluids, theirfoulingpotentialandcleanability,thepermissiblepressuredrops,consequencesof leakage,etc.Inthiscase,say,wechoosetubefinheatexchangertominimizethepressure droponthegasside.Nextwehavetochoosethetubediameterandthefinheight.This isusuallydoneonthebasisofprevalent“goodindustrialpractices.”Supposewechoose tubesofbasediameter16mm,IDof14mm,withintegralfinsontheoutsideof 2mmheightspacedonthetubewithapitchof4mm.Wethenhavetodecideonthe configurationofthetubebank,thelongitudinalandlateralpitches, ST and SL ,andthe sizeoftheductthroughwhichthehotgaseswouldflow,asshownin Fig.1.1

Theseareagainchosenbasedonthepastexperiencewiththistypeofheatrecovery units.Thusthetwopitches ST and SL ,couldbechosen,typicallyas32and30mm, respectively.Thesizingoftheductwillhavetobedonetoensurethatthegasside velocityiswithinacceptablelimits1 andallthetubescanbeaccommodatedwithina reasonablelength.Wecouldchooseagasvelocityoverthetubebundle,sayof10m/s, anddesigntheexhaustgasductaccordingly.Wethenchoosea“reasonable”valueof velocityofwaterinthetubes,say1.5m/s(usuallywatervelocityislimitedto3m/sto minimizeerosion),anddecideonthenumberofthetubesneededinasinglepassofthe heatexchangertoachievetherequiredmassflowrateofwater.

Havingfixedthebasicconfigurationsandthecrucialdesignvariables,theheat transfercalculationscanbedone.Weestimatetheheattransfercoefficientofthegas

1 Ifitistoolow,thegassideheattransfercoefficientwouldbeverysmall,andifitistoohigh,thegasside pressuredropwouldbehighandthatwouldinfluencetheperformanceoftheICengineoftheDGset throughincreaseinitsexhaustpressure.

2 ThermalSystemDesignandSimulation
SL
ST

sideandthewatersidebyusingappropriatecorrelationsfromtheliterature;findthe overallheattransfercoefficientandtheeffectivemeantemperaturedifferencebetween thetwostreams,andthenestimatetheheattransferareaneeded.Thelengthofthe heatexchangertubescanthenbecalculated.Wethushaveafeasibledesignoftheheat exchangerwhichwilldelivertherequiredamountofsteam.

Itisobviousfromtheabovedescriptionofthedesignprocessthatwecouldhave obtainedmanyother“feasible”designsbychangingthevaluesofthevariablesliketube diameter,finpitch,finheight,velocityofwater,velocityofhotgases,longitudinaland lateralpitchesofthetubebundle,etc.,assumedaboveonthebasisof“goodindustrial practices.”Foreachchangeinthevalueofadesignvariable,adifferentdesignoftheheat exchangerwouldbeobtained.Wecouldthenchoosebetweenthembasedonasuitable optimizationcriterion.Theoptimizationcriterioncould,forexample,beminimization oftheinitialcost,orofthepressuredroponthegasside(sincethatwouldinfluencethe performanceoftheICengineoftheDGset)orasuitablecombinationofthetwo.Thus wecould,forexample,apportionacosttothesteamproducedandtothereductionin DGsetoutputcausedbygassidepressuredropintheheatexchanger,andcombine thesesuitablywiththeinitialcostoftheheatexchangertoevolveacompositefunction whichgivesthenetincreaseinprofitduringtheentireprojectedlifeoftheDGset, duetoincorporationoftheheatrecoverysystem.Theheatexchangerdesignwhich maximizesthisprofitcouldbechosenasthe“optimumdesign.”Anotherapproach couldbetoconstrainthepressuredroponthegassidetobelessthanaspecifiedvalue andthenminimizetheinitialcostoftheheatexchanger;yetanotherapproachbeingto maximizethesecondlawefficiencyoftheheatexchanger.

Now,sincethenumberofpossiblefeasibledesignsisextremelylarge,weneedto devisesuitablestrategytonarrowdownthesearchdomaininconsonancewiththe chosenobjectivetoarriveatthe“optimumdesign”withminimumcomputational effort.Thisnecessitatesuseofmathematical/numericaloptimizationtechniquesto generatealternativedesignswhicharelikelytobe“better”thantheinitialdesign. Further,toassesswhetherthedesignsso“generated”arefeasible,weneedaprocedure todeterminetheperformanceofthesystembasedonsuchadesign.Thisrequires computer-basedsystemsimulationprocedures.Systemsimulation,inturn,needscomprehensiveprocedurestopredicttheperformanceofeachcomponentofthesystemand amethodologytointegratetheseproceduresintunewiththeiractualinterconnection inthesystem.Thusacomprehensivecomputerprogramtoobtainoptimaldesignofa thermalsystemwouldessentiallybeanoptimizationalgorithmtomaximize/minimize theobjectivefunctionsubjecttotheconstraintsthatitprovidestherequiredthermal performance2 withoutcompromisingonothernonthermalperformancemeasureslike 2

Whichispredictedwiththehelpofthesystemsimulationprogram.

Introduction 3

longlife,safety,permissiblewearandtear,noise,etc.3

Moreoftenthannot,the optimizationalgorithmisasearchproceduretogenerateprogressively“better”designs, whichneedtobecheckedforfeasibilitybyusingthesystemsimulationprocedure.

Thesystemsimulationproceduresarealsoquiteusefulintheirownright.They enableustoassesstheinfluenceofvariousoperatingparametersontheperformance ofthesystemoritscomponentswithoutactuallyconductinglaboratorytestswhich areoftenveryexpensiveandtimeconsuming.Wecanthusdoasensitivityanalysisto identifytherelativeinfluenceofvariouscomponentsand/ortheoperatingconditions ontheoverallsystemperformance.Mostthermalsystemsrarelyoperateonthedesign conditions,andthesystemsimulationprocedurescanhelpuspredicttheir“off-design” performance.Thisisoftenofgreathelpindesigningsuitablecontrolstrategiestoensure safeand“optimal”operationevenunderoff-designoperatingconditions.

1.1OUTLINEOFTHEBOOK

Asindicatedbythetitleofthebook,itsfocusisonsimulationanddesignofthermal systems.Bytheterm“system”weimplyacollectionofcomponentswithinterrelated performance,andby“simulation”wemeanpredictingtheperformanceofasystemfor agivensetofinputconditions.Thermalsystemsgenerallyinvolvetransferofheatand work,oftenthroughfluidsmovingthroughvariouscomponents.Thusanalysisofthe performanceofthermalsystemsdemandsathroughknowledgeofthefundamentalsof thermodynamics,heatandmasstransfer,andfluidmechanics.Weshallreviewthesevery brieflyin Chapter3.

Mostoftheequipmentsusedinathermalsysteminvolveheatandmasstransfer. Forsuchheat/massexchangersitisoftenpossibletodevelopdetailedmodelsof processsimulation.However,forsomeimportantequipmentlikemultistageturbines andcompressors,detailedthermofluidmodelingisextremelycomplicated.Often,while simulatingthermalsystemsusingsuchturbomachines,andotherequipmentswhere processmodelswouldbetoocumbersometoincorporateinthesystemsimulation program,theperformancecurvesofsuchequipmentsaretakenfromthemanufacturer’s catalogs,andconvertedintoequationsforeaseofuseinthecomputerprograms.We alsoneedtofitsuitableequationsintothethermodynamicpropertydata.Equation fittingisusuallydoneusingthe“leastsquarestechnique.”Theartandscience(or rathermathematics!)offittingequationsintodataarediscussedin Chapter2,along withothermathematicaltechniquesneededinthermalsystemsimulation.Theseinclude commonlyusedmethodsforsolutionofsimultaneousalgebraicequations(bothlinear andnonlinear)anddifferentialequations,basicconceptsofLaplacetransformation,etc. Abriefdiscussiononengineeringeconomicsisalsoincludedinthischapter,focusing

3 Thesenonthermalconsiderationsareoftenincorporatedthroughconstraintsonvariables,seealso Chapter11

4 ThermalSystemDesignandSimulation

mainlyonthebasicprinciplesofconvertingcomplexoptimizationobjectives4 into financialterms.

Thedetailedprocessmodelsoftypicalequipmentusedinthermalsystemslike heatandmassexchangers,varioustypesofcompressors,gasifier,etc.,arepresentedin Chapter4.Mostthermalsystemsuseatmosphereasaheatsourceorasink.Sincethe environmentalconditions(liketemperature,humiditycontent,solarradiationintensity, etc.)areinherentlyuncertain,andcanonlybepredictedwithcertainprobabilities, arigorousstudyoftheperformanceofthermalsystemsshouldincorporatethis probabilisticdescription.Suchanapproachistermedasstochasticsimulation,andshall beonlybrieflydiscussedinthelastchapterofthebook.In Chapter4 thefocusis ondeterministicsimulation,whereitisassumedthattheinputvariablesareprecisely specified.Further,thoughthefocusofthebookisprimarilyonthermalsystemslike powerproducingsystems(ICengines,steampowerplants,etc.)andcoldproducing systems(likerefrigerationandair-conditioningequipment),inthischapterwehavealso illustratedtheapplicationofbasiclawsofthermodynamicsandheat-masstransferto developprocessmodelsforotherapplicationsinvolvingtransferofheatandmasslike coolingofelectronicequipment,manufacturingprocesses,heattreatment,dehydration offoods,etc.

Systemsimulationinvolvesintegrationofthemodels/equationsforpredictingthe performanceofvariouscomponentsintoacomprehensiveprocedurewhichensures thatvariousconservationequations(likethoseformass,momentum,andenergy conservation)aresatisfied.Fromamathematicalperspectivesystemsimulationinvolves solutionofsimultaneous“equations,”mostlynonlinear,representingtheperformance ofitscomponents.Manyatimesthese“equations”areactuallydetailedprocess modelsoftheequipmentwhereinvariousvariablesareintricatelyrelated,usually throughdifferentialequations.Toevolveasuitablesystemsimulationstrategy,the componentsimulationmodelsarerepresentedintheformofinformationflowdiagrams whichindicatetheminimuminputvariablesnecessarytoobtainthedesiredoutput information.Bysuitablychoosingtheinputandoutputvariables,andcombining theseinformationflowdiagramsjudiciously,itispossibletoevolvestrategieswhich significantlyreducethecomputationaleffortforsystemsimulation.Theconceptof informationflowdiagramanditsutilityinsystemsimulationarediscussedin Chapter5. Afewcomprehensivecasestudiesofsomecommonthermalsystems,illustratingtheuse ofalltheseconceptsarepresentedin Chapter6

Themainfocusofthebookisonoptimumdesignofthermalsystems.Asdiscussed brieflyabove,theobjectivesofoptimumdesign,theconstraintsandthedesignvariables, canallvarydependinguponthespecificrequirementsofthesituationandthe designer’spreferences.Thus,forexample,theobjectivefunctioncouldbeeconomic,like

4 Likeminimizationofthetotalcostofaplanttakingintoaccountboththeinitialcapitalcostandthe runningcostspreadoveritsentirelifetime.

Introduction 5

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Thermal system design and simulation ebook pdf by steven.mizell608 - Issuu