Page 48

Team 43: Smart Ocean Wave Power Generation System Sponsored by: UCONN Sponsor Advisor: Bryan Weber

Steve Haldezos, Patrick Kalagher, Faculty Advisor Prof. Bryan Weber

The UCONN Power and Energy Systems Lab is developing a fleet of Autonomous Underwater Vehicles (AUV) to maintain underwater communication cable networks. An electrical recharging network needs to be developed in support of the AUV fleet. Our team has designed, built and tested a wave energy converter prototype that allows the generation and storage of power through wave motion. Our UCONN sponsored multidisciplinary team, consisting of both electrical and mechanical engineering students, has gone through a variety of different power generating techniques and designs and ultimately settled on a buoy equipped with a linear drive to generate power through the sinusoidal motion of ocean waves. A physical test rig was created in Solidworks to test the design, and ANSYS Maxwell was used to simulate the up and down motion of a stationary magnet moving through a set of coils to induce a current. With this small scale data, a larger full-size buoy was modeled and built. The large full-size buoy assembly consists of a spar which is held in stationary position in the water through the use of a heavy plate which acts as a damper. Inside the spar is a magnet. The buoy itself moves independent of the spar and rides the vertical motion of passing waves. Inside this buoy is copper coils which move past the stationary magnet in the spar. This movement induces a current which is used to charge a battery.Along with the linear drive to generate power from the movement of water, solar cells were added to the top of the buoy structure to use the abundant sunlight available at sea. A vertical axis turbine was design and built as well to harness some of the available wind. Both these supplementary forms of power generation feed into the onboard batteries to keep them charged in nearly any weather condition.

Senior Design Project Program 2014-2015


Profile for Stephen White

Final senior design brochure 2014 15 1  

Final senior design brochure 2014 15 1