Issuu on Google+

TSOP17.. Vishay Telefunken

Photo Modules for PCM Remote Control Systems Available types for different carrier frequencies Type TSOP1730 TSOP1736 TSOP1738 TSOP1756

fo 30 kHz 36 kHz 38 kHz 56 kHz

Type TSOP1733 TSOP1737 TSOP1740

fo 33 kHz 36.7 kHz 40 kHz

Description The TSOP17.. – series are miniaturized receivers for infrared remote control systems. PIN diode and preamplifier are assembled on lead frame, the epoxy package is designed as IR filter. The demodulated output signal can directly be decoded by a microprocessor. TSOP17.. is the standard IR remote control receiver series, supporting all major transmission codes. GND VS

OUT 94 8691

Features D Photo detector and preamplifier in one package D Internal filter for PCM frequency D Improved shielding against electrical field

D Low power consumption D High immunity against ambient light D Continuous data transmission possible (up to 2400 bps)

disturbance

D Suitable burst length ≼10 cycles/burst

D TTL and CMOS compatibility D Output active low

Block Diagram 2 Control Circuit

Input

80 kW 3

PIN AGC

Band Pass

VS

OUT

Demodulator 1

GND

94 8136

Document Number 82030 Rev. 10, 02-Apr-01

www.vishay.com 1 (7)


TSOP17.. Vishay Telefunken Absolute Maximum Ratings Tamb = 25_C Parameter Supply Voltage Supply Current Output Voltage Output Current Junction Temperature Storage Temperature Range Operating Temperature Range Power Consumption Soldering Temperature

Test Conditions (Pin 2) (Pin 2) (Pin 3) (Pin 3)

x

(Tamb 85 °C) t 10 s, 1 mm from case

x

Symbol VS IS VO IO Tj Tstg Tamb Ptot Tsd

Value –0.3...6.0 5 –0.3...6.0 5 100 –25...+85 –25...+85 50 260

Unit V mA V mA °C °C °C mW °C

Basic Characteristics Tamb = 25_C Parameter Supply y Current ((Pin 2))

Test Conditions VS = 5 V, Ev = 0 VS = 5 V, Ev = 40 klx, sunlight

Symbol ISD ISH VS d

Supply Voltage (Pin 2) Transmission Distance

Ev = 0, test signal see fig.7, IR diode TSAL6200, IF = 400 mA Output Voltage Low (Pin 3) IOSL = 0.5 mA,Ee = 0.7 mW/m2, f = fo, tp/T = 0.4 Irradiance (30 – 40 kHz) Pulse width tolerance: tpi – 5/fo < tpo < tpi + 6/fo, test signal (see fig.7) Irradiance (56 kHz) Pulse width tolerance: tpi – 5/fo < tpo < tpi + 6/fo, test signal (see fig.7) Irradiance tpi – 5/fo < tpo < tpi + 6/fo Directivity Angle of half transmission distance

Min 0.4

Typ 0.6 1.0

4.5

Max 1.5

Unit mA mA V m

5.5 35

VOSL

250

mV

Ee min

0.35

0.5

mW/m2

Ee min

0.4

0.6

mW/m2

Ee max ϕ1/2

W/m2 deg

30 ±45

Application Circuit TSOP17.. TSAL62..

2

3

100 W *) 4.7 mF *)

+5V >10 kW optional

Out

mC

**) 1

GND

96 12108

*) recommended to suppress power supply disturbances **) The output voltage should not be hold continuously at a voltage below 3.3V by the external circuit.

www.vishay.com 2 (7)

Document Number 82030 Rev. 10, 02-Apr-01


TSOP17.. Vishay Telefunken Suitable Data Format The circuit of the TSOP17.. is designed in that way that unexpected output pulses due to noise or disturbance signals are avoided. A bandpassfilter, an integrator stage and an automatic gain control are used to suppress such disturbances. The distinguishing mark between data signal and disturbance signal are carrier frequency, burst length and duty cycle. The data signal should fullfill the following condition: • Carrier frequency should be close to center frequency of the bandpass (e.g. 38kHz). • Burst length should be 10 cycles/burst or longer.

Some examples for suitable data format are: NEC Code, Toshiba Micom Format, Sharp Code, RC5 Code, RC6 Code, R–2000 Code, Sony Format (SIRCS). When a disturbance signal is applied to the TSOP17.. it can still receive the data signal. However the sensitivity is reduced to that level that no unexpected pulses will occure. Some examples for such disturbance signals which are suppressed by the TSOP17.. are:

• After each burst which is between 10 cycles and 70 cycles a gap time of at least 14 cycles is neccessary.

• DC light (e.g. from tungsten bulb or sunlight)

• For each burst which is longer than 1.8ms a corresponding gap time is necessary at some time in the data stream. This gap time should have at least same length as the burst.

• Continuous signal at 38kHz or at any other frequency

• Up to 1400 short bursts per second can be received continuously.

0

5

• Signals from fluorescent lamps with electronic ballast (an example of the signal modulation is in the figure below).

10

15

20

time [ms] IR Signal from Fluorescent Lamp with low Modulation

Document Number 82030 Rev. 10, 02-Apr-01

www.vishay.com 3 (7)


TSOP17.. Vishay Telefunken Typical Characteristics (Tamb = 25_C unless otherwise specified) Ee min – Threshold Irradiance ( mW/m2 )

eE min

/e E – Rel. Responsitivity

1.0 0.8

0.6

0.4 0.2

f = f0

"5%

Df ( 3 dB ) = f0 / 10

2.0 f ( E ) = f0 1.6 1.2 0.8 0.4 0.0

0.0 0.7

0.8

0.9

1.0

1.1

1.3

1.2

f / f0 – Relative Frequency

94 8143

Figure 1. Frequency Dependence of Responsivity

tpo – Output Pulse Length (ms)

0.9 0.8 Input burst duration

0.6 0.5

l = 950 nm, optical test signal, fig.7

0.4 0.3 0.2 0.1 0 0.1

1.0

10.0

Ee – Irradiance (

96 12110

)

4.5 4.0 3.5

^ ^

Correlation with ambient light sources ( Disturbance effect ) : 10W/m2 1.4 klx ( Stand.illum.A, T = 2855 K ) 8.2 klx ( Daylight, T = 5900 K )

3.0 2.5 2.0 1.5

Ambient, l = 950 nm

1.0 0.5 0 0.01

0.10

1.00

10.00

Figure 3. Sensitivity in Bright Ambient

www.vishay.com 4 (7)

1 kHz

10 kHz 1

100 Hz

0.1

1

10

100

1000

DVs RMS – AC Voltage on DC Supply Voltage ( mV )

Figure 5. Sensitivity vs. Supply Voltage Disturbances 1.0 0.9 0.8

Sensitivity in dark ambient

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 –30 –15

100.00

E – DC Irradiance (W/m2)

96 12111

2.0

1.6

f = f0

0.1 0.01

E e min – Threshold Irradiance (mW/m2 )

E e min – Threshold Irradiance (mW/m2 )

5.0

1.2

10

94 9106

Figure 2. Sensitivity in Dark Ambient

0.8

Figure 4. Sensitivity vs. Electric Field Disturbances

100.0 1000.0 10000.0 mW/m2

0.4

E – Field Strength of Disturbance ( kV / m )

Ee min – Threshold Irradiance ( mW/m2 )

1.0

0.7

0.0 94 8147

96 12112

0

15

30

45

60

75

90

Tamb – Ambient Temperature ( °C )

Figure 6. Sensitivity vs. Ambient Temperature

Document Number 82030 Rev. 10, 02-Apr-01


TSOP17.. Vishay Telefunken Optical Test Signal Ee

(IR diode TSAL6200, IF = 0.4 A, 30 pulses, f = f0, T = 10 ms)

tpi * * tpi

w

T 10/fo is recommended for optimal function

Output Signal

VO

1) 2)

VOH

16110

"

7/f0 < td < 15/f0 tpo = tpi 6/f0

0.9 0.8

Ton

0.7 0.6 0.5 Toff

0.4 0.3

l = 950 nm, optical test signal, fig.8

0.2 0.1 0 0.1

VOL

1.0

10.0

100.0 1000.0 10000.0

Ee – Irradiance (mW/m2)

96 12114

t

td1 )

T on ,Toff – Output Pulse Length (ms)

t

1.0

tpo2 )

Figure 7. Output Function Ee

Figure 10. Output Pulse Diagram

Optical Test Signal 1.0

600 ms

t

600 ms T = 60 ms

94 8134

VO

Output Signal, ( see Fig.10 )

I s – Supply Current ( mA )

0.9 0.7 0.6 0.5 0.4 0.3 0.2 0.1

VOH

0 –30 –15

VOL Ton

t

Toff

Figure 8. Output Function

S ( l ) rel – Relative Spectral Sensitivity

Envelope Duty Cycle

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 10

20

30

40

50

60

70

80

15

30

45

60

75

90

Figure 9. Max. Envelope Duty Cycle vs. Burstlength

1.2 1.0 0.8 0.6 0.4 0.2 0 750

90

Burstlength [number of cycles/burst]

Document Number 82030 Rev. 10, 02-Apr-01

0

Tamb – Ambient Temperature ( °C )

96 12115

Figure 11. Supply Current vs. Ambient Temperature

0.9

16155

Vs = 5 V

0.8

94 8408

850

950

1050

1150

l – Wavelength ( nm )

Figure 12. Relative Spectral Sensitivity vs. Wavelength

www.vishay.com 5 (7)


TSOP17.. Vishay Telefunken 0°

10°

20°

10°

20°

30°

30°

40° 1.0

40° 1.0

0.9

50°

0.9

50°

0.8

60°

0.8

60°

70°

0.7

70°

0.7

80° 0.6 95 11339p2

0.6 0.4 0.2 0 0.2 0.4 drel – Relative Transmission Distance

Figure 13. Vertical Directivity ϕy

80° 0.6 95 11340p2

0.6 0.4 0.2 0 0.2 0.4 drel – Relative Transmission Distance

Figure 14. Horizontal Directivity ϕx

Dimensions in mm

96 12116

www.vishay.com 6 (7)

Document Number 82030 Rev. 10, 02-Apr-01


TSOP17.. Vishay Telefunken Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs ). The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA ) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423

Document Number 82030 Rev. 10, 02-Apr-01

www.vishay.com 7 (7)


This datasheet has been downloaded from: www.DatasheetCatalog.com Datasheets for electronic components.


Receptor Infravermelhos 36KHz = TSOP1736 - Manual Sonigate