Page 1

Constructing Environments   Logbook   Samantha  McNeil  640122  

Contents Page   1. Title         2. Contents   3. Week1   4. Week  1  Studio  Activity   7. Loads   8. Forces   9. Looking  At  a  Structure   10. Week  2   11. Week  2  Studio  Activity   13.  Soils  &  Topography   14.  Structural  Systems   15.  Construction  Systems   16.  Common  ESD  Strategies   17.  Environmentally  Sustainable  Design   18.  Structural  Joints   19.  Week  3   20.  Week  3  Studio  Activity   25.  Structural  Elements   26.  Role  of  Foundations   27.  Footings  &  Foundations   28.  Introduction  of  Materials   29.  Properties  of  Materials  

30. Clay  Bricks   31.  Concrete  Blocks   32.  Stone   33.  Week  4   34.  Week  4  Studio  Activity   36.  Floor  &  Framing  Systems   37.  Concrete   38.  Concrete  Process   39.  Columns  &  Beams   40.  In  Situ  Concrete   41.  Pre  –  cast  Concrete   42.  Week  5   43.  Week  5  Studio  Activity   44.  Wood  To  Timber   45.  Timber   46.  Engineered  Timber   47.  Beams   48.  Week  6   49.  Studio  Activity   51.  Roofing  systems   52.  Roof  Systems   53.  Introduction  to  Metals  

54. Ferrous  Metals   55.  Non  –  Ferrous   56.  Week  7   57.  Detailing  for  Heat  &  Moisture   58.  Rubber   59.  Plastics   60.  Paints   61.  Week  8   62.  Studio  Activity   64.  Glass   65.  Openings   66.  Week  9   67.  Construction  Detailing   68.  Composite  Materials   69.  Week  10   70.  Lateral  Supports,  Collapses  &   Failures   71.  Heroes  &  Culprits   72.  Glossary   81.  Referencing

Week 1    Studio  Activity  

Loads Forces   Looking  At  A  Structure  

Building The  Wall   The   circular   structure   was   proving   effective   structurally   and   in   terms   of   efficiency   as   unnecessary   corner   spaces  were   eliminated  –  the   goal  was   for   height   and   adequate   space.     The   gaps   in   the   blocks   could   work   as   insulation   and   allowing   breezes   through   the   structure.   The   structural   system   is   exposed   which   eliminates   unnecessary   material   for   the   enclosure   system  (Newton,  2014)  

Circular Frame   The   structural   system   (Ching,   2008)   will   be   volumetric   (Newton,   2014)   as   the   material   imitates   bricks.   The     circular   shape   is   used   to   minimise     material   use   and   to   maximise   height.       The   doorway   has   been   left   as   a   space,   measured  large  enough  to  fit  our  object   (toy   horse),  to   be  factored  in  later.   The   circular  frame  will  allow  a  dome  –  like   closure  at  the  top  to  act  as  a  ceiling.   Load  Path  

R R   R   Strength  Of  Material   Timber   retains   strength   in   compression  and  is  a  stiff  material.  Due   to   thick,   short,   rectangular   shape   the   material   will   not   buckle   and  will   retain   its   shape   under   compression.   The   blocks   at   the   base   of   structure   were   placed   in   a   rotating   orientation   level-­‐ by-­‐level;   first   horizontally,   then   vertically.   The   horizontal   placement   dispersed   the   load   over   a   wider   area   and   provided   stability,   a   system   imitating   the   structure   of   a   human   foot   (Newton,   2014).   Vertical   placement   gave  the  structure  height.  

Closing The  Doorway   The   problem   was   that   the   self   –   load   of   the   overhanging   blocks   needed  to  be  stabilised.  Building   up   the   sides   of   the   structure,   thereby   transferring   the   load   path   horizontally  and  then  vertically  did   this.   The   orientation   of   bricks   imitates   the   idea   of   a   Herringbone   Pattern   (Mitcheltree,  2014),  getting   the  bricks   to   be   self-­‐supporting   and   locked   as  no  structural   connections   or  joints  were  to  be  used.                                          

Load Path    

Structural Process  At  Height   Once  our  height  was  above  usable  interior  space,   we   minimised  the  structures   circumference,  as  it   would   be   economically   unfeasible   to   continue   to   use   so   many   blocks.   Reducing   circumference   length   dramatically   decreased   the   number   of   blocks   per   level.   As   is   shown   in   below   photograph,   each   level   contained   four   blocks   once  the  ceiling  was  closed.  While  we  could  have   built   the   tower   with   one   block   per   level,   this   would   not   have   been   stable,   and   would   have   easily   tipped.   Ensuring   the   structure   was   stable   maximised  efficiency  and  minimized  materials  as   it  would  last  for  a  longer  period  of  time.  


Closing Ceiling   Why?   –   Economically   feasible.   Similar   to   the  process  of  closing  the  doorway,  we  let   half  the  blocks  over  hang  into  the  centre  so   that   the   self   –   load   was   still   supported.   Using   only   horizontally   orientation   of   blocks   maximised   over   hang   and   transferred   the   load   path   vertically.   We   built  the  structure  to  a  close,  ensuring  load   path   was   transferred   through   exterior   blocks   to  the  ground  and  then  focused   on   height.    

Comparison With  Others   This   group   used   a   square   shape   base,   perhaps   as   it   is   the   norm   for   houses   in   Melbourne.   Using   the   interlocking   idea   of   the   Herringbone   Pattern   (Mitcheltree,   2014),  the  walls  were  sufficiently  stable.  On       the   left   wall   it   is   evident   they   replicated   a   double   brick   structure   which   would   have   been   economically   and   environmentally   efficient.   It   moderate   temperature   change   and   reduce   the   use   of   air-­‐conditioning   and   heating.    

Applied Loads   Why  did  this  structure  stay  up?   Site   conditions   were   controlled   and   stable:   No   wind,   flat,   and   a   strong   building   surface.   Brunelleschi’s   Ospedale   degli   Innocenti   extensively   uses  columns  as  a  part  of  the  structural   system   (Selenitsch,   2014).   Using   precedent,   we   understand   that   the   column   structure   transfers   loads   effectively   downward   and   can   sustain   substantial   point   &   uniformly   distributed   loads   (Newton,   2014).   In   this   instance   it   is  uniformly  distributed   across   the   surface   of   the   column.   The   Herringbone   Pattern   and   strength   of   material   combined   with   the   structure   supported   loads   greater   than   the   weight  of  itself.      

Critical Point  of  Collapse   In   the   similar   way   that   the   doorway’s   load   path   could   be   distributed   horizontally   and   then   vertically   to   the   ground,   we   were   able   to   create   gaps  in  the  structure  before   collapse.  An  example   is   shown   in   the   photograph   below.   The   critical   point   of   collapse   identified   was   in   the   middle   of   the   structure   when   one   too   many   a   block   was   removed  and  an  imbalance  created.  The  self-­‐load   of   the   top   of   the   structure   became   too   heavy   to   sustain.   The   imbalance   of   weight   caused   the   structure  to  tip.  The  dynamic  force  (Ching,  2008)   of  the  falling  blocks  was  not  accounted  for  in  the   structural  system  and  the  structure  collapsed.  

Week 2   Studio  Activity   Soils  &  Topography   Structural  Systems   Construction  Systems   Common  ESD  Strategies   Environmentally  Sustainable  Design   Structural  Joints  

Plan We  intended  to   emulate   a   truss   system   inspired   by   a   crane   to   create   stability   and   strength   in   the   thin   balsa   wood     (Newton,   2014).   Creating   a   triangular    shape   to   cross   diagonally   down   the     sides  of  the  structure  would  distribute     the   load   and   give   the   structure     strength.   We  will  create  a  brace  to  hold    the   posts   together   and   stiffen   the     structure   as   is   shown   in   the   diagram    below.                                              

Efficiency of  Material   Anisotropic   material   (Newton,   2014)   as   the   magnitude   is   easily   distorted   when   a   load   is   applied.   Balsa   Wood,   a   type   of   timber,  is  notorious  for  it’s  light,  breakable   qualities.   When   in   planar   form   it   is   a   stiff   material   but   can   easily   snap.   Distributing   the  load  through  various  load   paths  is  the   only   option   for   retaining   point   or   uniformly   distributed   loads   in   this   structure.   Creating  a   tower   with  timber   is   inefficient,   as   it   tends   to   bend   under   compression.  

Load Path   Diagram  

Construction System  Employed   It   is   a   structural   system   as   it   is   built   above   ground,   and   the   structure   held   itself  upright.   True  to   a   skeletal   system   the   aim   is   to   transfer   loads   to   the   ground   (Newton,   2014).   Where   the   truss   system   was   used   the   structure   was  strengthened  as  two  routes  to  the   ground   consistently   divided   the   load.   On   one   side   we   used   fixed   joints   to   vertically   place   strips   of   timber   and   this   side   was   the   first   to   show   deformation   when   even   a   light   compression  load  was  applied.  

Load Path  Diagram        


Structural Joints  and  Comparison   Referring   to   the   joints   mentioned   by   Newton   (2014),   we   employed   fixed   joints   in   our   structure.   Limited   materials   eliminated   roller   joints,   and   pin   joints   did   not   seem   as   effective   although   they   are  commonly  used  in   construction.  As  a   result   of   the   fixed   joint,   bending   did   occur   as   deflection   did   not   occur   at   the   joint   (Newton,   2014).   However,   using   a   fixed   joint   stabilised   our   structural   joints.   This   group’s   structure   used   pin   joints.   The   flexibility   of   material   is   demonstrated   by   its   45°   angle   when   point   load   compression   applied.   Shortly   after   deflection   the   pin   joints   gave   way   and   the   structure   collapsed   demonstrating   the   weakness   of   structural  joints.  The  height  of  this  tower   was   too   great   for   the   weakness   of   materials,  and  it  was   created  on  a   slight   angle,   which   caused   an   imbalance   and   inability  to  support  its  self  –  load.  

Deformation Although   balsa   wood   is   quite   a   stiff,   rigid   material,   it   proved   to   be   quite   flexible   when   fixed   into   lengthy   ties   with   fixed   joints.   The   super   glue   and   masking   tape   was   very   efficient   in   holding   the   joints   together.   Structural   joints   are   generally   a   point  of  weakness  as  was  seen  in  the  other   groups  frame  (Newton,  2014),  however  in   the  end  it  was  the  longer,  weaker  parts  of   the   balsa   wood   that   gave   in   first   when   compression  was  applied.  

Constructing Environments Logbook Part 1  
Constructing Environments Logbook Part 1