Page 1

Fundamentos e Metodologia de Matemรกtica

.


SUMÁRIO 1.

Texto: Intervenções do Professor para o Conceito de Número ............... 03

2.

Apresentação para Alunos da 5ª Série: A História da Matemática .......... 04

3.

Ábaco: Tipos, Surgimento e Utilidades para a Humanidade ................... 13

4.

O Ábaco como Recurso para a Compreensão das Casas Decimais

nos Livros Didáticos ................................................................................. 16 5.

Crianças Utilizando o Ábaco: Atividade e Perguntas ............................... 20

6.

Bibliografia ............................................................................................... 23

2


1. TEXTO: INTERVENÇÕES DO PROFESSOR PARA O CONCEITO DE NÚMERO O desenvolvimento do pensamento e do aprendizado da criança está ligado à observação e à exploração do mundo à sua volta e, no ensino da matemática, isso não é diferente. Partindo do princípio de que a compreensão e o aprendizado são processos pessoais, torna-se indispensável que o aluno pense por si próprio e faça as suas descobertas. Neste contexto, o papel do professor é apresentar

e estimular o conhecimento matemático através dos instrumentos adequados. As primeiras experiências matemáticas na escola devem basear-se nos conhecimento pré-existentes e informais das crianças e, para isso, o professor buscará meios de fazer a criança explorar o que as rodeia a fim de que ela crie suas próprias reflexões. Existem diversas possibilidades de intervenções que podem ser aplicadas pelo professor na construção do conceito de número,

sendo que as mais comuns e eficazes estão relacionadas ao manuseio de materiais (reconhecimento e contagem de objetos, blocos, jogos, dominós, material dourado, ábaco e etc.).

No aprendizado da matemática, os materiais concretos são utilizados para representar os conceitos matemáticos. As relações matemáticas não estão nos objetos, em si, mas são os facilitadores para que esses pensamentos abstratos sejam assimilados. A compreensão e consequentemente assimilação do abstrato através do concreto resulta em uma aprendizagem significativa. Para estimular a autonomia e espontaneidade de reflexão, é indispensável que o docente se preocupe com a realidade apresentada

pelos alunos, adequando o conteúdo conforme a evolução deles e fazendo intervenções conscientes, permitindo que a criança complete sua construção de conceitos de maneira autônoma. O docente deve levar os alunos a refletirem criticamente, procurando trabalhar as operações matemáticas de forma contextualizada, levando-os a exercitar o raciocínio lógico.

3


1. TEXTO: INTERVENÇÕES DO PROFESSOR PARA O CONCEITO DE NÚMERO Durante o ensino do conceito de número, o professor deve oferecer os materiais às crianças antes das explicações teóricas e do trabalho com lápis e papel. Os educandos precisam de tempo e liberdade no contato com o material, fazer descobertas sobre a sua estrutura e brincar com os objetos. Após o trabalho livre, o professor pode fazer intervenções, levantando questões e estimulando os

alunos a emitirem suas opiniões. Resumindo, no início do aprendizado matemático, é indispensável a ação e o raciocínio do aluno, pois é através dele que os conceitos exatos serão absorvidos. A troca de ideias proveniente da observação e manipulação de materiais permite a elaboração das relações matemáticas. A partir daí, o professor assume o papel de organizar este conhecimento de maneira gradual. Podemos concluir que o professor deve encarar o ensino da matemática nas séries iniciais como um estímulo à exploração e ao raciocínio, cujo principal instrumento é a utilização de materiais concretos. É importante frisar que é através das intervenções

oportunas do professor, respeitando a individualidade e autonomia de cada criança no processo de aprendizagem, que os alunos constroem seu conhecimento lógico-matemático.

4


2. APRESENTAÇÃO PARA ALUNOS DA 5ª SÉRIE: A HISTÓRIA DA MATEMÁTICA

5


A HISTÓRIA DA MATEMÁTICA

Os pastores de ovelhas tinham necessidades de controlar os rebanhos. Precisavam saber se não faltavam ovelhas. Como os pastores podiam saber se alguma ovelha se perdera ou se outras haviam se juntado ao rebanho?

Alguns vestígios indicam que os pastores faziam o controle de seu rebanho usando conjuntos de pedras. Ao soltar as ovelhas, o pastor separava uma pedra para cada animal que passava e guardava o monte de pedras. Quando os animais voltavam, o pastor

retirava do monte uma pedra para cada ovelha que passava. Se sobrassem pedras, ficaria sabendo que havia perdido ovelhas. Se faltassem pedras, saberia que o rebanho havia aumentado. Desta forma mantinha o seu controle.

Uma ligação do tipo: para cada ovelha, uma pedra chama-se em Matemática: correspondência um a um, que nada mais é associar a cada objeto de uma coleção um objeto de outra coleção. Como você vê, o homem resolveu seus primeiros problemas de cálculo usando a correspondência um a um. A correspondência um a um foi um dos passos decisivos para o surgimento da noção de número.


OS PRIMEIROS REGISTROS DE NÚMEROS O número surgiu a partir do momento em que existiu a

Passou-se, então, a utilizar pedras: cada animal representava

necessidade de contar objetos e coisas e isso aconteceu há

uma. Mas como isso era feito? Para cada animal que ia pastar,

mais de 30.000 anos. Os homens nessa época viviam em

uma pedra era colocada dentro de um saco. Ao final do dia,

cavernas e grutas e não existia a ideia de números. Assim,

para cada animal que entrava no cercado, uma pedra era

quando os homens iam pescar ou caçar levavam consigo

retirada. Assim, era possível manter o controle e saber se

pedaços de ossos ou de madeira. Para cada animal ou fruto

algum animal havia sido comido por outro animal selvagem

capturado, o homem fazia no osso ou no pedaço de madeira

ou apenas se perdido. Por fim, com a evolução do homem e da

um risco.

matemática, surgiu a palavra cálculo, que em latim significa

Com a evolução do homem, que deixando de ser nômade fixou-se em um só lugar, esse passou a praticar não somente a caça e a coleta de frutos, mas também o cultivo de plantas e a criação de animais. A partir daí surgiu a necessidade de uma

nova forma de contagem, pois o homem precisava controlar o seu rebanho.

“contas com pedras”.


REGISTRANDO GRANDES QUANTIDADES •

Depois que o homem teve a ideia de fazer agrupamentos para facilitar a contagem, surgiu o problema de registrar os agrupamentos usando algum tipo de marca. Veja porque isso

era necessário: •

Imagine que uma pessoa usasse traços para representar cada ovelha. Por exemplo: um homem tinha | | | | | | | | | | | | | | | | | | | | | | | ovelhas. Não seria nada prático, não é mesmo? Talvez a solução encontrada tenha sido separar grupos de marcas: um homem tinha | | | | | | | | | | | | | | | | | | | | | | | | ovelhas. Neste caso,

as marcas estão agrupadas de dez em dez.


A INVENÇÃO DA BASE

Surgiu a partir do momento que o homem teve acesso a abstração dos números e aprendeu a distinção entre o número cardinal e o número ordinal. Seus instrumentos de contagem (pedras, conchas, pauzinhos, terços de contas, bastões entalhados, nós de corda e etc.) tornaram-se verdadeiros símbolos. Existiam outras bases: base cinco, base vintesimal (20 dedos) e a base 60. Os sumérios e os assírios – babilônios utilizavam nas medidas de distância, superfície, volume, dia (dividido em 12 partes) juntamente com o zodíaco (base 12).


O SISTEMA DE NUMERAÇÃO EGÍPCIO Os egípcios da antiguidade criaram um sistema muito interessante

para

escrever

números,

baseando

em

agrupamentos. Essa ideia de agrupar foi utilizada nos sistemas mais antigos de numeração. Cada unidade era representada por:

1 I

2 II

Ao chegar às dezenas os foram substituídos por ∩:

3

4

5

6

7

8

9

III

II II

II II I

III III

III III I

IIII IIII IIII IIII I

1 1 11 12 14 15 16 17 18 19 20 21 0 3 ∩ ∩ ∩II ∩I ∩III ∩II ∩II ∩II ∩III ∩III ∩ ∩I I I I I I ∩ ∩ II I I II III IIII IIII IIIII


O SISTEMA DE NUMERAÇÃO EGÍPCIO •

Para representar a centena os ∩∩∩∩∩∩∩∩∩∩ foram substituídos, ou seja, juntando vários símbolos de 100 escreviam o 200, o 300, o 400 e

assim até 900. •

Dez marcas de 100 eram trocadas pelo símbolo, assim a cada marca de dez mudamos o

símbolo. Veja os símbolos usados pelos egípcios e o que significa cada marca.


MUDANÇAS NA ESCRITA DOS ALGARISMOS Antes da invenção da imprensa, que ocorreu no século XV, os livros eram copiados manualmente, um a um. Como cada copista tinha a sua caligrafia, durante os longos séculos copiaram os manuais, as letras e os símbolos para representar números sofreram muitas modificações. Além disso, como o sistema de numeração criado pelos hindus foi adotado pelos árabes e passado aos europeus, é natural que, nesse percurso, a forma de escrever os dez algarismos sofresse alterações. Por volta do século IV, os hindus representavam os algarismos assim: Hoje a representação é esta:

123456789 0

Após a invenção da imprensa, as variações foram pequenas. Os tipos foram sendo padronizados. Mas, mesmo assim, as modificações são inevitáveis. No visor das calculadoras eletrônicas e dos relógios digitais, os dez algarismos são representados assim:


3. ÁBACO: TIPOS, SURGIMENTO E UTILIDADES PARA A HUMANIDADE 

Ao longo da História, a humanidade desenvolveu mecanismos para realizar estudos matemáticos, um deles é o ábaco.

Existem relatos de que os babilônicos utilizavam um ábaco construído em pedra lisa por volta de 2400 a.C., os indícios do uso do ábaco na Índia, Mesopotâmia e Grécia são contundentes.

Na Idade Média o ábaco era utilizado pelos romanos para a realização de cálculos. A utilização por parte dos chineses e japoneses foi importante para o aperfeiçoamento do instrumento. 

O ábaco permite que as operações sejam realizadas de acordo com o sistema posicional. O ábaco não resolve os

cálculos, servindo como auxílio na memorização das casas decimais para que os cálculos sejam realizados mentalmente.

13


3. ÁBACO: TIPOS, SURGIMENTO E UTILIDADES PARA A HUMANIDADE ÁBACO BABILÔNICO

ÁBACO CHINES

O ábaco foi criado na Mesopotâmia e depois foi seguido

O registo mais antigo que se conhece é um esboço presente

por outras civilizações que também utilizaram o ábaco

num livro da dinastia Yuan (século XIV). O seu nome em

como, por exemplo, os babilônicos. Os babilônicos

Mandarim é "Suan Pan" que significa "prato de cálculo". O

usavam o ábaco para fazer subtração e adição, existem

ábaco chinês tem 2 contas em cada vareta de cima e 5 nas

relatos que os babilônios usavam um ábaco construído

varetas de baixo razão pela qual este tipo de ábaco é referido

em pedra lisa por volta de 2400 a.C. As linhas foram

como

desenhadas na areia e os eixos foram usados para

alteração até 1850, altura em que aparece o ábaco do tipo

auxiliar no cálculo.

1/5, mais fácil e rápido. Os modelos 1/5 são raros hoje em dia,

ábaco 2/5. O ábaco 2/5 sobreviveu sem qualquer

e os 2/5 são raros fora da China exceto nas suas comunidades espalhadas pelo mundo.

14


3. ÁBACO: TIPOS, SURGIMENTO E UTILIDADES PARA A HUMANIDADE ÁBACO RUSSO

ÁBACO ROMANO

O ábaco russo, inventado no século XVII, e ainda hoje

O Ábaco Romano reconstruído era o método normal de cálculo na Roma antiga, assim como na Grécia antiga, era mover bolas de contagem numa tábua própria para o efeito. As bolas de contagem originais denominavam-se calculi. Mais tarde, na

Europa medieval, os jetons começaram a ser manufaturados. Linhas marcadas indicavam unidades, meias dezenas, dezenas, etc., como na numeração romana.

em uso, é chamado de Schoty. Este ábaco opera de

forma ligeiramente diferente dos ábacos orientais. As contas movem-se da esquerda para a direita e o seu desenho é baseado na fisionomia das mãos humanas. Colocam-se ambas as mãos sobre o ábaco, as contas brancas correspondem aos polegares das mãos (os

polegares devem estar sobre estas contas) e as restantes contas movem-se com 4 ou 2 dedos. A forma de fazer operações matemáticas é semelhante ao do ábaco chinês.

15


4. O ÁBACO COMO RECURSO PARA A COMPREENSÃO DAS CASAS DECIMAIS NOS LIVROS DIDÁTICOS

16


4. O ÁBACO COMO RECURSO PARA A COMPREENSÃO DAS CASAS DECIMAIS NOS LIVROS DIDÁTICOS

17


4. O ÁBACO COMO RECURSO PARA A COMPREENSÃO DAS CASAS DECIMAIS NOS LIVROS DIDÁTICOS

18


4. O ÁBACO COMO RECURSO PARA A COMPREENSÃO DAS CASAS DECIMAIS NOS LIVROS DIDÁTICOS

19


5. CRIANÇAS UTILIZANDO O ÁBACO: ATIVIDADE E PERGUNTAS

20


5. CRIANÇAS UTILIZANDO O ÁBACO: ATIVIDADE E PERGUNTAS

21


5. CRIANÇAS UTILIZANDO O ÁBACO: ATIVIDADE E PERGUNTAS PERGUNTAS DESAFIADORAS:

DEPOIMENTOS: 

O que você achou ao manuseá-lo?

Achei muito legal, aprendi bastante. (Gabriel, 9 anos)

Criança de 8 ou 9 anos, já com conhecimento da utilização do ábaco e noções básicas de divisão, subtração e adição: 1ª Coloque nove dezenas, subtraia três dezenas, divida em dois. Qual é o número final?

Você pode aprender a operações no ábaco? R: 30.

Sim, consegui, foi legal. (Larissa, 8 anos) 2ª Coloque uma dezena, divida em cinco partes. Quantas unidades ficaram em cada parte? 

Foi uma forma fácil de aprender números?

Mais ou menos, nunca tinha visto um ábaco, mas depois

R: 2.

3ª Coloque uma centena, converta-a em dezenas.

que aprendi achei mais fácil. (Evelin, 10 anos)

4ª Coloque duas dezenas, tire dezessete unidades. Quanto ficará? R: 3.

22


BIBLIOGRAFIA 

Disponível em <http://www.webestudante.com.br >. Acesso em: 22 e 23 setembro 2012.

Disponível em <http://educar.sc.usp.br/matematica/let1.htm>. Acesso em: 23 e 24 setembro 2012.

Disponível em <http://www.pte.it/didattica/abaco/abaco.htm>. Acesso em: 23 e 24 setembro 2012.

Disponível em <http://museu.boselli.com.br/Abaco%20Russo.htm>. Acesso em: 23 e 24 setembro 2012.

Disponível em <http://abacaxipodre.blogspot.com.br/2012/05/dos-primeiros-computadores-primeira.html>. Acesso em: 23 e 24 setembro 2012.

Disponível em <http://www.educacaopublica.rj.gov.br/oficinas/matematica/abaco/02.html>. Acesso em: 24 e 25 setembro 2012.

Disponível em <http://tecnologiawilli.blogspot.com.br/2011/10/historia-del-computador.html>. Acesso em: 24 e 25 setembro

2012. 

http://www.passeiospelamatematica.net/dia-a-dia/matdi.htm> Acesso em: 24 e 25 setembro 2012.

IMENES, Luiz Marcio. Os números na história da civilização. São Paulo: Editora Scipione, 1990.

23

Fundamentos e Metodologia de Matemática - Intervenções do Professor  

Matemática

Read more
Read more
Similar to
Popular now
Just for you