Pathways Summer 2019

Page 16

14

PATHWAYS

Sumit Chanda, Ph.D., leads a team of scientists working toward the next generation of antiviral medicines

DID YOU KNOW? 36.9 million

people worldwide are currently living with HIV/AIDS. Source: HIV.gov

In the U.S.,

1 in 7

living with HIV

unaware

is of their infection

“WAKING UP” HIV Take the idea of an HIV cure. Although antiretroviral drugs—which prevent the virus from replicating—have been hugely successful in turning HIV into a chronic, manageable disease, patients must take them for life. The reason is that HIV essentially “goes to sleep” in a tiny number of the body’s cells—a process called latency, where the virus doesn’t make proteins or replicate. It can live like this for decades, hidden from the immune system like a hibernating bear protected from the winter cold. The only way to cure HIV, then, is to purge this small reservoir of infected cells. That means you have to wake up those viruses—smoke ’em out, essentially—and then kill them. That’s easier said than done. “It’s been kind of this Goldilocks problem, where some agents wake up HIV too much, and the immune system goes haywire,” Chanda explains. “Others don’t wake up the virus robustly enough.”

In 2016, though, the team discovered a molecule that wakes up HIV “just right”—enough to bring it into the open, but not enough to cause a potentially harmful immune response. “We’re super excited,” Chanda says. “We’re now studying this in combination with immunotherapies to see if we can get rid of the infected cells and essentially clear the body of HIV, once and for all.” UNEXPECTED JOURNEYS The thing that fascinates Chanda about viruses is that they offer a window into so many biological pathways. “We study how a virus uses our cell machinery to replicate and escape immune surveillance,” he says. “That has implications for developing antiviral drugs, but it also illuminates pathways in autoimmune diseases and cancer.” As a result, the lab’s work sometimes goes in unexpected directions. For example, the team identified a protein,