Page 1


目录|Content 5 月 29 日上午 ON THE MORNING OF MAY 29TH ---------------------------------------------------- 1 18 届 IFM 2011 的回顾及行业的最新发展趋势 (中英文版,论文) --------------------------------------------------------------- 2 Dieter Bokelmann (Saarschmiede GmbH,德国)[1] -------------------------------------------------------------------------------- 2 18th IFM 2011 – OVERVIEW AND RECENT TRENDS (Chinese &Englishversion, Paper) ------------------------------------------10 Dieter Bokelmann (Saarschmiede GmbH, Germany)[1] -------------------------------------------------------------------------------10 东欧大锻件行业 (中英文版,论文) ------------------------------------------------------------------------------------------------------20 Jiri Filippi (ZDAS, a.s. Metallurgy, 捷克共和国) --------------------------------------------------------------------------------------20 HEAVY FORGING INDUSTRY IN EASTERN EUROPE (Chinese & Englishversion, Paper) ------------------------------------------28 Jiri Filippi (ZDAS, a.s. Metallurgy, Czech Republic) ---------------------------------------------------------------------------------------28 后福岛中国核电的发展及其对材料与锻造行业的挑战 (中文版,幻灯片) Challenge to Material and Forging Industry from Development of the Chinese Nuclear Power after Fukushima Event (Chinese version only, PPT) ------38 郁祖盛 (国家核电技术公司,中国) Zusheng Yu (State Nuclear Power Technology Corporation Ltd., China) ---38 中国大型风电产业发展现状和趋势 (中文版,论文) Development and Trend of Wind Power Industry in China (Chinese version only, Paper) --------------------------------------------------------------------------------------------------------------------80 祁和生,沈德昌 (中国农机工业协会风能设备分会,中国) Hesheng Qi, Dechang Shen (Chinese Wind Energy Equipment Association, China) ---------------------------------------------------------------------------------------------------------------80 坚持高端战略实现跨越发展 (中文版,论文) To Achieve Great-leap-forward Development by High-level Strategy (Chinese version only, Paper) --------------------------------------------------------------------------------------------------------97 (中信重工机械股份有限公司,中国) (CITIC Heavy Industries Co., Ltd., China) ------------------------------------------97

5 月 29 日下午 ON THE AFTERNOON OF MAY 29TH------------------------------------------- 101 Simufact 材料加工及热处理仿真工艺软件 (中文版,论文) Simufact Software for Metal Forming and Heattreatment (Chinese version only, Paper) --------------------------------------------------------------------------------------------------- 102 (德国 Simufact 工程公司,德国) (Simufact Engineering, Germany) ------------------------------------------------------- 102 自由锻压设备的翻新 (中英文版,论文) ---------------------------------------------------------------------------------------------- 114 Erhard Paller,压力机项目经理 (威普克液压有限公司,德国) ----------------------------------------------------------- 114 MODERNISATION OF OPEN DIE FORGING PLANTS (Chinese & English version, Paper) --------------------------------------- 119 Erhard Paller (Wepuko Pahnke GmbH, Germany) -------------------------------------------------------------------------------- 119 最强大的先进自由锻工厂 (中英文版,论文) --------------------------------------------------------------------------------------- 125 Rainer Dango,执行董事(丹戈-丁南塔尔机械制造有限公司,德国) 任沁新,总经理;王春民,副总(中 信重工机械股份有限公司,中国) Michael Pahnke,(Wepuko Pahnke GmbH,德国) --------------------------- 125 The Most Powerful and Most Modern Open Die Forging Plant (Chinese & English version, Paper) ---------------------- 130 Rainer Dango,Managing Director (DANGO & DIENENTHAL Maschinenbau GmbH, Germany) Ren Qinxin, President; Wang Chunming, Vice President (CITIC Heavy Machinery Company Ltd., China) Michael Pahnke (Wepuko Pahnke GmbH, Germany) ------------------------------------------------------------------------------------------------------------------------------- 130


浅谈锻造液压机的发展 (中英文版,论文) ------------------------------------------------------------------------------------------ 136 刘福海,董事长 (安阳锻压机械工业有限公司,中国) ---------------------------------------------------------------------- 136 Discussion on the Development of Hydraulic Forging Press (Chinese & English version, Paper) -------------------------- 140 Liu Fuhai (Anyang Forging Press Machinery Industry Co., LTD, China) ----------------------------------------------------------- 140 径向锻造—成功的锻造工艺 (中英文版,论文) ------------------------------------------------------------------------------------ 144 Ing. Rupert Wieser, DI Robert Koppensteiner (GFM GmbH,奥地利) ---------------------------------------------------------- 144 Radial Forging – a successful process (Chinese & English version, Paper) -------------------------------------------------------- 153 Ing. Rupert Wieser, DI Robert Koppensteiner (GFM GmbH, Austria) ------------------------------------------------------------ 153 环件制坯柔性锻造系统 (中英文版,论文) ------------------------------------------------------------------------------------------ 165 刘林志 --------------------------------------------------------------------------------------------------------------------------------------------- 165 (天津市天锻压力机有限公司技术部,中国) ------------------------------------------------------------------------------------ 165 Ring Billet Flexible Forging System (Chinese & English version, Paper)------------------------------------------------------------ 168 Linzhi Liu (Research Institute, Tianjin Tianduan Press Co., Ltd., China) ---------------------------------------------------------- 168 从淬火过程中消除烟雾和火的热处理 (中英文版,论文) ---------------------------------------------------------------------- 172 (Heatbath/Park,USA)(北京天一永昌化工科技有限公司,中国) ----------------------------------------------------------- 172 Heat Treater Eliminates Smoke and Firefrom Quenching Operations (Chinese & English version, Paper) ------------- 174 (Heatbath/Park,USA) (Tanee Chemical LTD, China) ----------------------------------------------------------------------------------- 174 富京工业炉燃烧系统及蓄热式烧嘴 (中文版,幻灯片) Combustion System and Regenerative Burner of FUKIN Industrial Furnace (Chinese version only, PPT)-------------------------------------------------------------------------------------------- 176 (北京富京技术公司,中国) (Fukin Technologies Services (Beijing), China) ---------------------------------------------- 176

5 月 30 日上午 ON THE MORNING OF MAY 30TH ----------------------------------------------- 199 石油和石化装备行业现状和对大型锻件的需求及展望 (中文版,幻灯片) Recent Trend of China Petroleum & Petrochemical Equipment Industry, and Demand to Heavy Forging (Chinese version only, PPT) ------------------------- 200 赵志明 (首席顾问,中国石油和石油化工设备工业协会,中国) Zhiming Zhao (Chief Adviser,China Petroleum & Petrochemical Equipment Industry Association, China) -------------------------------------------------------------------------- 200 锻造十年 (中文版,幻灯片) Development of CFHI in Recent Ten Years (Chinese version only, PPT) -------------- 240 曲在文 (中国第一重型机械集团公司,中国) Zaiwen Qu (China First Heavy Industry, China) --------------------- 240 中国二重大锻件研发进展 (中文版,论文) Development of R&D of Heavy Forging in China National ERZHONG (Chinese version only, Paper) ------------------------------------------------------------------------------------------------------------------ 278 陈海堤、孙海燕、张清华、陈新倬 (中国二重集团(德阳)重型装备股份有限公司,中国) Haidi Chen, Haiyan Sun, Qinghua Zhang, Xinzhuo Chen (China Erzhong Group (Deyang) Heavy Industries Co., Ltd., China) ----- 278 内蒙古北方重工特殊钢生产能力现状与展望 (中英文版,论文) ------------------------------------------------------------ 288 雷丙旺,任胜利,白箴 (内蒙古北方重工集团,中国) ---------------------------------------------------------------------- 288 Present Situation and Future Prospects of NHIC SpecialSteel Production Capacity (Chinese & English version, Paper) ----------------------------------------------------------------------------------------------------------------------------------------------------------- 292 Bingwang Lei, ShengliRen, ZhenBai (Inner Mongolia North Heavy Industries Group Corp., Ltd., China) --------------- 292 通裕重工最新发展及技术创新 (中英文版,论文) -------------------------------------------------------------------------------- 297 (通裕重工股份有限公司,中国) ----------------------------------------------------------------------------------------------------- 297 The Latest Development and Technical Innovation of Tongyu Heavy Industry Co., Ltd. (Chinese & English version, Paper)-------------------------------------------------------------------------------------------------------------------------------------------------- 302 (Tongyu Heavy Industry Co., Ltd., China)------------------------------------------------------------------------------------------------- 302


FORGE 软件在自由锻领域的应用 (英文版,幻灯片) Open Die Forging Applications (English version only, PPT) ----------------------------------------------------------------------------------------------------------------------------------------------------------- 308 (TRANSVALOR S.A.,法国) (TRANSVALOR S.A., France) ------------------------------------------------------------------------ 308 最新的工业燃烧炉燃烧技术 (中英文版,论文) ----------------------------------------------------------------------------------- 324 Koichi Kitamura (加热系统部门,中外炉工业株式会社,日本)----------------------------------------------------------- 324 Introduction of the Latest Combustion Technology of Industrial Burner (Chinese & English version, Paper) --------- 326 Koichi Kitamura (Thermosystem Division, Chugai Ro Co., Ltd., Japan) ----------------------------------------------------------- 326

5 月 30 日下午 ON THE AFTERNOON OF MAY 30TH -------------------------------------------- 328 双柱式锻造液压机及其结构的力学行为分析 (中英文版,论文) ------------------------------------------------------------ 329 郭玉玺 (太原重工股份有限公司,中国) ------------------------------------------------------------------------------------------ 329 Double-Column Forging Hydraulic Press and Behavioral Analysis on Mechanics of Its Structure (Chinese & English version, Paper) -------------------------------------------------------------------------------------------------------------------------------------- 333 Guo Yuxi (Taiyuan Heavy Industry Co., Ltd., China) ----------------------------------------------------------------------------------- 333 一种高效愈合大型钢锭轴线缩孔疏松的锻造方法 (中英文版,论文) ----------------------------------------------------- 339 徐斌,孙明月,李殿中 (沈阳材料科学国家(联合)实验室,中国科学院金属研究所,中国) ------------- 339 A Forging Method Which Can Heal Porosities More Effectively (Chinese & English version, Paper) --------------------- 343 Bin Xu, Mingyue Sun, Dianzhong Li (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, China) --------------------------------------------------------------------------------------- 343 电渣重熔技术生产大型锻件用钢锭的最新发展 (英文版,论文) Latest Development in Electroslag Remelting Technologies for the Production of Heavy Forging Ingots (English version only, Paper) ------------------------------------ 347 M. Kubin, A. Scheriau, M. Knabl, B. Ofner;M. Ramprecht and H. Holzgruber (INTECO special melting technologies GmbH, AUSTRIA,奥地利) ---------------------------------------------------------------------------------------------- 347 先进的检测系统——用机械化 UT 检测代替手工检测 (中英文版,论文) ------------------------------------------------ 354 Klaus Leupoldt;Heinz-Josef Otte (Cegelec Deutschland GmbH,德国) -------------------------------------------------- 354 Advanced Inspection Systems –Replacementof Manualby Mechanizd UT Inspection – (Chinese & English version, Paper)-------------------------------------------------------------------------------------------------------------------------------------------------- 359 Klaus Leupoldt, Heinz-Josef Otte, (Cegelec Deutschland GmbH, Germany) ---------------------------------------------------- 359 西门子 X20Cr13 材料的特殊要求 (中英文版,论文) ----------------------------------------------------------------------------- 365 阳东海,吴跃江,蒋喆 (西门子(中国)有限公司上海分公司,中国)----------------------------------------------- 365 Special Requirements of Siemens X20Cr13 (Chinese & English version, Paper)------------------------------------------------- 372 Yang Dong Hai, Wu Yue Jiang, Jiang Zhe (Siemens Limited China-Shanghai Branch, China) ------------------------------- 372 新一代 100T 级全封闭式三相电渣熔铸炉 (中英文版,论文) ----------------------------------------------------------------- 381 刘喜海,贾维国,冮俊峰 (东北大学大型电渣炉研发中心,中国) ----------------------------------------------------- 381 A New Generation of 100TTotally-enclosed ThreePhaseElectroslag CastingFurnace (Chinese & English version, Paper) ----------------------------------------------------------------------------------------------------------------------------------------------------------- 384 XihaiLiu,WeiguoJia,JunfengJiang (NEU Large-Scale Electroslag Furnace R&D Center, China) ----------------------------- 384 大锻件扩氢计算理论与方法的研究 (中文版,论文) Studyon the Theory and Method of Dehydrogenization for Heavy Forgings (Chinese version only, Paper) --------------------------------------------------------------------------------------------- 388 齐作玉,王庆伟,吴鹏 (上海重型机器厂有限公司,中国) Zuoyu Qi, Qingwei Wang, Peng Wu (Shanghai Heavy Machinery Plant Co. Ltd., China) ------------------------------------------------------------------------------------------------ 388 大型锻件的裂纹与白点缺陷 (中英文版,论文) ------------------------------------------------------------------------------------ 392


郭会光,何文武,陈慧琴 (太原科技大学,中国)----------------------------------------------------------------------------- 392 Cracks and Flake Cracks in Large Forgings (Chinese & English version, Paper) -------------------------------------------------- 398 Huiguang Guo, Wenwu He, Huiqin Chen ------------------------------------------------------------------------------------------------- 398 (Taiyuan University of Science and Technology, China) ------------------------------------------------------------------------------ 398 高碳合金钢大型锻件锻造加热研究 (中英文版,论文)-------------------------------------------------------------------------- 405 张洪奎 (宝山钢铁股份有限公司,中国) ------------------------------------------------------------------------------------------ 405 Research on Heating Behavior during the Course of Forging for Large-scale High-carbon Alloy Steel Forgings (Chinese & English version, Paper)------------------------------------------------------------------------------------------------------------ 409 Hong-kui Zhang (BAOSHAN IRON  STEEL CO.,LTD, China) -------------------------------------------------------------------- 409 采用横向锻造方法提高 H13 铝合金热挤压模具寿命 (中英文版,论文) -------------------------------------------------- 413 于爽、董绍国、张强(辽宁金钢重型锻造有限公司,中国) 白云鹏、李鹏伟(辽宁忠旺集团,中国) --- 413 Extending Service Life Of H13 Hot Extrusion Dies For Aluminum Alloy By Transverse Forging Technology (Chinese & English version, Paper) --------------------------------------------------------------------------------------------------------------------------- 417 ShuangYu, ShaoguoDong, QiangZhang (Jingang Forge Co., Ltd., China) YunpengBai, PengweiLi (China Zhongwang Holdings Limited, China) ---------------------------------------------------------------------------------------------------------------------- 417 40CrNi2Si2MoVA(300M)钢自由锻工艺研究 (中英文版,论文)----------------------------------------------------------- 422 卢艳,崔一平,夏欲民,郑永灵,刘成 (贵州安大航空锻造有限责任公司,中国) ------------------------------ 422 Technical Study on Free Forging of 40CrNi2Si2MoVA (300M) (Chinese & English version, Paper) ----------------------- 424 YanLu, Yiping Cui, YuminXia, YonglingZheng, ChengLiu (Guizhou Anda Aviation Forging Co., Ltd., China) ------------ 424

其 他 论 文 OTHER PAPER ------------------------------------------------------------------------------ 427 Q345E 大圆坯的生产工艺研究 (中英文版,论文) -------------------------------------------------------------------------------- 428 陈宏豫尹修刚 (承德建龙特殊钢有限公司,中国) ----------------------------------------------------------------------------- 428 Study about Production of Q345E Circle Billet (Chinese & English version, Paper) -------------------------------------------- 433 HongYuChen, XiuGangYin (Chengde Jianlong Specil Steel Co.,Ltd., China) ----------------------------------------------------- 433


5 月 29 日上午 On the morning of May 29th

1


18 届 IFM 2011 的回顾及行业的最新发展趋势 (中英文版,论文) Dieter Bokelmann (Saarschmiede GmbH,德国)[1] 1.摘要 本报告对匹斯堡 18 届 IFM 会议内容和市场最新发展进行了概述。其中的国家报告部分是对所引用 IFM 会议论文的最重要部分的提炼。考虑到现阶段的市场情况,本报告还对产品、生产能力、成本和价 格因素的长期发展进行了阐述。尽管市场有一定的供大于求,仍有许多产品有很好的销售,但也有一些 产品系列存在激烈竞争。在设备投资方面,除了市场需求以外,设备吨位也应仔细审核。对新进入市场 的投资者来讲,由于快速上涨的成本,低价入市是一个应坚决避免的战略,并且从商业角度看,因为投 资需要偿还,这种战略会把企业带入困境。19 届 IFM 会议 2014 年在日本东京举办。 2 简介 美国锻造协会于 2011 年 9 月 12 日-15 日在美国匹斯堡市承办了 IFM2011 会议。之所以选择在匹斯 堡举办会议,是因为由于周边区域有着储量丰富的高品位铁矿石和优质煤炭,匹斯堡曾经一度成为钢铁 工业中心。最近几十年,通过结构调整,一度以“雾城”闻名的匹斯堡市成功转型成为服务行业中心。体现 这一转变的一个标志是城市的最高建筑不再是美国钢铁公司的总部。如今,在匹斯堡市还有不少冶金企 业和锻造公司(包括埃尔伍德锻造厂等 IFM 举办时企业参观的公司)。

图 1-匹斯堡市的金三角

图 2-IFM 的图标

本次 IFM 会议有 569 人参加,大大超过预期人数。代表最多的区域为欧洲和亚洲,特别是日本和中 国。所有的大型锻造公司都有代表出席了本次会议。 IFM2011会议569名代表

United States Germany Japan Italy China South Korea Austria France United Kingdom Canada India Czech Republic Sweden 13 Countries less 5 P.

图 3–IFM2011 代表的地域分布

IFM 2011 代表分析 国家和地区 代表数 美国 210 德国 68 日本 56 意大利 38 中国 32 南非 22 奥地利 19 法国 17 英国 17 加拿大 16 印度 12 捷克 10 瑞典 8 代表人数 5 人以下的 13 个国家和地区. 44 总计 569

表 1–代表分析

2


2.1 国家和地区报告[2] 大多数国家报告包含有对本国经济形势的评估,接下来是锻造企业和他们的技术装备介绍。这些企 业的简短介绍都包含有产量、设备(最大压力机)和所能生产的最大钢锭重量。一些国家的报告有比较 详细的概述,另一些国家的报告则缺少很多重要信息。 几乎所有的报告都有一个共同的地方,就是 2008/2009 年的经济衰退后,大型自由锻件的产量再次 上升,但是,大多数国家的情况仍略低于 2008 年的水平。而在中国,则是不间断、持续的增长。下面就 各个国家的情况给出了一个简要概述: 表 2 – 2011 市场及行业概览 [2] 国家和地区 介绍者

企业情况

生产能力

趋势

美国 B. Branch, Lehigh

9 家大中型企业 (> 30 MN) ,资料详细

2007 年产量 50 万吨

恢复当中,个别企业规模扩大

英国 G. Honeyman, Sheffield

只有 Sheffield

只有产量

恢复当中,进行新的投资,兴建了 一座新的 45MN 压力机

德国 A, IT, S, CH (VDEh) K. Letz, R. Rech

21 家大中型企业,资料详 细

2008 年产量 100 万吨 (> 125 kg)

恢复当中,进行新的投资

意大利 M. Gussago, Fomec

概述(共 40 家工厂)资料 不详

2008 年产量 120 万吨,生 产能力 150 万吨

恢复当中,大规模扩张已经结束, 正在兴建新的压力机(1 台 1000MN 正在建设)

法国 F. Chevaleyre, Areva

7 家企业,资料详细

2008 年产量 6.3 万吨

发展稳定

东欧 J. Filippi. ZDAS

9 家大中型企业分布在波 兰、罗马尼亚、俄罗斯、 捷克,资料详细

2010 年 160 万吨(9 家企业 的估计值),2010 年的产能 利用率约 45%

由于很多情况不清楚,趋势不清, 估计产能利用率在提高

日本 Y. Tanaka, JSW

9 家大中型企业,资料详细

2007 年产量 75 万吨

恢复当中,稳定发展,大规模扩张 已经结束,正在兴建新的大型压力 机

韩国 S. Ryu, Doosan

15 家大中型企业(> 30 MN) ,资料详细

2011 年产量 110 万吨(估 计),生产能力 240 万吨

规模高速扩大,2006 年生产能力 66.5 万吨,产量 52.8 万吨,正在兴 建新的大型压力机。

中国 W. Baozhong, China First H.Ind.

5 家大中型企业 (> 80 MN) 资料详细 (共计 202 家工厂!)

2010 年产量超过 300 万 吨,生产能力不清楚(没有 介绍)

似乎没有衰退的迹象! 15 台万吨以上压机,1 台 360MN 管 材挤压机,2004 年到 2008 年每年 增长速度在 30%

印度 A. Sharma, L&T

6 家大中型企业,部分有详 细内容

产量和生产能力不清(没有 介绍)

恢复当中,正在新建万吨以上压 机,增长率约 8%

在经过大规模投资后,日本自由锻行业产量稳定的维持在一个高水平上。而韩国又开始了大规模的 投资,巨大的生产能力远远没有被充分利用。 在中国,现阶段有 202 家大中型锻造企业(有些模锻企业可能也被计算在内)。据中国发言者估计, 存在太多的锻造企业,他认为有必要关停一些。能够假设的是,至少在短期内,中国的生产能力不会出 现大幅度的减少。伴随着生产能力的大规模扩张,大型锻件的产量也在持续的增长。 而印度的潜力难以确定,发言者没有给出任何清晰地资料。唯一可以确定的是,生产能力也在大规 模增长着。

3


3. IFM 2011 论文分析 [3] 表 3 显示的是对会议上所发表的论文的分析情况。总共 80 篇论文,分属 10 个不同的领域,主要聚 焦于下列领域: - 成形装置及设备(18 篇论文) - 冶金及重熔(12 篇论文) - 电站(12 篇论文) - 锻造技术(12 篇论文) - 模拟及造型(8 篇论文) 从产品应用领域考虑,焦点在以下几个方面: - 核电(23 篇) - 高效发电(6 篇) 表 3 - IFM 2011 论文分析 [3] 匹斯堡 18 届 IFM 会议 - 论文分析 1. 市场及行业概览

10

2. 成形装置及设备

18

3. 冶金及重熔

12

4. 电站

12

5. 锻造技术

12

6. 模拟及造型

8

7. 质量及无损检测

7

8. 镍基材料及不锈钢 9. 物理冶金 10. 轧辊 共计

5 5 2 81

10

北美、德国、英国、日本、法国、韩国、意大利、东欧、中国、印度

10 3 5 4 3 2 2 2 3 3 4 2 4 3 3 2 5 2 1 5 2 5 5 2

新建的 80 到 185MN 锻造压力机及辅助设施 Huge RR 节能和绿色加热 总体发展 空心钢锭 电渣重熔 生产率 质量 大型钢锭 超临界应用 >700°C 应用(镍基) 核电(转子、SA508、AP1000 管道) 总体发展

23 6

CGF, Density, 4 Dies, Pass schedule 特定产品 总体发展 激光测量和数字模拟 热锻成形,喷嘴,弯曲锻造,冲孔,锥形,全纤维 高温塑形变化 钢锭质量 各个无损检测系统厂家及供应商 总体发展

生产、性能 论文数量 主要应用在核电 高效发电

3.1 成形装置及设备 这一领域的论文关注新建压力机设备的介绍。总共有 9 台新建压力机,然而,这实际上只是过去几 年中已经建成的压力机数的一部分。在中国中信重工建成的 185MN 压力机由于其吨位以及 750 吨米的操 作机当之无愧成为最令人瞩目的设备(图 4、图 5)。另一让人印象深刻的是,这 9 台设备中,1 万吨已 经成为最小的吨位标准。另外还有 3 篇论文介绍锻造加热的节能问题。

4


图 4 -中信重工 185 MN 锻造压力机在锻造 250 吨钢锭

图 5 –中信重工 750 吨米操作机外观

3.2 冶金和重熔

图 6 –JSW 生产的 670 吨钢锭脱模后

图 7 –JCFC 生产的 650 吨钢锭脱模后

在这个领域,有 4 篇文章介绍了空心钢锭的生产。这是由于在核电主管道壳体的生产中,空心钢锭 能够节省大量材料,节约锻造时间。另外,这些论文出自 2011 年 3 月份福岛核事故之前。日本 JSW 公 司和 JCFC 公司再次提高了他们采用传统实心钢锭生产方式所生产的最大钢锭的重量,分别是 670 吨和 650 吨(图 6、图 7)。除此之外,还有两篇文章介绍电渣重熔和生产率提高。 3.3 电站

图 8 - 700 度环境下最大 617 合金汽轮机转子

图 9 - 直径 1.4 米的锻造球阀

5


总共有 4 片论文论述了核电锻件的生产,特别是采用 SA508 材料生产核电主管道和主冷却管路管道。 3 篇论文介绍了超临界应用钢种的发展情况,另外 3 篇则涉及了镍基材料在 700 度以上高温下的应用。 并且,这种材料零件所使用的材质铬镍铁合金 617 重量增加到了 31 吨。图 8 3.4 锻造工艺 没有哪篇论文的题目明显着重在这个领域上。4 篇论文都描述了一种生产全纤维曲轴锻件的新型锻造 装置。这种新型装置安装在自由锻压力机上,采用一种带有 4 个锤头的径向锻造方式,可以进行压实锻 造或者拔长成形。 有 3 篇论文阐述了总体发展情况,2 篇论文探讨了激光测量和模拟。另外 3 篇论文则介绍了其他行业 某些特殊产品的生产,图 9 显示的是未来能源传输采用的大型球形阀体。 3.5 模拟及造型 5 篇论文都有模拟的内容,包括对 喷嘴的热成形、核电主管道锥形壳体、 全纤维曲轴、管道弯曲锻造、大型锻件 的冲孔。3 篇论文介绍了锻造用钢锭的 热成形性和凝固优化。图 5 显示的是在 一台 80MN 现代化压力机上安装的最新 的锻件激光测量系统

图 10 - 激光测量系统的示意图

Open die forging tonnes shipped from 2000 to 2011 from IFM Community countries (Source Proceedings IFM Pittsburgh 2011 updated by IFM Steering Group) 1400

1000 Tons

4. 产量发展 图 11 显示的是 IFM 联盟国家 2000 年到 2011 年 自由锻产品的发货情况。可以清楚地看到,由于 2001 年 9 月伊拉克战争和 2002 年世界经济疲软导致 2001 年后发货量有一个快速的下跌,2008 年房地产危机也 导致了一次快速下跌,几乎每个国家 2009 年的产量都 在低点。意大利和韩国产量领先,刚刚超过 100 万 吨。中间组包括日本、德国和北美大约在 50 万吨左 右,法国和英国由于锻造企业较少,主要生产特殊锻 件,因此,数据较低。

1200

America North

1000

Japan Korea

800

France 1 Firm

600

UK

400

Italy

200

Germany

0 2000

2002

2004

2006

2008

2010

2012

Year

图 11 - IFM 联盟国 2000 年到 2011 年自由锻产 品的发货量 IFM Community shipped open die tonnes 2000-2011 in % based on 2000 (Source Proceedings IFM Pittsburgh 2011 updated by IFM Steering Group) 400 350 300 250

%

图 12 清楚地显示了以 2000 年为标准,IFM 联盟 国家 2000 年到 2011 年在发货重量、相应的产值、材 料费用(以美元/公斤为单位)的发展情况。在这里, 也可以看到其中有一个低谷。而 2011 年,发货量或多 或少都达到了 2008 年的最大水平,产值也有了一个快 速增加,并且仍然在上涨。然而,这些数字不是针对 个别领域的情况,当然也不是针对个别产品。这里, 一方面,更多的深度分析需要花时间去进行,另一方 面,也没有被授权来做。图形只是为了显示一定趋 势,它取决于市场需求和关键技术,有些产品卖得 好,有些产品卖的不好。

shipped 1000t

200

shipped Million Dollars Dollars/kg

150 100 50 0 2000

2002

2004

2006

2008

2010

2012

Year

图 12 - 2000 年至 2011 年 IFM 联盟发货数据

6


5. 生产能力发展 [3, 4] 图 13 显示的是从 2007 年到 2013 年世界范围内 75MN 以上压力机生产能力的发展情况(没有声称是完整数 据)。左边的组包含 35 台 2007 年就已经存在的 75MN 以上压力机。从 2007 年到 2013 年又额外增加或即将 增加 34 台压力机。从右边的组可以清楚地看到压力机 的中间吨位从 100MN 提高到 127MN。最大压力机压力 从 140MN 提高到 185MN。2013 年甚至会增加一台 210MN 的压力机。

Presses > 75MN Worldwide

250 Presses existing 2007 (Average 100MN Force)

Press Force in MN

200

Presses 2007-2013 built or under construction (Average 127MN Force)

150

100

50

0 0

10

20

30

40

50

60

70

80

Nr.

图 13 -

自由锻压力机生产能力一览

表 4 - 世界范围内拥有 90MN 以上压力机的自由锻企业

Hall of Fame - Forge Masters World with Press Capacity > 90MN 113MN

France Creusot

Germany 120MN Saarschmiede 100MN Böhler

150MN 130MN 130MN 120MN 120MN 100MN

Korea Taewong Doosan SeAH Hyundai SPP Youlcha Kisco

Japan 140MN 130MN 100MN

JSW JCFC KSK UK

100MN

SFIL

North America 91MN Le High Forge 91MN Finkl & Sons

Eastern Europe 150MN EMSS 120MN Doosan IMGB 120MN OMZ Special 120MN Pilsen Steel 120MN Vitkovice Heavy 100MN NKMZ

100MN

China CiticHeavy Shanghai Electronic China National Erhong CFHI China First Heavy Sunan Special Steel Tongyu Heavy NHI Shenyang

185MN 165MN 160MN 150MN 140MN 120MN 100MN

Italy 200MN 150MN 126MN 120MN 120MN 120MN 100MN

India Larson & Toubro

Vienna Monchieri SDF Franchini OFAR Morandini FOMAS

(without engagement)

目前拥有 90MN 以上压力机的自由锻企业见表 4。如果一个公司拥有的压力机不是用锻造压力衡量 吨位,其数据不会列入表内。在过去几年投资最大的国家是韩国、中国和意大利。

7

Indexes of Primary Commodity Prices based on 2002 in % (IMF) 450 400 350 300 250

Index Metal Prices

200

index Energy Prices

%

6. 成本发展 大型锻件生产成本中有两个主要的影响因素—材料 和能源,图 14 是国际货币组织发布的这两项商品价格 指数图。分别是金属采购价格和能源价格,后者基本上 是根据各种渠道得到的天然气价格。可以清楚地看到, 2007 到 2008 年之间在房地产危机之前,价格指数到达 了峰值,2009 年跌落,2011 年又快速崛起。同 2002 年相比,两因素的价格指数增加到 4 左右。不过,这种 情况在不同的国家不一定相同,例如,美国的能源价格 比房地产危机之前还要低很多,尽管在这里也必须考虑 劳动效率,每小时工资的劳动补偿费用各国之间差别很 大。因此,图 14 显示的是一个所有国家不能避免的总 体趋势:材料和能源价格的变动必须被考虑并融入成本 结构当中。

150 100 50 0 2002

2004

2006

2008

2010

2012

Year

图 14 -

基于 2002 年的主要商品价格指数百分比 (国际货币组织)


7. 世界经济形势

图 15 -

全球 GDP 增长趋势(国际货币组织)

在图 15 显示了全球经济增长预期。发展 呈现出一致的趋势,如果没有 2008 年的 短期危机,对锻件的需求将至少保持在 2011 年或更高的水平上。一方面,由于 北美和欧洲部分国家债台高筑而实施的严 格财政紧缩政策的冲击以及油价的暴涨导 致的能源价格的持续上涨,行业存在着风 险。2011 年 3 月日本大地震导致的福岛 核事故也严重影响了电站锻件的需求,这 个影响虽然在减轻,但是至今仍然广泛存 在。由于对事态发展方向缺乏一个清楚地 趋势认识,对未安装的设施进行改进和弥 补,对电站的过时设备进行现代化改造将 是未来几年所面临的机遇。另外,在化石 燃料的采矿和销售或者采用太阳能直接能

源等领域也存在着风险,例如在北非一些国家(沙漠项目)。考虑到这些风险、气候改变、天气的变化 无常,利用能源的趋势更趋向于采用核电、再生能源或者传统能源。从中长期来讲,大型锻件的需求同 能源生产密不可分,特别是在能源转换上。 8. 结论 在过去 10 年中,大型锻件的整体产量增加了约 70%,各国的趋势至少是一致的,参见图 14。 大部分生产成本(材料和能源)增加了 300%,价格指数增加到 4。 另一方面,锻件的平均价格只增长了约 100%(2009 年)到 75%(2011 年)。这个结果同成本价 格有些冲突,毕竟生产能力增长了 100%。 如果把大型锻件的产量增长和生产能力增长做个比较,结果是生产能力相对增长了约 17%。印度和 中国的情况尤为突出。 由于生产成本的增加,同时,新的生产企业也无法及时赶上专业生产企业的水平,一些技术附加值 高的零件的价格将会比那些低附加值零件价格有一个快速增长。对于那些试图确保短期内市场领先而违 背这种趋势的企业,从中期来看,将背负一个很高的消耗,从而产生产出不平衡或者不可挽回的流动性 风险, 在房地产危机之前,很多企业都把希望寄托在新建核电站所带来的大量需求上,投资建设了吨位越 来越大的压力机,参照表 4。 图 16 就是著名的 AP1000 系统核 电站,这个系统在现今新建设的核电站 中很受欢迎。在未来几年里,每年将新 建 10-15 座 AP1000 或 EPR 系统核电 站。同时,从历史数据看,我们可以计 算出在未来几年每年约有 15 座原子能 电站需要现代化改造。因此,我们可以 得出这个假设,一年新建或者改造的原 子能电站最多有 30 台。一座 AP1000 系统电站需要大约 30 个大型锻件,也 就 是 说 每 年 需 要 大 约 900 个 大 型 锻 件,约 5 万吨主管道锻件发货量(不含 管件)。假设按照平均生产能力生产一 个零件需要大约 20 个小时,一年 900 个锻件 4 台大型压力机就可以毫无困难 的生产出来。在图 13 中有 70 台设 备,理论上绝大多数都适合生产这些锻 件。考虑到压力机的环境、企业的工艺 水平和是否能够获得 ASME III 的认证

图 16–西屋的 AP1000 系统 [5]

8


70 台这个数字还要减少。因此,我们可以做出如下假设,在过去几年里,建设了太多的大型设备,这些 设备的重点不是在大型核电锻件的生产上。IFM 联盟每年 400 万吨的产量加上东欧、中国,至少有 500 万吨的产量,而核电主管道锻件的产量只占到总产量的 1%。如果加上汽轮机轴和发电机轴,仍然只占很 小的部分。市场上要重点关注其他行业,如汽车工业的模具钢、造船业、大型机械、风电、陆上和海上 工程。 9. 展望 福岛事故的影响至少显著放缓了全球民用核电的复兴,加上发达国家债务导致的全球经济危机,许 多企业都不能满负荷生产,损失严重。随着前几年史无前例的生产能力增长的结束,很多企业将处于风 险之中。可以理性的预测,在未来几年,整个行业将会缓慢、逐步的恢复到一个正常生产水平。 欢迎中国加入 IFM 联盟,在中国举办 IFM 会议。 下一届 IFM 会议将于 2014 年在日本东 京举办(图 17)。由于临近中国和印度, 相信届时参加人数会达到新的纪录。大量已 投资建设的设备、自由锻模拟的可能性和不 可避免的气候变化也都会对论文的题目产生 影响。总之,2014 年及以后,世界应当度 过了自然灾害和经济危机。让我们共同期盼 2014 年东京的 IFM 会议。

图 17 –2014 年 19 届 IFM 的举办地 References [1] With support of IFM Steering Group Members, March 2012 [2] Dr. Ingo Steller, Stahlinstitut VDEh, Düsseldorf, Expertentreff für Freiformschmieden, Stahl und Eisen 131 (2011) No. 12, page 10 - 14 [3] 18th IFM Proceedings [4] CIFM 2010 Proceedings [5] www.ap1000.westinghousenuclear.com

9


18th IFM 2011 – OVERVIEW AND RECENT TRENDS (Chinese &Englishversion, Paper) Dieter Bokelmann (Saarschmiede GmbH, Germany)[1]

1. Summary The report gives an overview of the 18th IFM in Pittsburgh and the current market development. The country reports have been presented in a compact form and the most important information in the papers has been dealt with. With regard to the current market situation, the long term developments in production, capacity, cost and prices have been commented on. In spite of a certain over-supply of capacity, there are products which sell well but also some highly competitive product groups. In investments in new facilities, besides the necessity on the market, the dimensions of the facility should also be carefully examined. Entry into the market for newcomers by having low prices is a strategy which should certainly be avoided due to the sharp increase in costs, since the investments must also be paid for and such a strategy could even, from a business point of view, put the company at risk. The next 19th IFM is due to take place in 2014 in Tokyo.

2. Introduction The FIA (Forging Industry Association) held the IFM 2011, the International Forgemasters’ Meeting in Pittsburgh, Pennsylvania (USA) from 12th to 15th September 2011. The location was well chosen since Pittsburgh was once the centre of the steel industry in the United States due to the abundance of high quality coal and ore resources in the surrounding area. In recent decades, what was once known as the “Smoky City” has successfully achieved structural change to become a centre of services. One symbol of this is the highest building in the town which today is no longer the headquarters of U.S. Steel. Today there are still a number of steel and alloy producing companies and forges in the Pittsburgh area (including Ellwood Forge, United Electrical Steel and Electralloy, who offered plant tours within the context of the conference) (1st paragraph [2]).

Fig. 1 - View of the “Golden Triangle” of Pittsburgh

Fig. 2 - IFM 2011 Logo

With 569 participants, attendance at the conference was greater than expected. From abroad, a large number of visitors came from Europe and Asia, in particular from Japan and China. All large open-die forges were represented.

10


569 Participants IFM 2011

United States Germany Japan Italy China South Korea Austria France United Kingdom Canada India Czech Republic Sweden 13 Countries less 5 P.

Fig. 3 - Participants IFM 2011

IFM 2011 Participants Analysis Country Participants United States 210 Germany 68 Japan 56 Italy 38 China 32 South Korea 22 Austria 19 France 17 United Kingdom 17 Canada 16 India 12 Czech Republic 10 Sweden 8 13 Countries less 5 P. 44 Total 569 Table 1 - Participants Analysis

2.1 Country reports [2] Most country reports included an assessment of the economic situation in the countries and followed this by presenting individual forges and their technical equipment. The short portraits of the companies contained information on the production, equipment (largest press) and maximum ingot weights. Some country reports gave a good overview while certain important information was lacking in others. Almost all reports had one factor in common: that, after the recession of 2008/2009, the production of heavy open-die forgings has increased again but that, in most countries, levels are slightly below those of 2008. In China, there was uninterrupted, continued growth. A short summary of the situation in various countries is given below: Country Presenters

Presentation

Capacity/Production in tonnes

Trend

USA B. Branch, Lehigh

9 large (> 30 MN) companies in detail

Production 500,000 t 2007

Recovery, expansion of individual plants

UK G. Honeyman, Sheffield

Only Sheffield

Only production value

Recovery investments, 1 new 45 MN press

Germany, A, IT, S, CH (VDEh) K. Letz, R. Rech

21 large companies in detail

Production 1 M t 2008 (> 125 kg)

Recovery, investments

Italy M. Gussago, Fomec

Overview (40 plants in total), not in detail

Production 1.2 M t 2008, capacity 1.5 M. t

Recovery, expansion largely completed, new presses (1x1000 MN under construction!)

France F. Chevaleyre, Areva

All 7 companies in detail

Production 63000 t 2008

Stable

11


Eastern Europe J. Filippi. ZDAS

9 large companies in PL, RO, RUS, CZ in detail

Production (only 9) 1.6 M. t (estimate), Exploitation of capacity utilisation 2010 around 45 %

Unclear, capacity utilisation of the (high) capacity on the increase, estimated high number of unknown cases

Japan Y. Tanaka, JSW

9 large companies in detail

Production 750,000 t 2007

Recovery, stable, expansion largely completed, new large presses

South Korea S. Ryu, Doosan

15 large companies (> 30 MN) in detail

Production 1.1 M. t 2011 (estimate) capacity 2.4 M. t

Immense expansion: 2006 cap. 665 kt., prod. 528 kt., new large presses

China W. Baozhong, China First H.Ind.

5 large companies (> 80 MN) in detail (202 plants in total!)

Production > 3 M. t 2010, capacity unclear (not presented)

Seemingly no recession! 15 presses > 100 MN 1x60 MN for pipes Growth 30% 2004/2008

India A. Sharma, L&T

6 large companies, partially in detail

Production and capacity unclear (not presented)

Recovery, new large presses up to 100MN Growth around. 8 %

Table 2 - Market & Industry Overview 2011 [2] While production in Japan had been stabilised on a high level after great investment activity, large investments were made in South Korea. The huge capacities are not even close to being utilised to the full. In China there are currently 202 (!) large forges (die forges may also have been taken into account here). In the estimation of the Chinese presenter, there are too many forges and he sees it as necessary to close down some of the operations. One can assume that, at least in the short term, there will be no drastic reduction in capacity. In conjunction with the large expansion of capacity, there was a continuous increase in the production of heavy forgings. The potential in India is difficult to ascertain, the presentation did not give any clarity on this. It is only certain that here, too, capacities are being greatly increased.

3. IFM 2011 Proceedings Analysis [3] Table 3 presents an analysis of the papers presented. A total of 81 papers were presented on 10 different topics. The focus was on the following topics: - Metal forming facilities & equipment (18 papers) - Steel making & remelting (12 papers) - Power generation (12 papers) - Forging technology (12 papers) - Simulation & modelling (8 papers) With regard to product applications, the focus was on - Nuclear power generation (23 papers) - Highly efficient power generation (6 papers)

12


18th International IFM 2011 Pittsburgh - Proceedings Analysis 1. Market & Industry Overview

10

10 10

2. Metal Forming Facilities & Equipment

18

3. Steel Making & Remelting

12

4. Power Generation

12

5. Forging Technology

12

6. Simulation & Modelling

8

7. Quality & NDT

7

8. Nickel Based & Stainless 9. Physical Metallurgy 10. Rolls Total

5 5 2 81

3 5 4 3 2 2 2 3 3 4 2 4 3 3 2 5 2 1 5 2 5 5 2 23 6

North America, Germany & , UK, Japan, France, Korea, Italy, Eastern Europe, China, India New Forging Presses & Facilities 80 to 185MN, Huge RR Energy efficient & green heating General Development Hollow Ingots ESR Productivity Quality Large Ingots Ultra-Supercritical Application >700째C Application (Ni-base) Nuclear (Rotor, SA508, Pipe AP1000) General Development CGF, Density, 4 Dies, Pass schedule Defined Products General Development Laser Measuring & Numerical Simulation Hot forming, Nozzles, Bending, Punching, Cones, CGF Hot ductility Ingot quality NDT- Systems different firms and suppliers general Development

Manufacturing, properties Total No. of Proceedings Main Application Nuclear Highly Efficient Power Generation

Table 3 - IFM 2011 Proceedings Analysis [3]

Fig. 4 - 185 MN Forging System with 250 t Ingot of CITIC

Fig. 5 - Appearance of 750 mt Manipulator of CITIC

13


3.1 Metal Forming Facilities & Equipment The focus of the papers in this section lay on the presentation of new press equipment. A total of 9 new press facilities were presented in detail although this, in fact, only represents a fraction of the facilities actually built in the last few years. The most impressive facility due to its dimensions is the 185MN press from Citic with a 750mt manipulator (figures 4, 5). One gains the impression, that 100MN is obviously a minimum standard for the pressing force of newly built facilities. In addition, there were 3 papers on energy saving when heating the material for forging. 3.2 Steelmaking & Remelting

Fig. 6 - 670 t Ingot after Stripping by JSW

Fig. 7 - 650 t Ingot after Stripping by JCFC

With this topic, the focus lay on the production of hollow ingots with 4 papers being presented on this subject. This is due to the fact that, in particular for the production of shells for primary circulation in nuclear facilities, hollow ingots reduce the amount of material and the forging time required. In addition, the papers originate from before March 2011 (Fukushima). JSW and JCFC increased their maximum ingot weight again in the production of conventional solid ingots to 670 t and 650t, respectively (figures 6, 7). There are two presentations each on the subject of ESR-Remelting procedures and increasing productivity. 3.3 Power Generation A total of 4 papers describe the manufacture of forgings for nuclear applications in particular using the material Sa508 for primary circulation in nuclear facilities and pipes for the main coolant piping. 3 papers deal with the further development of steels for ultra-supercritical applications and an additional 3 papers are concerned with the topic of 700 째C applications with nickel-based materials. Among other things, the ingot weight for components of this type in the material Inconel 617 was increased to 31 t, figure 8. 3.4 Forging Technology

Fig. 8 - Largest steam turbine rotor for 700 째C application in Alloy 617

Fig. 9 -

14

Forged ball valve for pipelines with a nominal diameter of 1,400 mm (4.6 feet)


There was no clear emphasis on any subject in this section. 4 papers contain descriptions of a new forge facility for CGF forging of crankshafts, a new forge facility for forging in open-die presses using the process for a longitudinal forging machine with 4 dies, as well as techniques for compacted forging and optimized forging plans for stretch forming. 3 papers deal with the general development and 2 with laser measurement and simulation. 3 further papers are concerned with the production of special products, among others, the large ball valve housing for the energy transport of the future shown in figure 9. 3.5 Simulation & Modelling 5 papers contain contributions on simulation for hot forming of nozzles, conical shells for the primary circulation in nuclear plants, CGF crankshafts, bending of pipes and punching of heaving forgings. 3 papers deal with the topic of hot formability and the optimisation of the solidification of forging ingots. Picture 5 describes a state-of-the art laser measuring system for measuring forgings on a modern 80MN forging press.

Fig. 10 - Schematic presentation of the laser measurement system Figure 11 contains the quantities of open-die forged Open die forging tonnes shipped from 2000 to 2011 from IFM Community countries (Source Proceedings IFM Pittsburgh 2011 material shipped by IFM community countries updated by IFM Steering Group) between 2000 and 2011. It can clearly be seen that 1400 there was a slump after 2001 due to the events of America North 1200 September 2001, the war in Iraq and the weakening Japan 1000 Korea 800 world economy in 2002 as well as the slump after France 1 Firm 600 the real estate crisis 2008 with production at a UK 400 Italy minimum in almost every country in 2009. Italy and 200 Germany North Korea are the leaders in production with just 0 2000 2002 2004 2006 2008 2010 2012 over 1 million tonnes each. The middle group Year consisting of Japan, Germany and North America lies at aroundhalf a million tonnes each, France and Fig. 11 - Tonnes shipped from 2000 to 2011 IFM Community countries the UKare involved with far fewer forgesand 1000 Tons

4. Production Development

largely manufacture special forgings and therefore have lower shipping figures IFM Community shipped open die tonnes 2000-2011 in % based on 2000 (Source Proceedings IFM Pittsburgh 2011 updated by IFM Steering Group) 400 350 300 250

%

Figure 12 clearly shows the total quantities of these countries as well as the corresponding turnover and specific value of the material in dollars/kg. Here, too, the periods in which there was a slump can clearly be seen. In 2011, the quantity shipped had more or less reached the maximum value of 2008, there was also a large increase in turnover whereby the specific value is still rising. However, these figures do not say anything about the situation in the individual business fields and certainly not for individual products. Here, more in-depth analysis would need to be carried out which would be too time-consuming, on the one hand, and, on the

shipped 1000t

200

shipped Million Dollars Dollars/kg

150 100 50 0 2000

2002

2004

2006

2008

2010

2012

Year

Fig. 12 - IFM Community shipped data 2000 2011

15


other, not legally admissible. The diagram is only intended to show a certain trend. It depends the need and know how, which products sell well and which sell less well.

5. Capacity Development [3, 4] Figure 13 shows the development of the worldwide press capacity with >75MN pressing force from 2007 to 2013 without claiming to be complete. The left-hand group contains 35 presses > 75MN which already existed in 2007. From 2007 to 2013, there were (and will be) an additional 34 presses. For the right-hand group, as the diagram clearly shows, the medium pressing forge has increased from 100MN for the original capacity to 127MN for the new capacity. The maximum pressing force has increased from 140MN to 185 MN and, in 2013, there will even be the addition of a press with a pressing force of 210MN.

Presses > 75MN Worldwide

250 Presses existing 2007 (Average 100MN Force)

Press Force in MN

200

Presses 2007-2013 built or under construction (Average 127MN Force)

150

100

50

0 0

10

20

30

40

50

60

70

80

Nr.

Fig. 13 - Overview capacity data open die forging presses

Hall of Fame - Forge Masters World with Press Capacity > 90MN 113MN

France Creusot

Germany 120MN Saarschmiede 100MN Bรถhler

150MN 130MN 130MN 120MN 120MN 100MN

Korea Taewong Doosan SeAH Hyundai SPP Youlcha Kisco

Japan 140MN 130MN 100MN

JSW JCFC KSK UK

100MN

SFIL

North America 91MN Le High Forge 91MN Finkl & Sons

Eastern Europe 150MN EMSS 120MN Doosan IMGB 120MN OMZ Special 120MN Pilsen Steel 120MN Vitkovice Heavy 100MN NKMZ

100MN

India Larson & Toubro

185MN 165MN 160MN 150MN 140MN 120MN 100MN

China CiticHeavy Shanghai Electronic China National Erhong CFHI China First Heavy Sunan Special Steel Tongyu Heavy NHI Shenyang

Italy 200MN 150MN 126MN 120MN 120MN 120MN 100MN

Vienna Monchieri SDF Franchini OFAR Morandini FOMAS

(without engagement)

Table 4 - Open die forge masters world-wide with press capacity > 90 MN The current Hall of Fame for presses with a pressing force of over 90MN is shown in table 4. If a company has further presses in addition to the pressing force gauged, these have not been listed. The countries with the largest investments in the last few years are Korea, China and Italy.

16


6. Cost Development

%

The Indexes of Primary Commodity Prices published Indexes of Primary Commodity Prices based on 2002 in % (IMF) by the IMF result in 2 main factors of influence for the 450 development of the total cost of heavy forgings shown 400 in picture 10. These are the indexes for metal 350 procurement prices and the prices of energy, whereby 300 the latter is essentially based on gas prices from 250 Index Metal Prices various sources. It can clearly be seen that the price index Energy Prices 200 indexes in 2007/2008 were at their highest level before 150 the real estate crisis, they fell in 2009 and rose again 100 sharply in 2011. Compared to 2002, both price indexes 50 have increased by a factor of approx. 4. However, the 0 situation is not necessarily the same in different 2002 2004 2006 2008 2010 2012 countries e.g. the prices for energy in the USA are Year much lower than before the real estate crisis and the hourly compensation costs for wagelabour differ Fig. 14 Indexes of primary commodity widely from one country to another although efficiency prices based on 2002 in % (International also has to be taken into account here. However, figure Monetary Fund - IMF) 14 shows a general trendwhich not all were able to avoid: the prices for material and energy must be paid for and are integrated directly into the cost structure.

7. World Economic Situation The diagram in figure 15 shows the expected global economic growth. The development shows a consistent trend that, if there is no crisis in the short term after 2008, the demand for forgings will at least remain on the level of 2011 or somewhat higher. Risks are presented, on the one hand, by countries which are, in part, highly in debt in North America and Europe and where strict savings plans have been imposed as well as the sharp rise in the price of oil and, as a result, the further increase in energy prices. The natural catastrophe in Japan in March 2011 with the devastating Fig. 15 - Global GDP Growth Development (IMF) consequencesin Fukushima has hadan immense effect on the demand for heavy duty forgings for energy generation. This influence is still prevalent today but is increasingly dwindling. These are opportunities for the years to come: making up for facilities which were not installed or the modernisation of out-dated facilities for energy generation due to a lack of a clear trend in which direction things are going. In addition, there are risks in some areas with regard to the mining and sale of fossil fuels or the direct generation using solar power such as in countries in Northern Africa (Project Desertec). With due consideration to the risks and climate change and irrespective of whether the trend moves more towards nuclear, renewable or traditional energy and where the energy is produced, in the medium and long term, heavy forgings will be required in any case, in particular in energy conversion.

8. Conclusions The overall production of heavy forgings has increased by about 70% in the last 10 years and the trend is, at least, consistent, see figure 14. The costs for production have mostly risen (material and energy) by 300% by a factor of 4.

17


The average prices, on the other hand, have only risen by about 100% (2009) to 75% (2011). This results in a need to align the price development which conflicts, however, with the increase in capacity of 100%. If one compares the increase in production with the increase in capacity, the result is a relative increase of the capacity by approx.17% and India, after China, has the largest need to make up for lost ground. Since there has been a manifold increase in production costs and, at the same time, new manufacturers also have a lot of catching up to do with regard to expertise, the prices for components which require expertise will increase more sharply than those of less complex components. Forges which go against this trend in an attempt to secure short-term advantages on the market, will pay a high price for this in the medium term and are taking the risk of having a liquidity situation which is imbalanced or irreparable. Before the real-estate crisis, many companies put their hope in a large increase in the demand for the new construction of nuclear power stations and invested in ever-larger presses, see Hall of Fame, table 4. Figure 16 shows a view of the well-known AP1000, currently a favourite among new constructions. The current trend is based on 10-15 new constructions the same as or similar to AP1000 or EPR per annum in the next few years. Based on the history, (commissioning/anno) it can be calculated that in the next few years, approx. 15 atomic power stations a year will need to be modernised at the same time. One can also assume a total of a maximum of 30 atomic power stations per year which will be newly built or modernised. An AP1000 requires approx. 30 heavy forgings which would mean a total of approx. 900 heavy forgings per year and approx. 50000t of shipping weight for the primary circulation without the pipes.Ifoneassumesamediumpresscapacitytimeof approx. 20 hours per component, all of these forgings can be produced without difficulty on 4 large facilities. Figure 13 indicates 70 facilities. Much of them theoretically suited to the production. The number is reduced, taking into account the environment of the press and the expertise and, not least, successful certification according to ASME III. The assumptioncanthereforebemadethat, in the last few years, too much large facilities have been built and that the emphasis will not be on the production of large components. With an annual production of 4 million tonnes within the IFM Community plus Eastern Europe plus China, thisis in total at least 5 million tonnes so that the production of heavy components for the primary circulation in the nuclear power industry only makes up 1%. If one includes turbine shafts and generator shafts, it is still only a small percentage. The focus lies elsewhere, among other products on tool steel for the automo-tive industry, shipbuilding, mechanical engi-neering but also wind generation,onshore and offshore applications.

Fig. 16 - AP1000 Westinghouse [5]

9. Outlook

A combination of the effects of Fukushima on at least slowing down a global civil nuclear renaissance significantly plus the world economic crisis arising from excessive national debts has resulted in many plants working well below their capacity with heavy financial losses. This feature arising at the end of an unprecedented growth in capacity in the preceding years has put the viability

18


of many existing plants at risk. A recovery to normal production levels can reasonably be predicted to be slow, gradual and stretch over several future years. The last IFM 2011 in Pittsburgh was the 18th event of this type and the OpenForge Meeting 2012 is the second event in China with an almost identical range of subjects. Since the amount of time and effort for creating contributions for these events is very high for each company and each individual and cannot be realised efficiently on an annual basis, it would seem to be beneficial if China participated in the IFM as a region and only one IFM or WIFM (World IFM) took place every 3 years.

The location of the next IFM is Tokyo and it will take place in 2014 (figure 17). Due to the proximity to China and India, this event will certainly reach record levelsofattendance.Thehigh number of facilities in which investment has taken place, the possibilities for simulation and the unavoidable climate change will also have an influence on the subjects of the proceedings. Until 2014 and beyond, above all, the world should be spared from natural catastrophes and crises. We look forward to the IFM 2014 in Tokyo.

Fig. 17 - Locality of 19th IFM 2014

References [1] With support of IFM Steering Group Members, March 2012 [2] Dr. Ingo Steller, Stahlinstitut VDEh, D端sseldorf, Expertentreff f端r Freiformschmieden, Stahl und Eisen 131 (2011) No. 12, page 10 - 14 [3] 18th IFM Proceedings [4] CIFM 2010 Proceedings [5] www.ap1000.westinghousenuclear.com

19


东欧大锻件行业 (中英文版,论文) Jiri Filippi (ZDAS, a.s. Metallurgy, 捷克共和国) 1 介绍 东欧(联合国统计司,2011)的定义为包括白俄罗斯,保加利亚,捷克共和国,匈牙利,波兰,摩 尔多瓦共和国,罗马尼亚,俄罗斯联邦,斯洛伐克和乌克兰。这些国家的总人口约 293 万人。

图 1: 东欧国家 随着“铁幕”的落下,政治上的东欧板块的消失,像白俄罗斯、捷克共和国、匈牙利、波兰、罗马 尼亚和斯洛文尼亚等国家从政治上和经济上开始向欧洲发达国家看齐,成为欧盟的成员国。2004 年,捷 克、匈牙利、波兰、斯洛文尼亚四国加入欧盟,白俄罗斯、罗马尼亚三年后即 2007 年加入欧盟。今天, 这些国家的主要贸易对象是作为他们工业品主要市场的欧盟国家。近几年,在上世纪 90 年代早期自愿脱 离前苏联联盟的许多国家试图在原联盟市场上重建其地位。由于有着一致的历史和相似的语言,这种尝 试经常获得成功。尽管是欧盟成员,但是这些国家除了斯洛文尼亚以外都没有加入欧洲货币联盟(即欧 元区)。因此,他们都保留了自己的货币。 前独联体中的俄语国家和地域经济中心俄罗斯联邦都对他们在本地域的工业贸易非常关注。同时, 许多工业公司也成功地参与了国际竞争。俄罗斯存在贸易顺差,特别表现在石油、天然气和原材料的出 口上。 东欧的大锻件企业位于白俄罗斯、捷克、波兰、罗马尼亚、俄罗斯和乌克兰。根据世界货币组织 2011 年的预测,2011 年到 2012 年,这些国家的 GDP 增长为 2%到 5%,而欧洲其他发达国家的增长只 有 0 到 2%,有的国家甚至是负增长。 虽然相对于发达经济,东欧的企业生产率仍然落后,但他们得益于高素质的劳动力资源和相对较低 的劳动力成本。但是这些有利因素正在明显改变。根据 2010 年统计(欧盟统计署),2004 年以来加入 欧盟的大多数成员国的劳动生产率在过去十年中逐渐趋向欧盟 27 国平均值。举个例子,罗马尼亚的人均

20


劳动生产率从 2000 年占欧盟 27 国平均值的 24%增长到 2008 年的 48%。而白俄罗斯为 36%,捷克 72%,波兰则为 63%。 2 东欧的锻造行业 2.1 来源介绍和研究方法 在美国匹斯堡市召开的 18 届 IFM 会议上,有 9 家自由锻企业宣读了他们的论文,在论文中,他们都 介绍了自己企业的详细信息。受访信息中包含其雇员数量、生产设备信息、冶金和锻件生产能力和 2009 年到 2012 年的实际和预期产量。 这些企业还共享了他们在 2010 年的产品结构和准确的销售产值,为我这篇论文中的市场部分提供了 数据。由于某些信息可能会涉及机密或商业敏感,这些信息只以汇总的形式出现。本文只阐述这 9 家企 业的信息。 由于 2012 中国国际自由锻会议同 18 届 IFM 会议相隔不久,我对论文进行了简单的修改以满足 2012 中国国际自由锻会议的需要。为了得到更准确的信息,我们对这些企业重新采集了他们的钢铁冶金 和锻件产量以及到 2013 年的预测产量。由于这 7 家企业占据了东欧 80%以上的冶金和锻件生产能力及 产量,从这些数据中得出的结论可以认为代表整个东欧。在 2012 年及 2013 年的预测中,其余两家企业 的产量是推算出来的。 还有 3 家企业没有返回调查问卷,但是为了使读者对东欧锻造行业有一个清晰的了解,在论文中也 应提到这三家企业。他们分别是白俄罗斯拥有 45MN 自由锻压力机的的 Radomir Metal 公司,罗马尼亚 拥有 60MN 和 25MN 压力机的 Fortus 公司,俄罗斯拥有 130MN 和 60MN 自由锻压力机的 Barrikady 公 司。由于没有得到他们的明确回复,无法提供他们的信息。 图 2 显示的是右边所列这些企业所处的位置

图 2: 东欧锻造企业所处的位置 2.2 东欧锻造企业 这 9 家企业都是自由锻综合生产企业,有自己的冶炼能力,交货方式可以是毛坯、粗加工和成品。 除了一家企业外,其他企业都有自己的铸造厂,能够为用户提供自由锻件和铸件。

21


6

5

4

3

2

1

0 bellow 30MN

30-40 MN

系… 50-60MN

80-100MN

120 MN

150 M

图 3:东欧现有的大型锻造压力机数量 这些企业共有 25 台自由锻压力机,图 3 是它们的一个汇总,下文的企业介绍里将对它们进行介绍。 2.2.1 CELSA HUTA OSTROWIEC 公司地址: Ostrowiec Sw., 波兰 雇员数量: 1350 冶炼工人和锻造工人: 570 建成时间: 2003 网址: www.celsaho.com 年产钢量(千吨): 200 锻造年生产能力(千吨): 52 最大钢锭(公吨): 130 最大锻件重量(公吨): 70 正在服役的自由锻压力机: 80 MN, 50MN, 32 MN and 20 MN Huta Ostrowiec 公司建立于 1812 年,2003 年 Celsa 集团收购了 Huta Ostrowiec 公司的资产,建立 了 Celsa Huta Ostrowiec 公司。Celsa 集团是欧洲长材钢铁产品的领先企业,在欧洲拥有 8 家冶炼厂。 从原始的废料收集到最终的机加工和喷涂,Celsa Huta Ostrowiec 称得上是一家完整的综合生产企业。 Celsa Huta Ostrowiec 公司有三个部门:锻造部、轧材部和废料收集部。锻造部有一个冶炼车间、一个拥 有 4 台压力机和热处理及机加工的锻造车间、一个有 3 条 20 米长井式炉的热处理车间以及一个拥有各种 机加工能力的机加工车间。公司有一整套 TR 装置(世界上最大的 TR80,TR32,TR20)和一台比较新 的整体曲轴机加工设备。主要产品:可再生能源发电轴、石油机械零件、大型整体曲轴、汽轮机发电机 和电动机零件、轧辊、造船用锻件。 2.2.2 Doosan IMGB 公司地址: Bucharest, 罗马尼亚 雇员数量: 700 冶炼工人和锻造工人: 430 建立时间: 1963 网址: www.doosanimgb.com 年产钢量(千吨): 160 锻造年生产能力(千吨): 58 最大钢锭(公吨): 270 最大锻件重量(公吨): 170 正在服役的自由锻压力机: 120 MN 斗山 IMGB 公司是韩国斗山重工的姊妹公司。其产品主要是为其母公司提供 2 冲程曲轴。斗山 IMGB 公司未来将关注电站、造船、冶金设备、模具钢和石化机械领域的锻件和铸件生产。

22


2.2.3 EMSS 公司地址: Kramatorsk, Donetsk region, 乌克兰 雇员数量: 3075 冶炼工人和锻造工人: 3075 建立时间: 1964 网址: www.emss.dn.ua 年产钢量(千吨): 271 锻造年生产能力(千吨): 84 最大钢锭(公吨): 355 最大锻件重量(公吨): 204 正在服役的自由锻压力机: 150 MN, 60 MN and 32 MN EMSS 公司专注于生产电站、冶金、机械工业和造船行业的锻件和铸件,有很强的冶炼和锻件生产 能力。其大股东 OJSC Atomenergomash 是俄罗斯著名电站工程公司 ROSATOM 国家核电公司的电站设 备和服务部门。 2.2.4 NKMZ 公司地址: Kramatorsk, Donetsk region, 乌克兰 雇员数量: 13364 冶炼工人和锻造工人: 5000 建立时间: 1934 网址: www.nkmz.com 年产钢量(千吨): 250 锻造年生产能力(千吨): 130 最大钢锭(公吨): 170 最大锻件重量(公吨): 110 正在服役的自由锻压力机: 100 MN, 50 MN, 30 MN and 10 MN NKMZ 是乌克兰最大的特殊及超大型轧机、冶金、压力机和锻造、电站、采矿、起重和运输设备生 产商。他有着独有的技术能力,是冶金产品和精密机械的综合生产商。为外部客户提供的主要锻件产品 有采矿和水泥机械部分锻件、轧辊、电站锻件以及核电锻件。 2.2.5 OMZ 特殊钢公司 公司地址: Kolpino, St. Petersburg, 俄罗斯 雇员数量: 2100 冶炼工人和锻造工人: 2100 建立时间: 2002 网址: www.omz-specialsteel.com 年产钢量(千吨): 200 锻造年生产能力(千吨): 80 最大钢锭(公吨): 500 最大锻件重量(公吨): 230 正在服役的自由锻压力机: 120 MN, 60 MN, 32 MN and 13 MN OMZ 特殊钢公司是俄罗斯最大的为各行业提供半成品冶金产品的生产企业,主要包括设备制造、石 化、造船、大型设备制造和冶金行业。公司在 2002 年成立,是 OMZ 公司的一部分,拥有"Izhorskiye Zavody"冶炼车间。2007 年以来,OMZ 公司的主要股份为 GAZPROMBANK 持有,这使该公司成为其垂 直整合的关键环节。 2.2.6 ORMETO – YUMZ 公司地址: Orsk, 俄罗斯 雇员数量: 5000 冶炼工人和锻造工人: 1500 建立时间: 1942 网址: www.ormeto-yumz.ru 年产钢量(千吨): 100 锻造年生产能力(千吨): 50 最大钢锭(公吨): 120 23


最大锻件重量(公吨): 45 正在服役的自由锻压力机: 60 MN and 30 MN ORMETO – YUMZ 公司设计和制造材料处理和混合设备、烧结、连铸设备、起重和处理设备、轧机、 破碎和研磨设备、有色冶金设备、钻井设备和高炉设备、焦炉设备,炼钢设备,压块,通用机,黑色金 属和有色金属冶金工程用铸件和锻件,采矿和水泥行业,燃料和能源领域。在其产品结构中,为外部客 户提供的主要锻件产品是冷热轧机的锻造轧辊和后支撑辊。 2.2.7 PILSEN 制钢 公司地址: Pilsen, 捷克 雇员数量: 950 冶炼工人和锻造工人: 950 建立时间: 1859 网址: www.pilsensteel.cz 年产钢量(千吨): 140 锻造年生产能力(千吨): 44 最大钢锭(公吨): 250 最大锻件重量(公吨): 170 正在服役的自由锻压力机: 120 MN and 32 MN PILSEN 制钢公司有自己的炼钢、铸造、锻造、热处理和机加工设备。生产范围非常广泛,从为机床、 压缩机和泵、柴油发动机、齿轮箱提供钢锭、铸铁,到为大型机械、压力机、札记、汽轮机、液压站提 供铸钢件,再到锻件产品,例如简单的锻造圆钢、轧辊、船用锻件、转子、四冲程柴油发动机曲轴、风 电轴。最大的 120MN 压力机最新集成了 200 吨锻造操作机。 2.2.8 VITKOVICE 重机 公司地址: Ostrava – Vitkovice, 捷克 雇员数量: 1600 冶炼工人和锻造工人: 1000 建立时间: 1828 网址: www.vitkovicemachinery.com 年产钢量(千吨): 200 锻造年生产能力(千吨): 80 最大钢锭(公吨): 190 最大锻件重量(公吨): 130 正在服役的自由锻压力机: 120 MN, 60 MN and 16MN VITKOVICE 重机公司是一家重要的工程公司,拥有自己的炼钢能力,专门提供大型铸件、机加工后 锻件、船用曲轴和零件、冶金设备和轧机、成形装备、货车车轮。该公司是捷克重要的工程集团 VITKOVICE 机械集团的成员单位,在机械产品细分市场和大型投资总成供应领域具有重要地位。 2.2.9 ZDAS 公司地址: Zdar nad Sazavou, 捷克 雇员数量: 2400 冶炼工人和锻造工人: 830 建立时间: 1951 网址: www.zdas.cz 年产钢量(千吨): 55 锻造年生产能力(千吨): 21 最大钢锭(公吨): 20 最大锻件重量(公吨): 10 正在服役的自由锻压力机: 23 MN and 13 MN ZDAS 属于 Zeleziarne Podbrezova 集团公司。成形机械产品是该公司的一种主要产品。ZDAS 公司 同其附属公司 TS Plzen 合作提供全范围的两柱、四柱下拉式和上压式锻造压力机,公称成形压力从 6.3MN 到 180MN。ZDAS 公司生产和销售成套锻造生产设备包括液压锻造压力机和一台或两台夹持能力 从 1.5 吨到 160 吨的锻造操作机。可以提供所有的未来可能需要的附属设备和全套设备的集成。不仅如

24


此,该公司也生产冶金产品:钢锭、铸件和自由锻件。在其产品结构中,为外部客户提供的主要锻件产 品是电站设备、通用机械和石油天然气设备用锻件。 2.3 市场现状、历史和概述 2.3.1 钢铁产量 9 家企业的综合年生产能力为 158.1 万吨钢水(Filippi,2011 年)。2009 年生产了 62.68 万吨钢水, 产能利用率只有大约 40%。2010 年生产了 71.02 万吨钢水,产能利用率提高到 45%,2011 年生产了 79.9 万吨钢水,产能利用率达到 50%。在未来几年,产能利用率还有望提高,2012 年生产 90.9 万吨钢 水,达到大约 58%。2013 年生产 104.7 万吨钢水,产能利用率达到 66%。 1200

1000

1046.6 909.32

800

600

710

799.06

626.8 400

200

0 系列1

2009

2010

2011

forecast 2012

forecast 2013

图 4: 2009-2013 年东欧锻造企业的钢产量(千吨) 在这次为中国国际自由锻会议论文所做的调查问卷中,受访公司对其在 18 届 IFM 会议论文中所介绍 的 2011 到 2012 年的预测数据进行了重新推算。钢产量的预测平均值减少了 20%。这是由于公司都降低 了预期的产量,并且一家公司承认上次的预测数据出现失误。2012 年到 2013 年的预测数据包含了所有 9 家公司的产量,其中,7 家公司返回了为中国国际自由锻会议论文所做的调查问卷,对其余两家公司的 数据为推算结果。 9 家公司的钢产量都有一个良好的发展趋势。有一个应重点指出的事实是这些钢产量不只是锻造工厂 锻造用钢锭的产量。8 家公司还生产铸件,7 家公司同时也对外部客户销售钢锭。 2.3.2

锻件产量 463

480

407

420

374

360

300

319

304

240

180

120

60

0

2009

2010

系列1

2011

forecast 2012

forecast 2013

图 5: 东欧锻造企业 2009—2013 年锻件产量(千吨)

25


根据 2011 年统计(Sima, 2011),全世界拥有 30MN 以上自由锻压力机的大中型锻造企业年产锻件能 力估计在大约 460 万吨。这个数据预计还要增长,因为许多在建或计划建设的新压力机将开始运作。根 据 Sima 先生估计,2011 年全世界对大型锻件的需求量估计大约在 280 万吨(产能利用率约为 61%)。 东欧这 9 家公司的锻件年生产能力 2011 年为 60.9 万吨,约占 2011 年全世界锻件生产能力的 13%。这 个数据同 2005 年在谢菲尔德举办的 16 届 IFM 会议上介绍的比例相同。2011 年 9 家公司的锻件总产量 为 37.4 万吨,占 2011 年全世界总需求的 13.4%。 2009 年东欧锻造企业的锻件总生产能力只平均使用了 50%。2010 年产量只略微增加到 31.9 万吨。 2010 年,不同的公司锻造产能利用率有明显不同,从 30%到 70%。 受访公司对其 2011 到 2012 年的锻件产量也做了重新估算,结果显示平均减少了 9%。 同 2010 年比较,2011 年的锻件产量有了一个明显的增长—17.2%,产能利用率达到 61.4%。2012 年产量应该能达到 40.7 万吨,产能利用率为 67%,2013 年产量达到 46.3 万吨,产能利用率达到 76%。 2.3.3 市场情况 2010 年这些受访企业的总销售额为 9.99 亿欧元,自由锻件总销售额为 7.45 亿欧元,铸件总销售额 为 1.84 亿欧元,对外部客户销售的钢锭总销售额为 7 千万欧元。 在锻件销售中,比例最大的是船用锻件,其次是汽轮机和发电机转子、采矿和水泥机械用锻件、工 作辊和后支撑辊、风电主轴。锻造圆钢产品只占总销售的一小部分,这也证实了东欧锻造企业的锻件产 品主要是复杂形状锻件。图中有一大块是其他类型锻件,占总销售额的 20%(几乎达到 30%),我们在 这里很难准确说明他们具体是什么锻件。

图 6:锻造企业总销售额的市场划分饼状图 2010 年,销售额中约有 53%为东欧市场,其余 47%出口到世界各地。这个数据同 2005 年的数据相 近,2005 年东欧市场占了 48%,出口占了 52%。在受访企业之间,数据有很大不同,一家企业产品出 口少到只有 10%,其他公司中有的公司在这个领域出口达到 95%。 3 结论 继产量和销售额从 2008 年创记录的高峰迅速跌落后,2009 年开始,东欧锻造行业显示出一个良好 的发展势头。许多公司不得不缩减劳动力和重新考虑投资计划以应对一个较低的市场需求。2010 年和 2011 年,曾经处于困难时期的所有受访企业其产量和销售额数据都显示出一个良好的发展趋势。2012 和 2013 年预测数据甚至更加乐观。不幸的是,我们可以清晰地看到,在可预见的将来,许多公司将会保持 一个较低的产能利用率。而激烈的竞争也将加剧这些公司在本外埠市场成功竞争的困难性。

26


同时应注意在东欧锻造企业中有一块明显的潜力区域还没有充分开发。在大多数受访锻造企业中, 其优良的冶金和锻造生产能力加上技术实力将使其在未来的世界竞争中专注于更为专业的领域竞争。 致谢 本文作者感谢受访企业提供如此重要的、在某些方面有敏感性的商业信息。没有这些数据,是不可 能对东欧锻造行业的现状和发展作出归纳概述。 本文作者还感谢 Vladislav Sima 先生允许引用他的研究成果,并提供他在 2006 年 IFM 会议上所作 论文的原始调查数据。 参考文章: EC (2010) Europe in figures - Eurostat yearbook 2010. Luxembourg, European Commission, Publications Office of the European Union - http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KSCD-10-220/EN/KS-CD-10-220-EN.PDF. FILIPPI, J. (2011) Forging industry in Eastern Europe. 18th International Forgemasters Meeting. Pittsburgh, PA, USA, Forging Industry Association. IMF (2011) World Economic Outlook, April 2011: Tensions from the Two-Speed Recovery: Unemployment, Commodities, and Capital Flows. World Economic and Financial Surveys. Washington, D.C., International Monetary Fund http://www.imf.org/external/pubs/ft/weo/2011/01/pdf/text.pdf. IRS (2011) Yearly Average Currency Exchange Rates Internal Revenue Service United States Department of Treasury - http://www.irs.gov/businesses/small/international/article/0,,id=206089,00.html. SIMA, V. (2006) Middle and East European Forging Industry IFM 2006. Sheffield, IOM Communications Ltd. SIMA, V. (2011) Heavy Forging Market Presentation - ODWG (Open Die Working Group) EUROFORGE. UNSD (2011) Composition of macro geographical (continental) regions, geographical sub-regions, and selected economic and other groupings. New York, United Nations Statistics Division http://unstats.un.org/unsd/methods/m49/m49regin.htm

27


HEAVY FORGING INDUSTRY IN EASTERN EUROPE (Chinese & Englishversion, Paper) Jiri Filippi (ZDAS, a.s. Metallurgy, Czech Republic)

1 Introduction Eastern Europe as per the definition of (UNSD, 2011) consists of Belarus, Bulgaria, Czech Republic, Hungary, Poland, Republic of Moldova, Romania, Russian Federation, Slovakia and Ukraine. Total population of these countries is approximately 293 million people.

Fig. 1: Countries of Eastern Europe After the fall of “Iron Curtain“ political Eastern block disappeared and countries including Bulgaria, Czech Republic, Hungary, Poland, Romania and Slovakia started to focus politically and commercially towards a developed Europe with a clear objective to become members of the European Union while turning away from its former close ties with Soviet Union which was succeeded by the newly established Russian Federation. In 2004, among others, Czech Republic, Hungary, Poland and Slovakia joined European Union. Bulgaria and Romania joined European Union three years later in 2007. Today, majority of trade for these countries is orientated towards the countries of European Union, which is the main market for their industrial goods. In recent years, many companies from these new European Union countries have been trying to re-establish their market position in Former Soviet Union market they have voluntarily left earlier in the early nineties. This has been often successful because of the common history and language similarities. Despite of being members of European Union, none of these countries with an exception of Slovakia joined European Monetary Union (i.e. Eurozone) and they have therefore kept their national currencies to this day. Russian speaking countries of Former Soviet Union (i.e. Commonwealth of Independent States CIS)with the Russian Federation being the commercial center of the region mainly focused their

28


industrial trade within this territory. At the same time, many industrial companies also successfully compete on worldwide market. Russian Federation has positive trade balance especially because of significant exports of oil, natural gas and raw materials. Large open die forging shops in Eastern Europe are located in Bulgaria, Czech Republic, Poland, Romania, Russian Federation and Ukraine. According to International Monetary Fund (IMF, 2011), these countries expected GDP growth between 2-5 percent during 2011 and 2012 comparing to moderate growth of 0-2 percent or even negative growth for countries of Advanced Europe. Companies in Eastern Europe profit from educated workforce and relatively lower wages although they still lack behind with the productivity comparing to companies in developed economies. But that is changing significantly. According to (EC, 2010), labor productivity among most of the Member States that joined the EU since 2004 has converged towards the EU-27 average in the last decade. As an example it describes improvement in Romania where the Labor productivity per person employed moved from 24 % of the EU-27 average in 2000 to 48 % of the EU-27 average by 2008. For comparison it was 36% in Bulgaria, 72% in Czech Republic and 63% in Poland in 2008. 2 Forging industry in Eastern Europe 2.1 Introduction and methodology There were 9 open die forging companies who were approached for the original paper presented at 18th IFM in Pittsburgh (Filippi, 2011) and who have submitted information about their companies for the same; these are presented in detail in the further text. Responding companies filled up a questionnaire with the information about their companies such as number of employees, information about the production equipment, steel and forging capacity as well as real and expected production output between 2009 and 2012. Companies also shared information about their product portfolio and exact sales figures for 2010, which enabled author to prepare the market section of this paper. As some information may be considered confidential or commercially sensitive, such information is presented in summarized form only. This paper presents only information from these nine companies. As the OpenForge Meeting 2012 is being held shortly after the 18th IFM, original paper is updated to fit needs of the OpenForge Meeting. For the information to be most accurate, companies were asked to update their steel and forging production volumes with projections up to 2013. Seven of the nine companies were able to update their information for the OpenForge Meeting paper. As these 7 companies represent over 80% of steel and forging production capacities as well production output in Eastern Europe, presented conclusions are considered representative for the region. For the 2012 and 2013 forecasts, production volumes for the 2 remaining companies were extrapolated. There were further 3 companies who did not return the questionnaire but they should be mentioned in the paper in brief for a reader to have a complex idea about the forging industry in Eastern Europe. These companies were Radomir Metal in Bulgaria with open die press 45MN, company Fortus in Romania with open die presses 60 MN and 25 MN and company Barrikady in Russia with open die presses 130MN and 60MN. Further information cannot be provided, as they could not be confirmed. For the exact location of each company please refer to Figure 2 where companies are listed alphabetically.

29


Fig. 2: Location of Forging shops in Eastern Europe 2.2 Forging shops in Eastern Europe All 9 responding companies are integrated producers of open die forgings; who all produce their steel and ingots in house and can deliver their open die forgings either in black, rough machined or final machined condition. Except one company, all these companies have their own foundry and they are therefore capable of serving their customers both with open die forgings and castings.

6 5 4 3 2 1 0 bellow 30MN

30-40 MN

çłťĺˆ—1 50-60MN

80-100MN

120 MN

150 M

Fig.3: Large open die Presses in Eastern Europe sorted by pressing force Responding companies presented 25 operational open die presses; these are summarized under Figure 3 and presented by each forging shop in the text that follows. 2.2.1

CELSA HUTA OSTROWIEC

Location of company:

Ostrowiec Sw., Poland

30


Total number of employees: Employees in steel and forging: Year of establishment: Web pages:

1350 570 2003 www.celsaho.com

Annual steel making capacity in kT: Annual forging making capacity in kT: Max. size of ingot in metric tons: Max. weight of forging in metric tons: 70 Open die forging presses in operation in:

200 52 130 80 MN, 50MN, 32 MN and 20 MN

Huta Ostrowiec was established in 1812. In 2003 the Celsa Group acquired the assets of Huta Ostrowiec and established Celsa Huta Ostrowiec. Celsa Group is the leading manufacturer of ‘long’ steel products in Europe, owns 8 steel melting shops throughout the EU. Celsa Huta Ostrowiec is a fully integrated facility from scrap collection at origin to final machining and painting. Celsa Huta Ostrowiec has three divisions: the Forge Division, the Rolling Mill Division and the Scrap Collection Division. The Forge Division has a steel melting steel melting shop, a press shop with 4 presses and significant heat treatment and machining facilities thanks to a heat treatment shop including 3 vertical 20m long furnaces, and a machining shop with practically all type of machining possibilities. Company has a full set of TR devices (TR80-largest in the world, TR32, TR20) as well as a brand new state of the art monolithic crankshaft machining facility. Main products: shafts for renewable power generation; components for oil and gas; large monolithic crankshafts; components for turbines, generators and motors; rolls; shipbuilding. 2.2.2

Doosan IMGB

Location of company: Total number of employees: Employees in steel and forging: Year of establishment: Web pages:

Bucharest, Romania 700 430 1963 www.doosanimgb.com

Annual steel making capacity in kT: Annual forging making capacity in kT: Max. size of ingot in metric tons: Max. weight of forging in metric tons: 170 Open die forging press in operation:

160 68 270 120 MN

Doosan IMGB is daughter company of Doosan Heavy Industries & Construction of South Korea. Majority of its production consists of production of 2-stroke crankshafts for its mother company. Doosan IMGB further focuses on production of forgings and castings for the Power generation, Shipbuilding, Metallurgical Equipment, Tool steels and components for Petrochemical industry. 2.2.3

EMSS

Location of company: Total number of employees: Employees in steel and forging: Year of establishment: Web pages:

Kramatorsk, Donetsk region, Ukraine 3075 3075 1964 www.emss.dn.ua

Annual steel making capacity in kT: Annual forging making capacity in kT: Max. size of ingot in metric tons: Max. weight of forging in metric tons: 204 Open die forging presses in operation:

271 84 355 150 MN, 60 MN and 32 MN

JSC Energomashspetsstal (EMSS) is specialized in production of forgings and castings for Power industry, metallurgy, mechanical engineering and shipbuilding. EMSS has extensive steel and forging making capacities and capabilities. OJSC Atomenergomash owns main share at EMSS. OJSC 31


Atomenergomash is the power generation equipment and services division of the State Nuclear Energy Corporation ROSATOM; one of the leading power engineering companies in Russia. 2.2.4

NKMZ

Location of company: Total number of employees: Employees in steel and forging: Year of establishment: Web pages:

Kramatorsk, Donetsk region, Ukraine 13364 5000 1934 www.nkmz.com

Annual steel making capacity in kT: Annual forging making capacity in kT: Max. size of ingot in metric tons: Max. weight of forging in metric tons: 110 Open die forging presses in operation:

250 130 170 100 MN, 50 MN, 30 MN and 10 MN

Novokramatorsky Mashinostroitelny Zavod (NKMZ) is the largest producer of the unique and high-duty rolling mill, metallurgical, press and forging, power generating, ore and mining, hoisting and conveying equipment in Ukraine. It has unique technical possibilities; it is integrated producer of Metallurgy products as well as of sophisticated Machinery. Within forgings for external customers, main products are parts for mining and cement mills, rolls, power generation forgings and forgings for nuclear industry. 2.2.5

OMZ Special Steels

Location of company: Total number of employees: Employees in steel and forging: Year of establishment: Web pages:

Kolpino, St. Petersburg, Russia 2100 2100 2002 www.omz-specialsteel.com

Annual steel making capacity in kT: Annual forging making capacity in kT: Max. size of ingot in metric tons: Max. weight of forging in metric tons: 230 Open die forging presses in operation:

200 80 500 120 MN, 60 MN, 32 MN and 13 MN

OMZ Special Steels is the largest Russian manufacturer of semi finished metallurgical products for a variety of industries including machine building, petrochemistry, shipbuilding, heavy machine building and metallurgy. The company was founded in 2002 at the metallurgy shops of "Izhorskiye Zavody" and is a part of the OMZ-corporation. Since 2007, main share at OMZ is owned by the GAZPROMBANK, which enabled the company to become important link in its vertical integration. 2.2.6

ORMETO – YUMZ

Location of company: Total number of employees: Employees in steel and forging: Year of establishment: Web pages:

Orsk, Russia 5000 1500 1942 www.ormeto-yumz.ru

Annual steel making capacity in kT: Annual forging making capacity in kT: Max. size of ingot in metric tons: Max. weight of forging in metric tons: 45 Open die forging presses in operation:

100 50 120 60 MN and 30 MN

JSC «Heavy Engineering ORMETO–YUMZ» designs and supplies handling-and-blending equipment, sintering, continuous casting equipment (CCM), hoisting-and handling equipment, equipment for rolling mills, crushing-and-grinding equipment; equipment for nonferrous metallurgy, drilling and blast-furnace

32


equipment, coke-oven equipment, steel-making equipment, briquetting, general-purpose industrial equipment, castings and forgings made-to-order for ferrous and nonferrous metallurgy works, mining and cement industry, fuel and energy sector. Forging products in its portfolio for external customers are mainly forged rolls for hot and cold rolling mills along with back up rolls. 2.2.7

PILSEN STEEL

Location of company: Total number of employees: Employees in steel and forging: Year of establishment: Web pages:

Pilsen, Czech Republic 950 950 1859 www.pilsensteel.cz

Annual steel making capacity in kT: Annual forging making capacity in kT: Max. size of ingot in metric tons: Max. weight of forging in metric tons: 170 Open die forging presses in operation:

140 44 250 120 MN and 32 MN

PILSEN STEEL has its own steelmaking, steel and iron foundry, forge, heat treatment and machining facility. The manufacturing range is very wide, from steel ingots, iron castings for machine tools, compressors and pump, diesel engines, gear boxes, then steel castings for heavy machinery, presses, rolling mills, steam and gas turbines, hydro power plants, then forged products like simple forged bars, rolls, forgings for shipbuilding, rotors, crankshafts for 4 stroke diesel engines, shaft for wind power plants. Large 120 MN is newly integrated together with 200t forging manipulator. 2.2.8

VITKOVICE HEAVY MACHINERY

Location of company: Total number of employees: Employees in steel and forging: Year of establishment: Web pages:

Ostrava – Vitkovice, Czech Republic 1600 1000 1828 www.vitkovicemachinery.com

Annual steel making capacity in kT: Annual forging making capacity in kT: Max. size of ingot in metric tons: Max. weight of forging in metric tons: 130 Open die forging presses in operation:

200 80 190 120 MN, 60 MN and 16MN

VITKOVICE HEAVY MACHINERY is an important engineering company with its own steel production that focuses especially on the supplies in the area of heavy steel castings, machined forgings, ship crankshafts and components, equipment of steel plants and rolling mills, forming equipment and rolled tires for the railway industry. Member of VITKOVICE MACHINERY GROUP - important Czech engineering group with a strong position in selected segments of machinery production and in the area of supplies of large investment assemblies. 2.2.9

ZDAS

Location of company: Total number of employees: Employees in steel and forging: Year of establishment: Web pages:

Zdar nad Sazavou, Czech Republic 2400 830 1951 www.zdas.cz

Annual steel making capacity in kT: Annual forging making capacity in kT: Max. size of ingot in metric tons: Max. weight of forging in metric tons: 10 Open die forging presses in operation:

55 21 20 23 MN and 13 MN

33


ZDAS belongs to Zeleziarne Podbrezova Group. One of the main production programs in ZDAS is a manufacturing of the forming machines. ZDAS in cooperation with its subsidiary company TS Plzen offers and delivers the whole range of forging presses in design of two-column, four-column, pull-down and push-down with nominal forming force from 6,3 MN to 180 MN. ZDAS produces and delivers complete forging units which consist of hydraulic forging press and one or two forging manipulators with carrying capacity from 1,5 to 160 tons. Delivery of all further auxiliary equipment and integration of whole unit is provided. Not least, it is also producer of Metallurgy products: ingots, steel castings and open die forgings. Main forging products in its portfolio for external customers are forgings for power generation equipment, general machinery and Oil & Gas. 2.3 Market situation, history and outlook 2.3.1

Steel production

Total annual combined production capacity of 9 presented companies is 1.581 kT of liquid steel (Filippi, 2011). By producing 626,8 kT of liquid steel in 2009, production capacity was utilized only by approx. 40%. In 2010, utilization increased to 45% by producing 710,2 kT and to 50% in 2011 by producing 799 kT. Further increases are expected in following years when the production capacity will be utilized by approx. 58% in 2012 by producing 909 kT and by approx. 66% when the production reaches 1047 kT of liquid steel in 2013. 1200

1046.6

1000

909.32

800

799.06 710

600

626.8 400

200

0

2009

çłťĺˆ—1

2010

2011

forecast 2012

forecast 2013

Fig. 4: Steel production at Forging shops in Eastern Europe 2009 - 2013 in kT Companies that responded for the OpenForge 2012 survey have re-evaluated their forecasts for 2011 and 2012 which are presented at 18th IFM (Filippi, 2011). Survey reduced the original forecasts for steel production for 2011 and 2012 on average by 20%. This is caused by lower than expected production as well as one company admitting making mistake in original survey. Forecasts for 2012 and 2013 contain production volumes for all 9 companies, 7 of these companies provided the data for the OpenForge 2012 survey, results for the 2 remaining companies were extrapolated. There is a positive trend in the steel production in all 9 responding companies. It is very important to highlight the fact that the whole steel production is not intended only for the production of ingots that will be forged in these forging shops. 8 of responding companies use part of their steel making capacities for their casting production and 7 of these companies also sell ingots to external customers. 2.3.2

Forging production

34


According to (Sima, 2011), estimated annual worldwide forging capacity of large open die forging shops with presses above 30 MN, was approx. 4600 kT of forgings in 2011. This available forging capacity is expected to keep growing after the ongoing or planned investments into the new presses will become real and presses operational. According to the same author, estimated 2011 annual worldwide demand for large open die forgings was approx. 2800 kT (approx. 61% of production capacity). Combined annual forging capacity of responding companies in Eastern Europe is 609 kT (Filippi, 2011) – approx. 13% of worldwide forging capacity in 2011. This is approximately same worldwide share as in 2005 as presented at 16th IFM in Sheffield by (Sima, 2006). Combined production of 374 kT in 2011 covered approx. 13,4 % of 2011 worldwide demand.

463

480

407

420

374 360

300

304

319

240

180

120

60

0

2009

2010

系列1

2011

forecast 2012

forecast 2013

Fig. 5: Forging production at Forging shops in Eastern Europe 2009 – 2013 in kT In 2009, combined forging production capacity of forging shops in Eastern Europe was on average utilized only by 50%. There was only small production increase in 2010 when 319 kT of forgings were produced. There were significant differences between different companies as utilization of forging capacities varied from 30 to 70% in 2010. Companies that responded for the OpenForge 2012 survey have re-evaluated their forecasts for 2011 and 2012 which were presented at 18th IFM by (Filippi, 2011). Survey reduced the original forecasts for forging production for 2011 and 2012 on average by 9%. Positive trend in production was confirmed by additional and significant 17,2% increase in production in 2011 comparing to 2010 when production capacities were utilized by 61,4%. Production capacities should be utilized by approx. 67% after the production reaches 407 kT of open die forging in 2012 and by approx. 76% after the production reaches 463 kT of open die forgings in 2013. 2.3.3

Markets

Total sales volume provided by responding companies for 2010 was 999 million EUR that corresponds to approx. 1.323 million USD (1 USD = 0,755 EUR – as per (IRS, 2011). Total open die forgings sales were 745 million EUR in 2010 (987 million USD). These companies had additional combined castings sales of 184 million EUR (approx. 244 million USD) and combined ingots sales of 70 million EUR (approx. 93 million USD) for external customers. Within forgings sales, largest combined share have forgings for shipbuilding application, followed by turbine and generator rotors, forgings for mining and cement industry, working and back-up rolls and windmill main shafts. Rather small portion of total sales make bar products and this confirms that majority of forgings that are made in Eastern Europe are complex shape forgings. Large group marked as Other forgings, make 20% of total sales (or almost 30% of total forgings sales) and we cannot exactly state here for which industrial applications they are intended.

35


Fig. 6: Total sales of responding Forging shops in 2010 divided by markets In 2010, approximately 53% of total sales were directed to Eastern European market, remaining 47% were exported worldwide. This is very similar share to 2005 (Sima, 2006) when 48% were directed to Eastern European market and 52% were exported worldwide. There were again great differences between the responding companies. One company exported out of Eastern Europe as little as 10% of its production, other company exported out of this region 95% of its production. 3 Conclusion Forging industry in Eastern Europe shows positive development since 2009 when the production and sales went dramatically down from the record highs of 2008. Many companies had to downsize their workforce and to reconsider planned investments to cope with a lower market demand. All responding companies sustained the difficult period with production and sales figures showing again positive trends in 2010 and 2011. Companies are even more positive with their expectations for 2012 and 2013. Unfortunately, it is clear that production capacities of many companies will remain strongly underutilized in the foreseeable future. Strong competition will also make it very difficult for any company from outside this region to successfully compete on Eastern European market. At the same moment it must be noted that there is a clear potential in Eastern European forging shops, which is not fully developed. Outstanding steel and forging making capacities in majority of responding forging shops along with their technical capabilities will lead to a tighter worldwide competition in the future. Acknowledgments: Author of this paper would like to thank representatives of responding Forging companies for providing important, in some cases, sensitive commercial input information. Without such information this attempt to summarize the recent and current situation in the Eastern European Forging industry would be impossible.

36


Author would also like to thank Mr. Vladislav Sima for providing permission to cite from his research work and for providing the basis for the questionnaire originally used by him for the IFM 2006 market paper. List of Resources: EC (2010) Europe in figures - Eurostat yearbook 2010. Luxembourg, European Commission, Publications Office of the European Union - http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KSCD-10-220/EN/KS-CD-10-220-EN.PDF. FILIPPI, J. (2011) Forging industry in Eastern Europe. 18th International Forgemasters Meeting. Pittsburgh, PA, USA, Forging Industry Association. IMF (2011) World Economic Outlook, April 2011: Tensions from the Two-Speed Recovery: Unemployment, Commodities, and Capital Flows. World Economic and Financial Surveys. Washington, D.C., International Monetary Fund http://www.imf.org/external/pubs/ft/weo/2011/01/pdf/text.pdf. IRS (2011) Yearly Average Currency Exchange Rates Internal Revenue Service United States Department of Treasury - http://www.irs.gov/businesses/small/international/article/0,,id=206089,00.html. SIMA, V. (2006) Middle and East European Forging Industry IFM 2006. Sheffield, IOM Communications Ltd. SIMA, V. (2011) Heavy Forging Market Presentation - ODWG (Open Die Working Group) EUROFORGE. UNSD (2011) Composition of macro geographical (continental) regions, geographical sub-regions, and selected economic and other groupings. New York, United Nations Statistics Division http://unstats.un.org/unsd/methods/m49/m49regin.htm

37


后福岛中国核电的发展及其对材料与锻造行业的挑战 (中文版,幻灯片) Challenge to Material and Forging Industry from Development of the Chinese Nuclear Power after Fukushima Event (Chinese version only, PPT) 郁祖盛 (国家核电技术公司,中国) Zusheng Yu (State Nuclear Power Technology Corporation Ltd., China)

38


39


40


41


42


43


44


45


46


47


48


49


50


51


52


53


54


55


56


57


58


59


60


61


62


63


64


65


66


67


68


69


70


71


72


73


74


75


76


77


78


79


中国大型风电产业发展现状和趋势 (中文版,论文) Development and Trend of Wind Power Industry in China (Chinese version only, Paper) 祁和生,沈德昌 (中国农机工业协会风能设备分会,中国) Hesheng Qi, Dechang Shen (Chinese Wind Energy Equipment Association, China) 一、目前我国大型风力发电产业发展现状 1. 2011 年我国风电场装机情况 2011 年,我国风电场装机容量增长速度有所减慢,新增安装风电机组(台湾未计入)11409 台,装机 容量 17630.9MW,与 2010 年新增机组 12904 台,新增装机容量 18928MW 相比,增长率为-7.36%。平 均新增单机容量为 1.54MW,最大单机容量为 3MW。 到 2011 年底,中国(除台湾省未统计外)有 31 个省(直辖市)、自治区和特别行政区参加了风电 场建设,累计安装并网型风电机组 45894 台,装机容量约 6236.4 万 kW。与 2010 年累计装机 4473.3 万 kW 相比,2011 年累计装机增长率为 39.4%。中国风电累计装机超过 100 万千瓦的省份有 13 个,其中 超过 300 万千瓦的省份 7 个,分别为内蒙古(1759.4 万千瓦)、河北(696.95 万千瓦)甘肃(540.92 万千 瓦)、辽 宁( 524.93 万 千瓦)、 山东( 456.23 万 千瓦)、吉 林( 356.34 万千瓦) 、黑龙江 (344.58 万千瓦)。 2011 年底,风力资源丰富的内蒙古自治区在我国实现累计风电装机容量 1759.4 万千瓦,建成了辉 腾锡勒、辉腾梁、巴音郭勒和赤峰等多处大型风力发电场,率先迈进 1000 万千瓦级风电大省的行列,成 为我国风电装机容量最大的省份。与此同时,中国国电集团所属风电场在 2011 年新增装机容量突破 380 万千瓦。这些数字都说明,我国风电产业经过多年技术进步后,已经跨过了连续快速发展的阶段,正在 步入稳定成熟的发展阶段。 2010 年,我国内资企业和合资企业安装的风电产品已占当年国内累计市场份额的 81.6%,2011 年 国产机组的市场占有率比 2010 年略有增长,达到 83.8%, 远远超过外资企业,其中华锐风电的份额最大, 占全国累计总装机的 20.8%;金风第二,占全国累计总装机的 20.3%。 2011 年外资企业产品占国内累计市场份额的 16.2%,其中丹麦 Vestas 的份额最大,占当年累计总 装机容量的 5.7%,比 2010 年的 6.5%又有下降。 2010 年,我国内资企业和合资企业新增装机的风电机组已占当年国内新增市场份额的 87.7%,2011 年国产机组的市场占有率比比 2010 年又有增长,达到 88.74%,大大超过外资企业。其中,金风科技的份 额最大,占新增总装机的 20.4%;华锐风电第二,占新增总装机的 16.7%。 2011 年外资企业产品占国内新增市场份额的 11.26%,其中丹麦 Vestas 的份额占当年新增总装机容 量的 3.8%,比 2010 年的 4.7%又有下降。相关数据见表 1、表 2。 累计装机容量前十名制造商的容量比例之和已经达到 84.2%,新增装机容量前十名制造商的容量比 例之和已经达到 83.2%。这说明产业仍然很集中,留给中小企业的空间不到 17%。 表 1:2010 和 2011 年底中国累计风电装机前 20 名的风电机组制造商的市场份额 序 号

制造商名称

1

华锐风电

2010 年占当年累计 2010 年累计装机 2011 年累计装机 总装机容量比例 容量(MW) 容量(MW) (%) 12977 10038 22.4

2011 年 占 当 年 累 计总装机容量比例 (%) 20.8%

与 2010 年比累计 装机容量比例变 化情况 -1.6

2

金风科技

9078.85

20.3

12678.9

20.3%

0

3

东方汽轮机

5952

13.3

6898.0

11.1%

-2.2

4

联合动力

2435

5.4

5282.0

8.5%

3.1

5

Vestas

2903.6

6.5

3565.5

5.7%

-0.8

6

广东明阳

1945.5

4.3

3123.0

5.0%

0.7

7

Gamesa

2424.3

5.4

2785.9

4.5%

-0.9

8

湘电风能

1089

2.4

1801.5

2.9%

0.5

80


9

上海电气

1073.35

2.4

1781.5

2.9%

0.5

10

GE

1167

2.6

1575.5

2.5%

-0.1

11

华创风能

682.5

1.5

1308.0

2.1%

0.6

12

浙江运达

723

1.6

1098.0

1.8%

0.2

13

南车时代

465.3

1.0

916.5

1.5%

0.5

14

Suzlon

805.1

1.8

901.3

1.4%

-0.4

15

重庆海装

479.25

1.1

875.3

1.4%

0.3

16

远景能源

400.5

0.9

748.5

1.2%

0.3

17

Nordex

524.7

1.2

574.2

0.9%

-0.3

18

宁夏银星

252

0.6

473.0

0.8%

0.2

19

浙江华仪

295.08

0.7

446.1

0.7%

0

20

航天万源

249

0.6

355.2

0.6%

0

其它

1750.26

3.9

2199.5

3.5%

-0.4

合计

44733.29

100

62364.2

100%

0

注:根据中国可再生能源学会风能专业委员会资料整理,按 2011 年累计装机容量数据排序。

华锐 金风 系列1, GE , 2.50%, 4% 系列1, 上海电气, 2.90%, 3% 系列1, 湘电风能, 2.90%, 3% 系列1, Gamesa , 4.50%, 5%

系列1, 其它, 15.80%, 16%

系列1, 华锐, 20.80%, 21%

联合动力 Vestas

系列1, 金风, 20.30%, 20%

系列1, 明阳, 5.00%, 5%

明阳 Gamesa 湘电风能 上海电气

系列1, Vestas , 5.70%, 6%

GE

系列1, 联合动力, 8.50%, 8%

图 1.

东汽

系列1, 东汽, 其它 11.10%, 11%

2011 年中国累积风电装机容量排名前十制造商

从表 1 中可以看出:到 2011 年底,在累积装机中,排名前五位的分别为华锐、金风、东方汽轮机、 联合动力和 Vestas。但也看出:2011 年华锐、、东方汽轮机和 Vestas 的累计装机份额比 2010 年有所 下降,而联合动力的市场份额则有明显上升,金风科技则仍然保持原有的市场份额。 表 2:2010 年和 2011 年中国新增风电装机前 20 名的风电机组制造商的市场份额 序 号

制造商

1

金风科技

2011 年 新 增 2010 年装机容量 2010 年占全国新增装 装 机 容 量 (MW) 机容量比例(%) (MW) 3600.0 3735 19.7

2

华锐风电

4386

23.2

2939.0

16.7%

-6.5

3

联合动力

1643

8.7

2847.0

16.1%

7.4

4

广东明阳

1050

5.5

1177.5

6.7%

1.2

5

东方汽轮机 2623.5

13.9

946.0

5.4%

-8.5

81

2011 年占全国新增 与 2010 年比新增装机容 总 装 机 容 量 比 例 量比例变化情况 (%) 20.4% 0.7


6

湘电风能

507

2.7

712.5

4%

1.3

7

上海电气

597.85

3.2

708.1

4%

0.8

8

Vestas

892.1

4.7

661.9

3.8%

-0.9

9

华创风能

486

2.6

625.5

3.5%

0.9

10

南车时代

334.95

1.8

451.2

2.6%

0.8

11

GE

210

1.1

408.5

2.3%

1.2

12

重庆海装

383.15

2.0

396.0

2.2%

0.2

13

运达

129

0.7

375.0

2.1%

1.4

14

Gamesa

595.55

3.1

361.6

2.1%

-1

15

远景能源

250.5

1.3

348.0

2.0%

0.7

16

宁夏银星

154

0.8

221.0

1.3%

0.5

17

三一电气

106

0.6

179.5

1.0%

0.4

18

许继风电

166.0

0.9%

19

浙江华仪

161.64

0.9

151.0

0.9%

0

20

Suzlon

199.85

1.1

96.2

0.5%

-0.6

其它

382.9

2.0

259.4

1.5%

-0.5

合计

18927.99

100

17630.9

100

0

注:按 2011 年新增装机容量数据排序。

金风 系列1, 南车风电 , 2.60%, 3%

华锐 系列1, 其它, 16.80%, 17%

系列1, 金风 , 20.40%, 20%

系列1, 华创 , 3.50%, 3%

系列1, 华锐 , 16.70%, 17%

系列1, 上海电气 , 4.00%, 4%

系列1, 东汽 , 5.40%, 5% 系列1, 明阳 , 6.70%, 7%

明阳 东汽

系列1, Vestas , 3.80%, 4%

系列1, 湘电风能 , 4.00%, 4%

联合动力

系列1, 联 合动力 , 16.10%, 16%

湘电风能 上海电气 Vestas 华创 南车风电 其它

图 2. 2011 年中国新增风电装机容量排名前十制造商 从表 2 中可以看出:2011 年,新增风电装机中,排名前五位的分别为金风、华锐、联合动力、明阳 和东方汽轮机,装机容量分别为 3600MW、2939MW、2847MW、1177.5MW 和 946MW。年生产、新 增装机超过 500MW 的企业达到 9 家,市场排名前 15 的企业新增装机均超过了 300MW,比 2010 年增 加 3 家,而“十一五”之初仅有一家企业年装机超过 300MW。同时,我们还可以看出:外资企业(除 GE 外)市场占有率进一步下滑;内资企业中,华锐风电、东方气轮机市场占有率明显下滑;而国电联合 动力出现大幅上升;明阳、运达、湘电、上海电气、华创、南车等企业市场占有率均有上升。 根据中国可再生能源学会风能专业委员会的统计数据,2011 年我国新增装机容量约 1763 万千瓦, 比 2010 年约减少 7.36%;累计装机容量达到 6236.42 万千瓦,比 2010 年约增长 39.4%。由此可见,我 国风电新增装机容量首次出现负增长,我国风电装机容量连续翻番的时期已经结束,从 2011 年开始我国

82


风电产业的发展已经进入稳定发展期和慢速增长期。预计从 2012 年~2016 年,我国每年的风电新增装 机容量将在 1200 万千瓦到 1500 万千瓦之间徘徊。以高质量的设备和高质量的服务取胜,精心开发大型 海上风电机组,努力开拓国际市场,从风电制造大国向风电强国转变将是风电产业界今后 5 年的主要任 务。 2. 我国风电场主要开发商的情况 近 5 年来,我国风电场建设速度加快,进入大规模开发时期。到 2010 年底,我国已有 20 多家大型 企业积极参与千万千瓦级风电基地建设和其他风电场开发工作。此外,许多中小企业也投入到中小型风 电场的建设中。概括起来,我国风电开发商主要有五种类型。 (1)中央电力集团 它们是国电、大唐、华能、华电和中电投。它们在中国累计风电装机容量和新增装机容量市场中, 都占到了 52%以上的市场份额。 (2)中央所属的能源企业 国华集团、中海油、中广核、三峡总公司和中节能等都属于这类企业,它们在中国累计风电装机容 量和新增装机容量市场中,均占到了 15%左右的市场份额。 (3)省市自治区所属的电力或能源企业 例如:京能、河北建设、宁夏发电集团、鲁能、福建投资和粤电等都属于这类企业。这类企业数量 多,在地方拥有一定的资源,在各地风电场开发中,业绩显著。它们在中国累计风电装机容量和新增装 机容量市场中,约占 13%左右的市场份额。 (4)港资和民营企业 如:中国风电、香港建设新能源和天润投资等,约占 3%以上的市场份额。 (5)外资企业 如:汉能、宏腾能源等,市场份额很少。约占 1%左右的市场份额。 相对前三类开发企业,后两类企业所进行的风电场项目较少,规模也不大。 我国风电场主要开发商的业绩,请见表 12。 表 12-1:我国 2011 年新增装机容量前十名的风电场开发商 序号 开发商 装机容量/MW 市场份额/% 1 3860.5 21.9 国电集团★ 2 2235.1 12.7 大唐集团 3 2229.0 12.6 华能集团 4 1104.0 6.3 华电集团 5 1094.5 6.2 国华电力 6 866.3 4.9 中电投集团 7 796.1 4.5 华润 8 527.0 3.0 中广核 9 372.0 2.1 京能 10 343.6 1.9 新天绿色能源 4202.9 23.9 其它 17630.9 100 总计 国电集团包含龙源电力和国电电力。资料来源:《风能》杂志,2012 年 3 月刊 表 12-2:我国 2011 年累计装机容量前十名开发商 序号 开发商 装机容量/MW 1 12861.3 国电集团★ 2 8578.0 华能集团 3 8007.1 大唐集团 4 3829.9 华电集团 5 3440.1 国华电力 6 2944.9 中电投集团 7 2891.5 中广核 8 1773.4 华润电力 9 1686.3 京能集团 10 1278.6 新天绿色能源

83

市场份额/% 20.6 13.8 12.8 6.1 5.5 4.7 4.6 2.8 2.7 2.1


15073.4 24.2 其他 62364.2 100 总计 国电集团包含龙源电力和国电电力。资料来源:《风能》杂志,2012 年 3 月刊 3. 我国风电场装机情况及其分布 据中国风能协会(Chinese Wind Energy Association,CWEA)统计,2011 年,中国(不包括台湾 地区)风电场新增安装风电机组 11409 台,装机容量 17630.9MW。到 2011 年底,中国(不包括台湾地 区)风电场累计安装风电机组 45894 台,装机容量 62364.2MW,2011 年比 2010 年增长 39.4%。 目前,我国风电场主要集中在华北、西北、东北、和华东地区。今后,我国沿海地区风电场和海上 风电场的装机容量将逐步增加。

图 3 2001-2011 中国历年新增及累计风电装机容量 到 2011 年底,我国风电场累计装机容量超过 1000 万千瓦省份有 1 个,即内蒙古自治区;中国风电 累计装机超过 100 万千瓦的省份有 13 个,其中超过 300 万千瓦的省份 7 个,分别为内蒙古(1759.4 万 千瓦)、河北(696.95 万千瓦)甘肃(540.92 万千瓦)、辽宁(524.93 万千瓦)、山东(456.23 万千 瓦)、吉林(356.34 万千瓦)、黑龙江(344.58 万千瓦)。2010 年和 2011 年底我国风电装机容量前 20 名的省(自治区)如表 3 和表 4: 表 3: 2011 年我国风电新增装机容量前 20 名的省(自治区) 序 号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

省(自治区、 直辖市) 内蒙古 河北 山东 宁夏 辽宁 黑龙江 新疆 山西 吉林 云南 甘肃 广东 江苏 陕西 福建 河南 贵州 安徽 天津 湖南

2010 年新增 装机(MW) 4661.85 2133.4 1418.7 500.5 1641.55 710.3 361 627 877 309.75 3756 319.44 371 177 266.45

2010 年占 全 国的比例(%) 27.68 11.27 7.5 2.64 8.67 3.75 1.91 3.31 4.63 1.64 19.84 1.69 1.96 0.94 1.41

148.5

0.78

2011 年新增 装机(MW) 3736.4 2175.5 1924.5 1703.5 1182.5 1075.8 952.5 933.6 622.5 501.8 465.2 413.6 372.3 320.5 192.0 179.0 153.1 148.5 141.0 88.0

84

2011 年占全国新 增装机的比例(%) 21.19 12.34 10.92 9.66 6.71 6.1 5.4 5.30 3.53 2.85 2.64 2.35 2.11 1.82 1.09 1.02 0.87 0.84 0.8 0.5

与 2010 年比新增装机 容量比例变化情况 -6.49 1.07 3.42 7.02 -1.96 2.35 3.49 1.99 -1.1 1.21 -17.2 0.66 0.15 0.88 -0.32

0.06


21

广西 其它 总计

396.6 18927.99

2.1 100

76.5 272.8 17630.9

0.43 15.47 100

内蒙古 河北

系列1, 云南, 2.8%, 3%

系列1, 其它省 份, 16.2%, 16%

系列1, 吉林, 3.5%, 4%

系列1, 内蒙古, 21.1%, 21%

山东 宁夏 辽宁

系列1, 山西, 5.3%, 5%

系列1, 河北, 黑龙江 12.3%, 12% 新疆

系列1, 新疆, 5.4%, 5%

系列1, 山东, 10.9%, 11%

系列1, 黑龙江, 6.1%, 6% 系列1, 辽宁, 6.7%, 7%

系列1, 宁夏, 9.6%, 10%

山西 吉林 云南 其它省份

图 4 2011 年中国新增风电装机容量排名前十省份 从表 3 可以看出,2011 年,我国风电新增装机容量最多的是内蒙古自治区,新增装机约 3736.4MW, 排名第二、三位的是河北和山东省,新增装机容量分别为 2175.5MW 和 1924.5MW,其他新增装机较多 的有宁夏、辽宁、黑龙江、新疆等省。但是,与 2010 年比,2011 年甘肃、内蒙古两省(自治区)风电 发展的速度明显放慢,说明风电当地销纳和远距离输送等短板制约了风电的高速发展。而宁夏、新疆、 山东、黑龙江和山西的风电发展的速度明显加快。此外,云南、河北、广东、江苏和陕西的发展速度也 有所增长,这与国家鼓励分散式风电发展有一定关系。 表 4: 2011 年底我国风电累计装机容量前 20 名的省(自治区) 序 号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

省(自治区、 直辖市) 内蒙古 河北 甘肃 辽宁 山东 吉林 黑龙江 宁夏 新疆 江苏 山西 广东 福建 云南 陕西 浙江 上海 海南 安徽 海南 其它 总计

2010 年累计 装机(MW) 13858.01 4921.5 4943.95 4066.86 2637.8 2940.86 2370.05 1182.7 1363.56 1467.75 947.5 888.78 833.7 430.5 177 298.17 269.35 256.7 148.5

占全国的 比例(%) 30.98 11.00 11.05 9.09 5.90 6.57 5.30 2.64 3.05 3.28 2.12 1.99 1.86 0.96 0.40 0.67 0.60 0.57 0.33

577.55 44733.29

1.29 100

2011 年底累计装 机容量(MW) 17594.4 6969.5 5409.2 5249.3 4562.3 3563.4 3445.8 2886.2 2316.1 1967.6 1881.1 1302.4 1025.7 932.3 497.5 367.2 318.0 300.0 297.0 256.7 1222.4 62364.2

2011 年底占全国累计装 机容量的比例(%) 28.21 11.18 8.67 8.42 7.32 5.71 5.53 4.63 3.71 3.16 3.02 2.09 1.64 1.49 0.8 0.59 0.51 0.48 0.48 0.41 1.96 100

与 2010 年比累计装 机容量比例变化情况 -2.77 0.18 -2.38 -0.67 1.42 -0.86 0.23 1.99 0.66 -0.12 0.9 0.1 -0.22 0.53 0.4 -0.08 -0.09 -0.09 0.15 0.67 0

注:根据中国可再生能源学会风能专业委员会资料整理,按 2011 年累计装机容量数据排序。 85


内蒙古 系列1, 江苏, 3.1%, 3% 系列1, 新疆, 3.7%, 4%

河北

系列1, 其 他省份, 14.2%, 14%

甘肃 系列1, 内蒙古, 28.0%, 28%

系列1, 宁夏, 4.6%, 5%

山东 吉林

系列1, 河 北, 11.1%, 11%

系列1, 黑龙江, 5.5%, 5% 系列1, 吉林, 5.7%, 6% 系列1, 山东, 7.3%, 7%

辽宁

黑龙江 宁夏 新疆 江苏

系列1, 甘肃, 其他省份 8.6%, 9%

系列1, 辽宁, 8.3%, 8%

图 5 2011 年中国累积风电装机容量排名前十省份 从表 4 中可 以看出 :2011 年, 我国风 电累计 装机 容量最 多的是 内蒙古自 治区, 累计装 机约 17594.4MW ,占全国的 28.2%;河北和甘肃省排第二、三位,累积装机容量分别为 6969.5MW 和 5409.2MW,其他累积装机较多的有辽宁、山东、吉林、黑龙江等省。 4.我国海上风电场建设情况 我国的海上风电资源比较丰富,根据中国气象局详查初步成果,在我国 5 到 25 米水深的海域内、50 米高度风电可装机容量约 2 亿千瓦,5 到 50 米水深、70 米高度风电可装机容量约 5 亿千瓦。到目前为止, 我国已安装海上风电机组 13.8 万千瓦,分别为东海大桥海上风电项目(10.2 万千瓦)、如东潮间带示范 项目(3 万千瓦)、渤海绥中单机示范项目(1.5 兆瓦)和江苏响水示范项目(6.5 兆瓦)。 2010 年,首批 100 万千瓦海上风电特许权项目完成招标,其中:江苏滨海、射阳近海风电项目各 30 万千瓦,江苏东台、大丰潮间带风电项目各 20 万千瓦。2010 年 9 月 10 日,经过激烈角逐,大唐新 能源股份有限公司获得滨海项目,中国电力投资有限公司联合体赢得射阳项目,山东鲁能集团有限公司 拿下东台项目,龙源电力集团股份有限公司斩获大丰项目。为上述四个项目提供风机的制造企业也已选 定。其中,华锐风电将为滨海和射阳项目提供风电机组,金风科技和上海电气将分别负责制造大丰和东 台项目的风电机组。 表 17:首轮海上风电特许权项目中标结果 海上风电特许权项目名称 滨海近海风电场 射阳近海风电场 东台潮间带风电场 大丰潮间带风电场 大唐新能源股份 中国电力投资 山东鲁能集团有限 龙源电力集团股份 中标单位 有限公司 有限公司联合体 公司 有限公司 中标电价 0.737 元/千瓦时 0.7047 元/千瓦时 0.6235 元/千瓦时 0.6396 元/千瓦时 我国的海上风电目前还处于起步和探索阶段,其运行环境复杂,技术要求高,施工难度大,面临众 多的技术和管理难题。按照正常规律,海上风电的上网电价应高于内陆电价。一位风电专家表示,按照 目前国内的海上风电建设成本和技术水平,0.8-0.9 元/千瓦时的报价较为合理。 此前,我国第一个海上风电示范项目——上海东海大桥 10 万千瓦海上风电场项目的税后上网电价为 0.978 元/千瓦时。该项目总投资约 23.65 亿元,2010 年 7 月并网发电。 2011 年底,经国家能源局和上海市政府同意,经上海临港海上风电一期示范项目业主招标,已确认 华能新能源股份有限公司独家捆绑华锐风电 6MW 海上风电机组中标上海临港海上风电一期示范项目。这 是华锐风电继中标中国第一个国家海上风电示范项目“上海东海大桥 10 万 kW 项目”后又一崭新的海上 风电发展“里程碑”。 2011 年 10 月 8 日,华锐风电 6MW 海上风力发电机组已在江苏省射阳县临港产业区完成了首台吊装。 6MW 风电机组为目前亚洲单机容量最大的风电机组,是继 5MW 风电机组投入商业化运营后,中国风电 机组大型化的又一突破性成果。据悉,上海临港海上风电一期示范项目 17 台 6MW 机组将在华锐风电新 建成的上海临港风电产业基地投产。

86


5.我国风电并网规模及发电量 据中电联“2011 年全国电力工业统计快报”统计,2011 年,全国基建新增发电设备容量达 9401 万 千瓦,其中新增风电并网容量 1585 万千瓦,内蒙古、甘肃新增风电装机超过 300 万千瓦。风电并网容量 在 2010 年 3107 万千瓦的基础上同比增长 51%。与 2008 年相比,在全国基建新增发电设备容量中,并 网风电的容量比例由 5%上升到 17%。并网量大幅提高是风电行业步入良性发展轨道的一大重要特征。

图 6 2008-2011 年新增发电装机容量中并网风电装机占比 2011 年,全国全口径发电量 47217 亿千瓦时,其中,并网风电发电量为 732 亿千瓦时,占全国发电 量的比重比上年提高 0.38 个百分点,与 2008 年的 0.38%相比提高了 1.17 个百分点。

图 7 2008-2011 年中国风电占电力消费比例 6. 我国大型并网风电设备市场前景 目前,中国的风电装机容量为全国电源总装机容量的 4.65%(已并网风电装机容量为全国电源总装机 容量的 3.23%),中国风电具有大规模发展的前景,主要原因是: (1)中国的风能资源丰富 中国气象局风能太阳能资源评估中心最近采用数值模拟方法得到的结果:全国陆上 50m 高度风功率密 度达到 300W/m2 的面积约 54 万平方公里,按每平方公里装机 5MW 作为技术可开发量估计,技术可开 发量约为 26.8 亿千瓦;在离岸 20km 的海域范围内,技术可开发面积约为 3.7 万平方公里,离海面 50m 高度层风能资源技术可开发量为 2 亿千瓦;我国风能资源总的技术可开发量为 28.8 亿千瓦,陆地大于近 海。 考虑到实际可利用的土地面积等因素,初步估计:可利用的陆上风能储量约 8 亿千瓦,近海可利用 的风能储量有 2 亿千瓦,共计约 10 亿千瓦。如果陆上风电年上网电量按等效满负荷 2000h 计,则每年可 提供 2 万亿千瓦时的电量,近海风电年上网电量按等效满负荷 2500h 计,每年可提供 5000 亿千瓦时的 电量。陆上和近海合计约 2.5 万亿千瓦时的电量,相当于 2005 年全国的用电量。中国的风能资源主要分 布在三北地区和东南沿海及岛屿地区。 (2)中国的电网不断发展扩大 一方面,东南沿海地区已有较强的高压输电网,因此,风电机组并网在上述地区不会有很多技术问 题;另一方面,西部地区虽然目前电网较弱,当地电力销纳能力不强,但国家电网正在按规划加快远距

87


离、高压输电线路的建设。随着经济的发展,西部电网将不断延伸和增强。即将出台的“十二五”规划 将强调电网输配能力与风电建设协调发展。同时,智能电网的建设将更有利于风电的并网。 (3)中国的风电制造业发展迅速 目前 2MW 以下的风电机组已经在国内大批量生产,2.5 兆瓦和 3MW 机组已经批量生产并成功投入 运行,5MW、6MW 大功率风力发电机组已经下线。华锐、金风、国电联合动力和明阳风电已经进入全球 10 大风电机组制造商的行列。东方气轮机、湘电、上海电气、浙江运达、沈阳华创、南车时代、北重汽 轮电机、远景能源、重庆海装等 20 家企业已经形成大型风电机组批量生产能力。我国风力机叶片、发电 机、齿轮箱、塔架等已经形成大批量生产能力;变流器、变桨机构、偏航机构以及轴承等已经形成批量 生产能力。从 2010 年起,中国已经进入全球风电设备生产大国的前列,可为我国风电场建设提供充足可 靠的装备支持,同时开始向国际市场提供大型风电设备。 (4)国家法律、政策的大力支持 2009 年,我国政府公布了 2020 年非化石能源消费比重达到一次能源需求的 15%、碳排放强度在 2002 年的基础上降低 40%~45%的宏大目标。为保障上述目标的实现,作为清洁能源的重要发展方向, 风电需要承担更多的责任。 2010 年,中国政府开始实施《可再生能源法》(修正案),确立了可再生能源的全额保障性收购制 度和建立可再生能源发展基金,并将新能源列入“十二五”期间中国重点培育和发展的七个战略性新兴 产业之一。在《可再生能源法》的基础上,中国政府出台了一系列促进风电行业发展的政策和措施,风 电政策导向长期看好。国家《可再生能源“十二五”规划》(征求意见稿)中明确表示,到 2015 年底, 中国风电累计并网容量达到 1 亿千瓦,其中大基地风电 7000 万千瓦,分散式风电 3000 万千瓦,海上风 电 500 万千瓦。 2011 年,国家科技部发布了《国家“十二五”科学技术发展规划》,重点发展大功率风电机组整机 及关键部件设计、陆上大型风电场和海上风电场设计和运营、核心装备部件制造、并网、电网调度和运 维管理等关键技术。科技部首批支持项目出库,重点支持叶片翼型设计、大功率风电机组及关键部件研 制、海上风电工程等几个方面。 2011 年,国家发展和改革委员会能源研究所与国际能源署联合国内相关机构开展“中国风电发展路 线图 2050”研究,提出了 2020、2030 和 2050 年中国风电的战略发展目标和开发情景。到 2020、2030 和 2050 年,中国风电装机容量将分别达到 200、400 和 1000GW,2050 年风电将满足 17%的电力需求, 成为中国的五大电源之一。从中国的国情出发,中国风能的发展近期以陆上风电为主,适度发展海上风 电。根据不同地区在主要发展集中式并网发电系统的同时,发展分布式离网和并网发电系统。 (5)发展潜力巨大、国家已经制定长远规划 2011 年 10 月国家发改委能源研究所公布了“中国风电发展路线图 2050”,提出了我国风电发展的 战略目标和开发前景: 中国在大规模发展风电方面有良好的风能资源条件、有充足的广阔的土地资源条件,有较为成熟的 风电产业基础,有分布广泛和技术较为先进的电网以及未来电网进一步完善的发展作为支撑,尤其是, 中国未来持续发展的经济和今后一段时期内仍将增长的能源需求,使大规模发展风电既是必须的,又是 可行的。 确定风电发展战略目标的思路是:统筹考虑风能资源、风电技术进步潜力、风电开发规模和成本下 降潜力,结合国家能源和电力需求,以长期战略目标为导向,确定风电发展的阶段性目标和时空布局。 1、2020 年前 考虑到电网基础条件和可能存在的约束,以发展规模化风电市场、建立具有领先技术标准和规范的 风电产业体系为重要目标,以陆上风电为主、近海(含潮间带)风电示范为辅,每年风电新增装机达到 1500 万千瓦左右,到 2020 年,力争风电累计装机达到 2 亿千瓦。届时,在不考虑跨省区输电成本的条 件下,使风电的技术成本达到与常规能源发电(煤电)技术相持平的水平,风电在电源结构中具有一定 的显现度,占电力总装机的 11%,风电电量满足 5%的电力需求。 2、2020-2030 年 不考虑跨省区输电成本的条件下,风电的成本低于煤电,风电在电力市场中的经济性优势开始显现。 但如果考虑跨省区输电成本,风电的全成本仍高于煤电:若考虑煤电的资源环境成本,风电的全成本将 低于煤电的全成本。风电市场规模进一步扩大,陆海并重发展,每年新增装机在 2000 万千瓦左右,全国 新增装机中,30%左右来自风电。到 2030 年,风电的累计装机超过 4 亿千瓦,在全国发电量中的比例达 到 8.4%,在电源结构中的比例扩大至 15%左右,在满足电力需求、改善能源结构、支持国民经济和社会 发展中的作用日益加强。 3、2030-2050 年

88


风电和电力系统以及储能技术不断进步,风电与电力系统实现很好的融合。风电规模进一步扩大, 陆地、近海、远海风电均有不同程度的发展,每年新增装机约 3000 万千瓦,占全国新增装机的一半左右, 到 2050 年,风电可以为全国提供 17%左右的电量,风电装机达到 10 亿千瓦,在电源结构中约占 26%, 风电成为中国主力电源之一,并在工业等其他领域有广泛应用。 7. 我国大型并网风电设备产业的现状 (1)国内风电机组的技术来源 根据对国内正在制造和生产的风电机组的调查分析,其主要技术来源大致可分为以下 5 类: 第一类:引进国外的设计图纸和技术,或者是与国外设计技术公司联合设计,在国内进行制造和生 产。象金风科技引进的 1.5MW 永磁直驱风电机组,现在已在国内大批量生产和供货。还有广东明阳、国 电联合动力、浙江华仪的 1.5MW 双馈风电机组,重庆海装、上海电气的 2MW 双馈风电机组等都是采取 这种方式引进的,现在这些公司的产品都已经大批量生产。 第二类:购买国外成熟的风电技术,在国内进行许可生产。象华锐风电、东方汽轮机的 1.5MW 的双 馈风电机组,都在国内成功大批量生产并实现产业化,这些机组是国内的主力机型。还有重庆海装的 850kW,保定惠德、武汉国测、宁夏银星的 1MW,上海电气的 1.25MW,北重的 2MW 等都是采取这种 方式引进的,现在这些公司的产品已经批量生产。 第三类:与国外公司合资,引进国外的成熟技术在国内进行生产。象航天安迅能、恩德风电的 1.5MW 双馈风电机组,在国内已成功生产并实现产业化。还有湘电风能、瑞能北方的 2MW 等公司都是 采取这种方式引进的,现在这些公司的产品已经批量生产并投入试运行。 第四类:国外的风电机组制造公司在国内建立独资企业,将其成熟的设计制造技术,在国内进行生 产。象歌美飒风电的 850kW、苏司兰的 1.25MW、通用电气的 1.5MW、维斯塔斯的 2MW 机组以及远景 能源的 1.5MW 机组都是采取这种方式进行生产的,目前已经投入大批量生产。 第五类:采用国内大学和科技公司自行开发的设计制造技术,在国内进行生产的风电机组。例如: 沈阳华创、江苏新誉、浙江运达、三一重工开发的 1.5MW 机组,上海万德的 1.5MW 机组都是采取这种 方式进行生产的。目前,沈阳华创、江苏新誉、浙江运达开发的 1.5MW 双馈风电机组都已经投入批量生 产,并在风电场成功运行。 (2)风力发电机组整机制造企业概况 到 2011 年底国内仍有 85 家企业在大型并网风力发电机组整机制造行业中经营。其中,国有控股公 司 40 家,民营制造企业 24 家,合资企业 9 家,外商独资企业 10 家。根据企业的产品产业化集成程度, 大致可分为以下五种类型: 第一类:产业化落实程度非常好,已具备大批量生产能力的风电机组制造企业有 5 家,它们是:新 疆金风科技股份有限公司(2010 年安装了 373.5 万千瓦,2011 年安装了 360 万千瓦)、华锐风电科技 有限公司(2010 年安装了 438.6 万千瓦,2011 年安装了 293.9 万千瓦)、国电联合动力技术有限公司 (2010 年安装了 164.3 万千瓦, 2011 年安装了 284.7 万千瓦,)、广东明阳风电技术有限公司(2010 年安装 了 105.0 万千瓦, 2011 年安装了 117.75 万千瓦,)和东方汽轮机有限公司(2010 年安装了 262.3 万千瓦, 2011 年安装了 94.6 万千瓦,)。 这五家企业都已经具备了每年 100 万千瓦以上 MW 级风电机组的供货能力。 第二类:产业化落实程度好,已具备批量生产能力的风电机组制造企业有 11 家,它们是:湖南湘电 风能有限公司(2010 年安装了 50.7 万千瓦,2011 年安装了 71.25 万千瓦)、上海电气风电设备有限公司 (2010 年安装了 59.8 万千瓦, 2011 年安装了 70.81 万千瓦)、沈阳华创风能有限公司(2010 年安装了 48.6 万千瓦, 2011 年安装了 62.55 万千瓦)、株洲南车时代风电公司(2010 年安装了 33.5 万千瓦, 2011 年安装了 45.12 万千瓦)、重庆海装(2010 年安装了 38.3 万千瓦, 2011 年安装了 39.6 万千瓦)、浙江运 达风力发电工程有限公司(2010 年安装了 12.9 万千瓦、2011 年安装了 37.5 万千瓦)、银星能源 (2010 年安装了 15.4 万千瓦,2011 年安装了 22.1 万千瓦)、三一电气公司(2010 年安装了 10.6 万千 瓦, 2010 年安装了 17.95 万千瓦)、浙江华仪风电有限公司(2010 年安装了 16.2 万千瓦, 2011 年安装了 15.1 万千瓦)、许继风电公司(2011 年安装了 16.6 万千瓦)、长星风电设备有限公司(2010 年安装了 10 万千瓦)、;这 11 家企业都已实现了每年 10 万千瓦以上风电机组的供货能力。 第三类:产业化集成已经完成,并已具备小批量生产能力的风电机组制造企业有 13 家,它们是:保 定天威风电科技有限公司、江苏新誉风力发电设备有限公司、保定惠德风电工程有限公司、潍坊瑞奇能 风电公司、北京万源工业有限公司、锋电能源技术公司、瑞能北方风电设备有限公司、东方电气新能源 (杭州)有限公司、广西银河艾迈迪、久和能源、天地风能、中科天道、汉维风电。 第四类:正在进行小批量样机试验或整机试制工作,产业化工作正在落实的风电机组制造企业,包 括广东风盈风电公司、京城新能源、上海万德风力发电股份有限公司、江西麦德风电公司、国能风电、 中科风电、沈鼓公司等 54 家。 89


第五类:已有成熟的设计和制造技术,已能在国内大批量制造风力机总机或部件的国外独资企业, 包括维斯塔斯风力发电设备(中国)有限公司(2010 年安装了 89.2 万千瓦,2011 年安装了 66.19 万千 瓦)、歌美飒风电(天津)有限公司(2010 年安装了 59.65 万千瓦, 2011 年安装了 36.16 万千瓦)、通 用电气能源(沈阳)有限公司(2010 年安装了 21 万千瓦,2011 年安装了 40.85 万千瓦)、远景能源公 司(2010 年安装了 25 万千瓦, 2011 年安装了 34.8 万千瓦)、苏司兰能源(天津)有限公司(2010 年安 装了 16.16 万千瓦, 2011 年安装了 9.62 万千瓦)、德国 Nordex 公司、西门子公司等 10 家企业。 (3)风电机组配套部件制造企业概况 随着国内风电市场需求的扩大,风力发电机关键部件配套生产企业有了较快的发展,风电设备制造 和配套部件专业化产业链正逐步形成。 叶片制造企业在国内已有 80 多家,其中已经批量生产的企业有:中航(保定)惠腾风电设备有限公 司(2009 年市场份额占 22.5%)、连云港中复连众复合材料集团(2009 年市场份额占 15.8%)、中材 科技(2009 年市场份额占 7.9%)、天津 LM 公司、中能风电设备有限公司、上海玻璃钢研究院、北京玻 璃钢研究院等企业。此外,明阳电气、东方汽轮机、国电联合动力、Vestas 、Gamesa 等风电机组整机 制造商自建叶片生产厂,满足本企业需求。目前,国产风电机组叶片已经能够满足国内风电产业发展的 需要。具备多兆瓦级叶片生产制造能力的企业达到 5 家,连云港中复连众生产出为 5MW 机组配套长 62 米的叶片,达到国际先进水平。 发电机制造企业有:永济电机厂有限公司、株洲南车电机股份有限公司、东方电机股份有限公司、 兰州电机有限责任公司、上海电机厂有限公司、湘潭电机有限公司、南京汽轮机长风新能源有限公司、 大连天元电机公司等。此外,北重、新誉、航天万源、三一电气、Vestas 、Gamesa、Suzlon 等风电机 组整机制造商自建发电机生产厂,满足本企业需求。目前,国产风电机组发电机基本能够满足国内风电 产业发展的需要。 齿轮箱制造企业有:南京高精齿轮股份有限公司 2009 年市场份额占 40.4%、大连重工通用减速机厂 2009 年市场份额占 18.7%、重庆齿轮箱有限责任公司 2009 年市场份额占 17.5%、Winergy(天津)、中国 第二重型机械集团公司(德阳)、杭州前进风电齿轮箱有限公司等,已能批量生产兆瓦级齿轮箱,上述 企业也基本能满足国内风电产业发展的需要。但由于某些大型齿轮箱对轴承质量要求很高,目前国内暂 时无法提供合格的产品,这类齿轮箱产能受国外轴承供应的影响较大。另外齿轮箱制造工艺、质量和产 能的提高,需要一些高精设备来保证,这些设备订购周期将对产能产生一定影响。 风电机组轴承的制造企业有:洛阳轴承集团技术中心有限公司、瓦房店轴承集团有限责任公司、浙 江天马轴承厂和徐州罗特艾德回转支承有限公司等。这些企业已在小批量生产 1.5MW 和 2MW 风电机组 主轴轴承,产品正处于小批试应用阶段。目前,中国大部分风电机组制造公司还在采购国外 SKF 和 FAG 公司的产品。在偏航、变桨轴承供应商中,除了上述厂家以外,增加了大连冶金轴承、洛阳心能轴承、 洛阳汇工、浙江人本、洛阳心强联轴承、上海联合滚动轴承和连云港雷德曼等厂商。目前,我国风电机 组轴承短缺的情况已经得到缓解,但是,对于 2MW 以上的风电机组来说,轴承仍是制约机组产能的因素 之一。 变流器和整机控制系统的制造企业有:深圳禾望电气、北京科诺伟业能源科技有限公司、合肥阳光 电源有限公司、北京清能华福风电技术有限公司、天津瑞能电气、金风天诚科创、景新电气、国电龙源 电气(保定)、江苏大全、九洲电气、东方日立、大全集团、海得控制等 10 多家企业。目前国产 1.5MW 变流器已经批量生产,2MW 变流器处于小批量生产或试应用阶段,已能满足部分国内风电整机 配套的需要,但国内市场上需求的大部分变流器和整机控制系统仍需从外资公司购买,其中 ABB、 AMSC-Windtec(美国超导)、Converteam(科孚德)等是最主要的变流器供应商。 我国塔筒、轮毂、机舱等部件的制造企业超过 100 家,如:上海泰胜公司、苏州天顺公司、辽宁大 金公司著名企业等完全能够满足国内风电产业发展的需要。 8.大型风电机组出口情况 从 2007 年以来,中国一些风电机组整机制造企业就开始开拓海外市场,2008 年实现零的突破,到 2011 年底,先后已有保定惠德、浙江华仪、金风科技、上海电气、华锐风电、江苏新誉、国电联合动力、 三一电气等 10 多家企业向外国出口风电机组整机设备,累计出口风电机组 187 台,共 277.2MW。进入 2011 年,以金风科技、华锐风电等为代表的风电装备企业巨头开始全面发力,中国风电产品开始批量进 入国际市场,并在全球风电业产生较大影响。2011 年,中国整机出口数量大幅度增长,数量达到 141 台, 容量达 220.56 兆瓦。其中,金风出口数量最多,达到 124 台,主要以单机容量为 1.5 兆瓦的机型为主。 这是一个不可逆转的趋势,今后中国大型风电设备出口量将逐年稳步增加。

90


表 15: 2008-2011 年国内风电机组出口具体情况 时间 2008 年

企业名称 华仪 惠德

机型 HY780 HD1000

FD77 S49-750

容量(MW) 2.34 10 12.34 15 4.5 6.25 3 28.75 3 4.5

台数 3 10 13 10 3 5 2 20 2 6

华锐 金风 上海电气 新誉

SL1500/82 GW77/1500 W1250/64 SD77/1500

新誉 金风 华仪

HW1500

4.5

3

明阳 A-Power

-

华仪 三一电气 海装 联合动力

HW1/S780(50)-II-50(B) SE9320 H93-2000(60HZ) UP1500-82-DF-SE-NC HH80 GW82/1500(60Hz) GW77/1500(50Hz) GW70/1500(60Hz, 高海拔) GW87/1500(60Hz) GW100/2500(60Hz) -

1.5 2.05 15.55 1.56 12 4 9 111 51 16.5 3 7.5 5 220.56 277.2

1 1 13 2 6 2 6 74 34 11 2 3 1 141 187

小计

2009 年

小计

2010 年

小计

2011 年 金风科技

湘电风能 小计 2008-2011 年总计

出口国家 智利 美国 印度 美国 英国(3 台)、泰国(2 台) 美国(1 台)、泰国(1 台) 美国(1 台)、泰国(1 台) 古巴 智 利 (2 台 )、 白俄 罗 斯(1 台) 美国 美国 哈萨克斯坦 美国 美国 美国 美国 埃塞俄比亚 厄瓜多尔 美国 美国 荷兰

随着国际市场的进一步打开,近几年,国内风电机组出后的国家和地区逐渐增多。截至目前为止, 国内风电机组已分别出口智利、美国、印度、英国、泰国、古巴、白俄罗斯、哈萨克斯坦、埃塞俄比亚、 厄瓜多尔、瑞典等地区。 目前看来,美国、南非和澳大利亚是增长潜力巨大、相关配套较为成熟的国际风电市场。在国产风 电设备的价格优势逐渐削弱、技术和质量仍亟需提高的背景下,东南亚、南非、东欧等地区的风电市场 可能更适于中国企业发挥。一些整机制造商已经开始进入此类市场,并与这些国家签署协议,获得订单。 如 2009 年底,银河风电获得了越南 Mau Son 风场的 80 台 2.5 兆瓦风电机组的订单,总金额高达 18 亿 元。 9. 我国在风电领域存在的问题与差距 通过国家多年的持续支持,我国风电制造技术取得了长足的进步,特别是带动我国风电产业持续发 展,基本形成了完整的产业链,为我国风电市场提供大部分装备。但我国风电制造技术和产业技术集成 方面与国际先进水平相比还存在着较大差距,主要表现在: (1)国产风电机组设备质量有待提高 部分国产风电机组设备质量欠佳,造成风电场可利用率不高。采用国产机组的风电场,其机组可利 用率明显低于采用国际先进品牌的机组,根据龙源公司的粗略估算,整体上要低 7%左右。在 2007、 2008 年两年间,一些风电场业主受到国产设备交货不按时、不配套,机组调试时间长,调试出来的机组 通不过运行考核,风电机组和风电场项目不能按时投产。近几年投入运行的一些国产机组也曾多次出现 大的质量和技术故障,如轮毂裂纹,主轴问题,轴承问题,齿轮箱故障,电机故障等等。虽然国产风电 机组设备质量逐年提高,但质量问题仍然不可忽视。只有高度重视产品质量,向用户提供可靠的机组, 企业才有辉煌的未来。 (2)国产风电机组设备价格持续走低 由于中国风电机生产商面临激烈竞争,为了争取合同订单降价求售,促使 2011 年下半年风力发电机 组的招投标价格继续微幅下跌。调查显示,风电机组未来合同价格也不乐观,预期 2012 年和 2013 年发 电机组价格还会进一步温和下跌。

91


(3)风电机组整机设计方面与国外的差距 前期靠国外提供设计技术或合作设计,自主设计能力还较薄弱,在设计经验方面和国外仍有一定差 距。特别是依据我国风况条件进行自主设计、研发新型风电机组的能力不足,还没有开发出适用的风电 机组设计工具软件系统。 国际上已经实现 5-6MW 风电机组的小批量应用,正在设计研制 10MW 级的风电机组,我国已经研 制出 3MW 风电机组产品和 5MW 风电机组样机,正在研制 6MW 级风电机组。 (4)风电机组关键部件方面与国外的差距 国内兆瓦级以上风电机组配套的轴承、变流器、变桨矩系统已经进入批量生产阶段,整机控制系统 国内处于试制阶段,这些产品仍需要进口部分国外产品。重要部件如齿轮箱、发电机的可靠性仍有待提 高,叶片已经自给自足,但技术上仍处于自主设计初级阶段。 (5)风电行业公共研究测试平台方面 美国、德国、丹麦、西班牙等国家早就建立了国家级的风电机组野外测试、地面传动和叶片的公共 平台,我国在这方面已经起步,一些主要制造商建设了整机测试平台,但公共平台尚未建立,制约了我 国风电技术的持续发展。 (6)海上风电设备方面与国外的差距 国内刚刚起步,国外已经开始批量应用,在海上风资源以及水文、地质资源研究,海上风电机组技 术开发,潮间带(近海)风电场施工、运行维护技术,海上风电送出技术等方面,迫切需要国家予以支 持。 (7)风电场设计建设方面与国外的差距 我国主要利用国外的商业软件进行设计,这些国外的商业软件对我国复杂地形的风电场设计误差较 大。另外我国正在建设千万千瓦风电基地,如此规模的风电场设计在国际上也没有先例,海上风电场设 计国内刚刚起步,需要技术支撑。 (8)风资源分析方面与国外的差距 缺乏针对我国气候和地理特点的风况研究、风资源数据库与全局性风况图谱建设、自主的风资源分 析及风电场设计软件系统,风电场设计技术严重依赖国外软件产品。 我国尚未形成先进的风电场测控系统和短期功率预测系统,电网接纳风电的技术水平落后于国外。 总体而言,我国风电产业正处于从基础理论、应用研究到关键技术研发、设备研制、公共研究测试 能力等完整产业发展体系形成的关键时期,亟需国家给予扶助和支持。 二、国内风电机组发展趋势 纵观中国风电产业技术现实和前沿技术的发展,目前全过风电制造技术发展主要呈现如下特点: 1、产业集中是总的趋势 2011 年,全国累计装机容量前十名制造商的容量比例之和已经达到 84.2%,新增装机容量前十名制 造商的容量比例之和已经达到 83.2%。全国排名前十五位的风电机组制造企业占据了全国新增装机 93.9% 的市场份额。2011 年,华锐风电、金风科技、东方汽轮机、国电联合动力和广东明阳这前 5 家企业,就 占据了国内新增装机 65.3%市场份额。可以看出:全国风电设备市场由十多家大型风电机组制造企业控 制或垄断的局面仍然没有明显变化。 近几年,风电设备制造企业之间的兼并、重组、收购愈演愈烈。金风科技收购了德国 Vensys 公司; 湘电股份 1000 万欧元收购荷兰达尔文公司;中复连众收购了德国 NOI 公司;中航惠腾 2009 年收购了荷 兰 CTC 叶片公司;美国 GE 公司与哈电集团合资成立了通用哈电风能(沈阳)公司和哈电通用风能(江 苏)公司。此外,上海电气与西门子实现战略合作,大唐集团与华创风能实现战略重组,华创风能正式 并入大唐集团序列。国内各大风电制造公司已经完成产业布局,在主要市场集中地都建立了生产基地, 一个大公司相当于多个公司的集成。 2、水平轴风电机组技术成为主流 水平轴风电机组技术,因其具有风能转换效率高、转轴较短,在大型风电机组上更显出经济性等优 点,使水平轴风电机组成为国内大型风电机组发展的主流机型,并占到 100%以上的市场份额。近期发展 的大型垂直轴风电机组因转轴过长、风能转换效率不高,启动、停机和变桨困难等问题,目前尚无市场 份额、样机安装数量有限,但由于其全风向对风、变速装置及发电机可以置于风轮下方或地面等优点, 近年来,相关研究和开发也在不断进行并取得一定进展。 3、风电机组单机容量持续增大 近年来,国内风电市场中风电机组的单机容量持续增大,随着单机容量不断增大和利用效率提高, 国内主流机型已经从 2005 年的 750kW~850kW 增加到 2011 年的 1.5~2MW。

92


表 16:中国风电机组当年装机平均单机容量(kW)变化情况 2005 2006 2007 2008 2009 年份 897 931 1079 1220 1360 容量 资料来源:根据丹麦 BTM 咨询公司,2011 年 3 月资料整理

2010 1469

2011 1545

同样,国内风电市场中风电机组的单机容量也持续增大。2010 年新安装的机组的平均单机容量达到 了 1.45MW,而 2011 年新安装的机组的平均单机容量已经达到了 1.45MW。2011 年我国风电场批量安 装的最大风电机组为 3MW。 近年来,海上风电场的开发进一步加快了大容量风电机组的发展,我国华锐风电的 3MW 海上风电机 组已经在上海东海大桥海上风电场成功投入运行。3.6MW、5MW 和 6MW 海上风电机组已经陆续下线。 目前,华锐、金风、国电联合、湖南湘电、重庆海装、东方汽轮机和广东明阳等公司都在研制和试验 5MW 或 6MW 的大容量海上风电机组,为大规模开发海上风电做好准备。 4、变桨变速功率调节技术得到广泛采用 由于变桨距功率调节方式具有载荷控制平稳、安全和高效等优点,近年在大型风电机组上得到了广 泛采用。结合变桨距技术的应用以及电力电子技术的发展,大多风电机组开发制造厂商开始使用变速恒 频技术,并开发出了变桨变速风电机组,使得在风能转换上有了进一步完善和提高。2010 年,在全国安 装的风电机组全部采用了变桨变速方式。2MW 以上的风电机组大多采用三个独立的电控调桨机构,通过 三组变速电机和减速箱对桨叶分别进行闭环控制。 5、双馈异步发电技术仍占主导地位 外资企业丹麦 Vestas 公司、西班牙 Gamesa 公司、美国 GE 风能公司、印度 Suzlon 公司以及远景 能源公司等都在生产双馈异步发电型变速风电机组 我国内资企业华锐风电、东方气轮机、国电联合动力、广东明阳等企业也在生产双馈异步发电型变 速风电机组。2011 年我国新增风电机组中,双馈异步发电型变速风电机组约占 75%的比例。目前,我国 华锐风电研发的 3MW 的双馈异步发电型变速恒频风电机组已经批量投入运行,6 MW 的双馈异步发电型 变速恒频风电机组已经试运行。国电联合动力 6 MW 的双馈异步发电型变速恒频风电机组已经下线。 6、直驱式、全功率变流技术得到迅速发展 无齿轮箱的直驱方式能有效地减少由于齿轮箱问题而造成的机组故障,可有效提高系统的运行可靠 性和寿命,减少维护成本,因而得到了市场的青睐。我国新疆金风科技有限公司与德国 Vensys 公司合作 研制的 1.5MW 直驱式风电机组,已有上千台安装在风电场。 金风科技在 2010 年是我国风电市场的第二大供应商,在 2011 年跃升为我国风电市场的第一大供应 商。同时,我国湘电公司的 2MW 直驱风电机组也已大批量进入市场,5MW 直驱风电机组也已安装。其 他如:广西银河艾迈迪、航天万源、潍坊瑞其能、包头汇全稀土、江西麦德公司、山东鲁能等制造企业 也开发研制了永磁直驱风电机组。2010 年新增大型风电机组中,永磁直驱式风电机组约占 22.7%。2011 年,尽管永磁材料涨价,在新增大型风电机组中,永磁直驱式风电机组的比例仍然超过了 24.4%。 7、各种全功率变流风电机组出现 伴随着直驱式风电系统的出现,全功率变流技术得到了广泛发展和应用。应用全功率变流的并网技 术,使风轮和发电机的调速范围扩展到 0 至 150%的额定转速,全功率变流技术对低电压穿越技术有很好 且简单的解决方案,提高了机组的风能利用范围。近年由于全功率变流技术的成熟,部分企业选择了同 步电机或鼠笼电机搭配齿轮箱和全功率变流器的传动链形式,主要分为两类,一类是在 1000kW 以下的 机组中,采用了电励磁同步电机搭配全功率变流器的形式,如海装、长星风电和久和能源的 850kW 机组 和航天万源的 900kW 的机组,另外一类为永磁同步电机或鼠笼电机搭配齿轮箱和全功率变流器,主要应 用在 2.5MW 及以上机型中,很多企业选择了永磁同步电机或鼠笼电机搭配齿轮箱和全功率变流器的传动 链形式,比如金风的 3MW 机组、明阳的 3MW 超紧凑机组和南车的 2.5MW 机组,国际厂商的机型如 Vestas 的 V112、西门子的 SWT-3.6-120 和 Gamesa 的 G10X-4.5 等机组;上述全功率变流风电机组也 代表了今后的发展趋势。 8、低风速地区风电设备研发取得进展 针对我国大多数地区处于低风速区的实际情况,国内企业通过技术创新,研发出针对性的风电机组 产品及解决方案,最为明显的特征为风轮叶片更长、塔架更高,捕获的风能资源更多。以 1.5MW 风电机 组为例,2011 年新签订单中,半数以上均为风轮直径为 86 米及以上的风电机组,而当年新安装的 1.5MW 风电机组中,风轮直径 86 米以上的安装比例接近 20%。国内生产 1.5MW 机组的 30 余家企业之 中,已有 10 多家具备了风轮直径为 86 米以上机型的供应能力。

93


9、大型风电机组关键部件的性能日益提高 我国在大型风电机组关键部件方面也取得明显进步,如南京高速齿轮箱厂、重庆齿轮箱厂、大重减 速机厂、杭州前进齿轮箱厂和德阳二重等主要齿轮箱制造企业生产的大型风电机组齿轮箱,供货能力充 足,质量已有明显提高;保定惠腾、连云港中复连众和中材科技已能生产长达 48.8m, 与 3 兆瓦风电机组 配套的大尺寸叶片,兰州电机厂生产的发电机等产品质量都有很大提高。从 2010 年上海第四届风能展的 情况看,我国风电设备的产业链已经形成,为今后的快速发展奠定了稳固的基础。我国在某些基础结构 件、铸锻件等领域已经具有优势,不仅能满足国内市场需求,而且已经向国际市场供货。 北京科诺伟业能源科技有限公司、深圳禾旺电气、合肥阳光电源有限公司、北京清能华福风电技术 有限公司、天津瑞能电气、金风天诚科创、龙源电气、九州电气等 10 多家企业已具备兆瓦级风电机组变 流器研发、生产和供货能力。 10、叶片技术发展趋势 随着风电机组尺寸的增大,叶片的长度也变得更长,为了使叶片的尖部不与塔架相碰,设计的主要 思路是增加叶片的刚度。为了减少重力和保持频率,则需要降低叶片的重量。好的疲劳特性和好的减振 结构有助于保证叶片长期的工作寿命。 额外的叶片状况检测设备将被开发出来并安装在风电机组上,以便在叶片结构中的裂纹发展成致命 损坏之前或风电机组整机损坏之前警示操作者。对于陆上风电机组来说,不久这种检测设备就会成为必 备品。 为了增加叶片的个刚度并防止它由于弯曲而碰到塔架,在长度大于 50 米的叶片上将广泛使用强化碳 纤维材料。 为了方便兆瓦级叶片的道路运输,某些公司已经研究把叶片制作成两段的技术。例如使叶片由内、 外两段叶片组成,靠近叶根的内段由钢制造,外包玻璃钢壳体形成气动形状表面。 11、风电场建设和运营的技术水平日益提高 随着投资者对风电场建设前期的评估工作和建成后运行质量的越来越高的要求,国外已经针对风资 源的测试与评估开发出了许多先进测试设备和评估软件。在风电场选址,特别是选址方面已经开发了商 业化的应用软件。在风电机组布局及电力输配电系统的设计上也开发出了成熟软件。国外还对风电机组 和风电场的短期及长期发电量预测做了很多研究,取得了重大进步,预测精确度可达 90%以上。 12、恶劣气候环境下的风电机组可靠性得到重视 由于中国的北方具有沙尘暴、低温、冰雪、雷暴,东南沿海具有台风、盐雾,西南地区具有高海拔 等恶劣气候特点,恶劣气候环境已对风电机组造成很大的影响,包括增加维护工作量,减少发电量,严 重时还导致风电机组损坏。因此,在风电机组设计和运行时,必须具有一定的防范措施,以提高风电机 组抗恶劣气候环境的能力,减少损失。因此,今年来中国的风电机组研发单位在防风沙、抗低温、防雷 击、抗台风、防盐雾等方面着手进行了研究,以确保风电机组在恶劣气候条件下能可靠运行,提高发电 量。 13、低电压穿越技术得到应用 随着风电机组单机容量的不断增大和风电场规模的不断扩大,风电机组与电网间的相互影响已日趋 严重。一旦电网发生故障迫使大面积风电机组因自身保护而脱网的话,将严重影响电力系统的运行稳定 性。因此,随着接入电网的风力发电机容量的不断增加,电网对其要求越来越高,通常情况下要求发电 机组在电网故障出现电压跌落的情况下不脱网运行(fault ride-through),并在故障切除后能尽快帮助电 力系统恢复稳定运行,也就是说,要求风电机组具有一定低电压穿越(low voltage ride-through)能力。随 着风力发电装机容量的不断增大,我国的电网系统运行导则对风电机组的低电压穿越(LVRT)能力做出 了规定。我国的风电机组在电网电压跌落情况下,必须采取相应的应对措施,确保风电系统的安全运行 并实现 LVRT 功能。目前,我国已有十多家企业的风电机组产品具备了低电压穿越性能,十多种机组通 过了中国电力科学院的低电压穿越性能试验。 14、海上风电技术成为重要发展方向 在我国,随着海上风电场规划规模的不断扩大,各主要风电机组整机制造厂都积极投入大功率海上 风电机组的研制工作。华锐率先推出 3MW 海上风电机组,并在上海东海大桥海上风电场批量投入并网运 行。华锐公司江苏盐城海上风电机组研发基地制造的 6MW 海上风电机组,已于 2011 年 10 月在江苏射 阳县临港产业区完成首台机组的吊装。金风公司在江苏大丰县建设海上风电机组研发基地,正在研制 6MW 直驱式海上风电机组。湖南湘电收购了荷兰达尔文公司,合作研发的 5MW 海上直驱永磁风电机组 已于 2010 年 10 月 21 日成功下线。重庆海装在国家科技部支持下,成立了“海上风力发电工程技术研发 中心”,形成了全套产业链的整合,正致力于 5 MW 海上风电机组的研发。国电联合动力研制的 6MW 海

94


上风电机组也于 2011 年底下线。明阳风电、上海电气、东方汽轮机、南车株洲电力、浙江华仪等都在全 力研制大型海上风电机组。 到 2015 年底,全国预计建设总容量达 5000MW 的海上风电场, 到 2020 年底,全国规划建设总容量 达 30000MW 的海上风电场。未来风能技术更新发展的驱动力主要来自蓬勃崛起的近海风电场建设,这 一发展趋势已经不可逆转。 15、中国首轮海上风电特许权项目启动 2010 年 5 月,国家能源局启动了首轮海上风电特许权项目,旨在为今后大规模开展海上风电建设积 累技术和管理经验。这次招标的一个特点,是项目投资企业和设备制造企业、施工建设企业须进行捆绑 投标。中国首轮海上风电特许权项目共有 4 个,均位于江苏。其中 2 个近海风电项目位于滨海、射阳两 地,装机容量各为 30 万千瓦;另外 2 个潮间带发电项目位于东台和大丰,装机容量各为 20 万千瓦。 2010 年 9 月 10 日,经过激烈角逐,大唐新能源股份有限公司获得滨海项目,中国电力投资有限公司联 合体赢得射阳项目,山东鲁能集团有限公司拿下东台项目,龙源电力集团股份有限公司斩获大丰项目。 为上述四个项目提供风机的制造企业也已选定。其中,华锐风电将为滨海和射阳项目提供风电机组,金 风科技和上海电气将分别负责制造大丰和东台项目的风电机组。 表 17:首轮海上风电特许权项目中标结果 海上风电特许 滨海近海风电场 射阳近海风电场 权项目名称 大唐新能源股份 中国电力投资 中标单位 有限公司 有限公司联合体 中标电价 0.737 元/千瓦时 0.7047 元/千瓦时

东台潮间带风电场

大丰潮间带风电场

山东鲁能集团有限 公司 0.6235 元/千瓦时

龙源电力集团股份 有限公司 0.6396 元/千瓦时

我国的海上风电目前还处于起步和探索阶段,其运行环境复杂,技术要求高,施工难度大,面临众 多的技术和管理难题。按照正常规律,海上风电的上网电价应高于内陆电价。一位风电专家表示,按照 目前国内的海上风电建设成本和技术水平,0.8-0.9 元/千瓦时的报价较为合理。 此前,我国第一个海上风电示范项目——上海东海大桥 10 万千瓦海上风电场项目的税后上网电价为 0.978 元/千瓦时。该项目总投资约 23.65 亿元,2010 年 7 月并网发电。 三、十二五期间,国家加大对风电科研的支持力度 根据风电产业发展的迫切需求,结合国家能源战略的总体部署,国家科技部将重点任务按以下三大 领域,通过 9 个项目进行具体实施,具体项目分解参见下表: 十二五风电科技重点任务的项目分解 序号 重点方向 项目 1 3~5MW 永磁直驱风电机组产业化技术研究 2 7MW 级风电机组及关键零部件设计及产业化技术 整机及关键部件 3 10MW 级海上风电机组及关键零部件设计制造技术 4 风电新技术研发 5 海上风电场工程建设关键技术研究 6 大型风电场设计、并网及运营关键技术 风电场与并网 7 大气边界层风特性关键技术研究 8 风电应用技术研究 9 10

先进风力机翼型族设计与应用技术 公共服务体系

大型风电机组试验测试系统建设及测试技术研究

1、3-5MW 永磁直驱风电机组产业化技术研究 研究 3-5MW 永磁直驱风电机组总体设计,3-5MW 永磁电机设计制造技术,研究 3-5MW 永磁直驱风 电机组可靠性设计技术、系统控制技术、设计优化技术和装配工艺等。 2、7MW 级风电机组及关键零部件设计及产业化技术 研究 7MW 级风电机组整机设计与制造技术,研究 7MW 级风电机组配套叶片、齿轮箱、发电机、轴 承、变流器、控制系统等设计、制造关键技术;研究风电机组及配套关键零部件的集成和批量生产技术。 确保拥有 7MW 级风电机组及其关键零部件的设计与制造技术的自主知识产权,并实现规模化应用。 3、10MW 级海上风电机组及关键零部件设计制造技术

95


研究 10MW 级海上风电机组整体结构、气动特性、机械制造工艺等关键技术,以及配套叶片、齿轮 箱、发电机、变流器、控制系统、轴承等关键部件的核心设计技术,研究海上风电机组的检测认证技术。 掌握适用于我国海上环境条件、具备抗灾害性大风、抗盐雾、电气绝缘性能良好的 10MW 级风电机组的 设计,并实现样机运行。 4、大气边界层风特性关键技术研究 研究复杂地形下中尺度数值模式的参数化,提高中尺度数值模式在复杂地形下的模拟精度;研究中 尺度模式资料四维同化方法;研究海上风资源分布变化规律、风速垂直切变、湍流变化等。 5、大型风电场设计、并网及运营等关键技术研究 研究复杂地形及超大型风电场影响下的风能资源分析技术及软件系统开发技术;研究适合陆上风电 场吊装及维护专用设备的设计开发技术;研究风电场设备状态监测和故障诊断技术,研究基于状态监测 和故障诊断技术的风电场预维护策略;研究大型风电场接入适应性关键技术;研究开发适合陆上集中风 电基地和区域多风电场的综合监控及优化运行管理系统等。 6、先进风力机翼型族设计与应用技术 以“十一五”863 计划研究的两个翼型族为基础,研究风力机叶片先进翼型设计方法,开发两组先进 风力机翼型族,研究翼型直接优化设计方法以及新型叶片结构设计方法;应用两族风力机翼型对兆瓦级 风电机组叶片进行气动、结构和材料一体化设计技术研究;建立具有自主知识产权的风力机翼型和叶片 设计与性能预测软件系统以及数据库系统;用开发的先进翼型族设计制造的兆瓦级风电机组叶片按 IEC 61400 标准进行地面试验和挂机试验,完成产品认证。 7、海上及潮间带风电场工程建设关键技术研究 研究近海及潮间带风资源、海况及地质勘测测量技术,研究近海及潮间带风电机组基础的设计技术, 制定近海及潮间带风电场设计、施工、运维相关技术规范及检测认证体系,研究近海及潮间带风电送出 系统设计技术,研究近海及潮间带风电工程建设施工关键技术及相关装备设计技术,研究海上风电场运 维技术及装备设计,研究大型海上风电场全生命周期的管理决策系统,研究海上风电防腐技术,研究海 上风电场环境影响,并建立 150MW 潮间带示范风电场和 150MW 近海示范风电场。 8、大型风电机组试验测试系统建设及测试技术研究 研究大型风电关键零部件测试技术,研制传动链、轴承、变桨系统等公共测试系统,制定传动链及 关键零部件测试技术规范;研究风电机组在线监测与故障诊断技术,建立大型风电机组在线综合动态测 试、分析诊断和优化系统,研制风电机组/风电场并网特性测试系统,建设风力发电公共数据库及信息服 务体系。 9、风电新技术研发 研究风电机组结构紧凑化、轻量化设计技术,研制轻量化、紧凑型风电机组;研制新型前端调速式 风电机组;研究独立变桨等风电机组智能控制新技术,并将新技术用于 1.5MW 及以上主流风电机组;研 究叶片、齿轮箱、发电机、轴承等关键部件抗疲劳设计制造技术,并应用于 1.5MW 及以上主流风电机组; 通过采用碳纤维等新材料、开发新翼型族和优化结构设计,研究叶片气动外形、结构与材料一体化优化 设计技术;研究分段式叶片设计及制造技术,并在 3.0MW 及以上叶片上应用;研究高性价比中小功率风 电机组设计制造及并/离网运行技术,研究中小功率风电机组检测认证技术,研究分布式接入电网技术。 10、风电应用技术研究 研究大容量、高效率、高可靠性、规模化的新型储能材料、储能装置和储能装置系统集成技术;研 究利用风能进行制氢、海水淡化及高耗能等工业上的直接应用;研究风电、光伏发电、水电等多能互补 发电系统关键技术。 11、示范工程 通过专项规划部署的大型风电场设计开发及运营等关键技术、海上风电场工程建设关键技术、风电 新技术等多个项目的深入研究,结合国家“十二五”风能产业的推进,实施如下的集成示范: (1)百万千瓦以上区域性多风电场智能化管理; (2)风、光、水、储等多能互补发电系统; (3)15 万千瓦潮间带风电场,单机容量 7MW 级。 (4)15 万千瓦海上风电场,单机容量 7MW 级。

96


坚持高端战略实现跨越发展 (中文版,论文) To Achieve Great-leap-forward Development by High-level Strategy (Chinese version only, Paper) (中信重工机械股份有限公司,中国) (CITIC Heavy Industries Co., Ltd., China) 中信重工机械股份有限公司(以下简称“中信重工”)是国家“一五”期间兴建的 156 项重点工程 之一,原名洛阳矿山机器厂,1993 年并入中信集团,2008 年 1 月改制为股份公司,目前正在运作上海证 交所 IPO 上市工作。经过 50 余年的改扩建,现已发展成为全球最大的矿山机械制造企业、中国最大的水 泥设备制造企业、中国最大的重型机械制造企业之一,是中南地区热处理和铸锻中心、机械行业低速重 载齿轮加工基地,国家级理化检验认可单位和国家一级计量企业。中信重工“LK”牌大型球磨机、大型 减速机、大型辊压机、大型水泥回转窑四项产品荣获中国名牌称号,成为目前中国重型装备制造业唯一 一家拥有 4 个中国名牌的企业。 近几年来,面对激烈的国内外市场竞争,中信重工站位客户,定位高端,即以高端技术支撑高端产 品,以高端产品赢取高端客户,以高端客户占领高端市场,通过内抓管理,外抢市场,致力于产品结构 的优化调整和附加值的持续提升,走出了一条具有自身特色的发展之路。2011 年,中信重工全年实现销 售收入 155.8 亿元,实现利润总额 9.7 亿元,年末资产总额 129.27 亿元,累计在手订单超过 256 亿元, 公司各项经营指标均居同行业前列。尤其是公司多年来坚持技术先导战略成效显著,公司技术中心在 2011 年国家发改委认定的全国 729 个企业技术中心综合评价中排名第 3 位,河南省第 1 名,凸显了河南 装备制造业技术创新能力和水平在全国工业企业中的地位,对我国装备制造工业发展起到了重要的引领 和带动作用。主要做法如下: (一)实施技术先导战略,提升高端技术研发能力 近年来,中信重工通过坚持不懈地自主创新,拥有一系列具有自主知识产权的核心技术和高端产品, 通过引领需求、创造市场,形成了独特的商业模式,把企业打造成了世界级重型装备研发制造基地。中 信重工以打造技术先导型企业为目标,建成并拥有了国家级企业技术中心和矿山重型装备国家重点实验 室。在强化产品设计研发的基础上构建工程技术、产品技术、工艺技术“三位一体”的研发中心,形成 了具有鲜明特色的技术研发体系和研发平台。 公司创建了立足国际的“产学研用供”技术创新联盟,与国内外的大专院校、科研院所、知名公司、 用户和供应商开展全方位的合作,充分利用国内外的有效资源促进快速发展。缩短创新周期、降低创新 成本、加速成果转化,创造了最佳效果。公司在澳大利亚建立了矿山机械研发中心,在北美建立了铸锻 技术研发基地;与澳大利亚昆士兰大学、清华大学、华中科技大学、燕山大学、哈尔滨工业大学等院校 开展了广泛深入的产学研项目合作,形成了国内外联动的开放式研发格局。 中信重工拥有的省级大型铸锻件工程技术中心,主要从事新产品、新技术、新工艺、新材料的开发 研制工作。近年开展的大型铸钢技术研究,攻克了世界级铸造技术难题,成功生产了全球最大、技术要 求最高、单重 520 吨的铸钢件,刷新了世界铸造史;开展的大型不锈钢铸件工艺技术研究,成功生产了 单重 59 吨、壁厚 1 米的大型不锈钢铸件,填补了国内大壁厚不锈钢铸件的制造空白;开展的大型电站锻 件工艺技术研究,成功生产了 30 万 KW 发电机转子和 35 万 KW 低压转子;开展的大型支撑辊制造工艺技 术研究,成功生产了单重 485t 吨 4.3m 轧机大型支承辊;成功锻造 438 吨特大型钢锭,被写进 2011 年国 家公务员考试、国家研究生考试时事政治国内部分;开展的加氢容器工艺技术研究,开发生产了多种重 型压力容器锻件;开展的航天锻件工艺技术研究,开发生产了多种规格异型环锻件。 (二)大力实施技术改造,搭建高端装备制造基地平台 公司紧紧抓住国家振兴装备制造业的重大战略机遇,大规模实施技改工程,努力打造世界级高端装 备核心制造体系。2006 年 12 月 1 日,中信重工正式启动了以 18500 吨油压机和 750 吨·米锻造操作机为 核心的“新重机”工程。历时四年,于 2010 年 12 月 1 日竣工,累计投资 39 亿元,打造了包括炼钢、铸 钢、铸锭、自由锻、环锻、铸铁、热处理、有色铸造、铆焊、机加工在内的高端铸锻件制造平台。同时 配套启动了以突破高端铸锻件关键技术为核心的“717”工程和以系统化管理为核心的“521”管理工程, 构筑了国内外一流的高端重型装备制造体系。

97


“新重机”工程搭建的高端制造平台,可使公司一次性组织精炼钢水 1000t,生产最大铸钢件单重 600t,最大真空钢锭 600t,最大锻件单重 400t ,最大灰铁件 200t、最大球墨铸铁件 150t、最大有色合 金铸件 30t,形成了年产铸钢件 10 万吨,锻件 10 万吨,铸铁件 3 万吨,有色件 5000 吨的生产能力。可 为核电、火电、水电、风电、冶金、石化、船舶等领域提供多规格、高质量的大型铸锻件产品。 (三)依托高质量产品,拓展国际国内高端市场 质量是企业生存之本。随着市场竞争的不断加剧,质量不再单纯是产品的质量或服务的质量,而是 企业整体经营的质量。为此,中信重工坚持“大质量观”,践行“第一次就把事情做对”的质量理念, 在全公司范围内推行了卓越绩效模式。通过卓越绩效管理模式的实践,公司以顾客为关注点,以测量、 分析、改进为绩效提升的着力点,进一步优化了生产和管理流程,以“卓越的过程”创造“卓越的结 果”,各项绩效指标显示出卓越的成长性。2010 年 7 月,我公司荣获河南省首届省长质量奖。 公司产品质量的全面提升得到了各类评审机构的认可。公司 1998 年以来,先后通过了质量、军工、 环境和职业健康安全四个体系认证;2000 年 4 月通过国防科工委航天锻件产品质量评审,确定为定点生 产厂家,并荣获我国“神舟”号载人航天飞船优质部件荣誉证书;2010 年 5 月获国家《民用核安全机械 设备制造许可证》。生产的船用铸锻件 1996 年 1 月通过挪威 DNV 船级社工厂认证;1998 年 8 月通过日本 NK 船级社工厂认证;2000 年 3 月通过法国 BV 船级社工厂认证;2000 年 5 月通过美国 ABS 船级社工厂认 证;2000 年 10 月通过德国 GL、英国 LR 船级社工厂认证; 公司生产的大型、特大型船用、风电、军工轴承圈、20~1000MW 汽轮机高、中、低压转子,发电机 转子、大型提升机主轴、轧辊、辊压机辊体、模块、加氢反应器筒体、压力容器大型管板、船用锻件等 产品受到用户的高度赞扬;德国进口的大型高精度数控轧环机轧制的环形锻件余量小、精度高,在国内 具有独特优势;研制开发生产的军品锻件、航空、航天用特殊锻件,在高科技领域为我国国防现代化建 设做出了重要贡献。生产的大型特大型轧机机架、特大型破碎机机架、大型特大型轮带、齿轮、托轮、 端盖、中空轴、船用铸钢件整体浇注艉轴管、挂舵臂等大型特大型及特殊要求的铸钢件受到国内外客商 的普遍好评。公司的大型铸锻件质产品得到了客户的广泛认同,与多个行业领域大客户建立了长期稳定 的合作关系。 (四)培养、引进高素质人才,打造高端人才团队 一流的企业,必须有一流的产品;一流的产品,必须有一流的技术;一流的技术,必须有一流的人 才队伍。热加工企业具有“技术密集”、“资金密集”、“劳动密集”、“能耗密集”的特点,需要工 艺技术人才、管理人才、操作人才等多学科、多系统人才有机结合,缺一不可。为促进技术人才的成长, 公司实行技术专家评聘制度,促进技术专家的成长,建立技术专家、学术带头人、优秀技术人才梯队; 制订个人成长计划,加强骨干技术人员培训,通过聘请国内外专家讲学,国外培训实习和联合设计,提 高技术人员的素质水平;加强人才招聘,引进急需人才,一批重点大学的大学生、研究生、博士、博士 后纷纷落户中信重工,世界顶尖技术专家加盟公司;建立激励机制,推行研发项目招标制和首席设计师 制,实行项目“目标管理法”和专项津贴制度,设立创新基金,与技术骨干签订竞业避止合同,充分调 动广大技术人员的创新活力。 目前公司已经形成拥有技术人员 3015 人,包括国内外、老中青组成的结构合理 1018 人研发团队, 其中博士 6 人、政府专家 40 人、外籍专家 24 人的高素质创新团队。其中,公司“超大型高质量铸锻件 工艺技术研究团队”为河南省级技术创新团队。 (五)近年来部分典型锻件业绩

4300mm 轧机支撑辊

98


350MW 低压转子

300MW 超临界发电转子

核电支撑法兰

序号 Item

产品名称 Description

材质 Material

1 2 3 4

主缸体左段 封头法兰 支承法兰 缸底

20MnMo 14Cr1Mo SA508-3-1 20MnMoNb

锻件单重 (吨) Unit Weight (Ton) 73090 31840 44120 150130

5

缸法兰

20MnMoNb

114570

99

锭型 (吨) Ingot Case (T) 125 53 85 300 231

成品尺寸 End Product Size Φ3000/Φ1670×1855 Φ4040/Φ3215×830 Φ4380/Φ3560×1100 3025×1825×3410 3020×1505×3405 (Φ1000 孔)


6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

柱塞 管板 方板 进出口接管 300MW 转子 300MW 转子 350MW 低压转子 支承辊 主轴 3500mm 支撑辊 4300mm 支承辊 螺旋桨轴 中间轴 舵杆 模块 移动台 前滚圈 主轴 上辊 主轴下法兰 筒体 轮带 轮带

42CrMo 20MnMoNb 20MnMoNb SA350MLF2CL 25Cr2Ni4MoV 28NiCrMo14-7 30Cr2Ni4MoV Cr5-1420 ASTM A668D 45Cr4NiMoV 45Cr4NiMoV 40Mn 40Mn 20Mn TSTE460 Q345B 42CrMo 20SiMn 60CrMnMo 20SiMn 18Cr1Mo 35CrMo 35SiMn

114290 32900 56700 16530 65880 72220 122920 46330 126830 158400 220380 59890 57140 62350 64220 92270 70810 159970 101000 58850 77410 178900 127660

231 60 90 69 125 125 231 90 231 300 438 105 105 105 105 160 105 280 160 105 160 280 195

Φ1995×6260 Φ3960×320 □2435×420×6820 Φ2265/Φ1220×715 Φ1180×11830 Φ1185×10940 Φ1840×9665 Φ1575×5510 φ2320×7905 Φ2060×10080 φ2320×10740 Φ1550×10465 Φ1550×9940 Φ900×12810 3640×485×4520 2490×710×6510 Φ5780/Φ4880×1145 Φ2610/Φ1090×7385 Φ1580×9370 Φ3490/Φ1800×1845 Φ4430/Φ3930×2920 Φ7780/Φ6330×1375 Φ6620/Φ5310×1275

随着民族装备制造业的不断发展,中信重工将一如既往秉承“客户满意是我们永恒的追求”的服务 理念,以顾客的需求定位为本,在积累的技术力量和优化的生产系统基础上,不断攻克大型铸锻件核心 技术,创新生产工艺,提高产品品质,让“中国制造”、“中国创造”走向世界,为我国民族装备制造 业发展做出新的、更大的贡献!

100


5 月 29 日下午 On the afternoon of May 29th

101


Simufact 材料加工及热处理仿真工艺软件 (中文版,论文) Simufact Software for Metal Forming and Heat-treatment (Chinese version only, Paper) (德国 Simufact 工程公司,德国) (Simufact Engineering, Germany) 1 德国 Simufact 工程公司介绍 Simufact Engineering 公司是世界知名的 CAE 公司,成立于 1995 年,总部位于德国。核心业务是 金属成形工艺仿真软件的开发、维护及相关技术服务。公司不断汲取该领域最新的分析理论和仿真技术, 引领全球金属成形工艺模拟技术的最新发展方向。 Simufact 公司一直以来就是美国 MSC.Software 公司的商业合作伙伴,为其金属成形工艺模拟软件 提供源程序并进行开发。2005 年收购 MSC.Software 的 MSC.Maufacturing(即以前的 MSC.Superform 和 MSC.Superforge)软件,并在此基础上经高度整合研发出 simufact 软件,产品性能极大提升,使得高 度复杂的金属成形工艺仿真成为现实,标志制造业模拟仿真新时代的来临。

德国 Simufact Engineering 公司是 一家提供制造工艺仿真(CAE) 的国际性软件公司, 由两位金属成型加工专家于1995年创立。

提供高端的仿真功能和解决方案, 专业直观的工艺流程界面和设置, 以及精确的计算结果和数据展示, 对工厂技术人员和研发人员均适用 。

2 Simufact 软件介绍 2.1 发展历程 Simufact 是世界领先的金属成型 工艺仿真软件,采用纯 Windows 风 格的图形交互界面,操作简单、方便、 开放性强,便于设计和研究开发人员 使用。使工艺设计成本降低 50%优化 工艺流程、减少废料率。 Simufact 软件采用纯 Windows 风格和 MARC 风格两种图形交互界面, 操作简单、方便,用户可自行选择。 求解器将全球领先的非线性有限元求 解器 MSC.Marc 和瞬态动力学求解器 MSC.Dytran 融合在一起,提供有限 元法(FEM)和有限体积法(FVM) 两种建模求解方法,具备快速、强健 和高效的求解能力。

102


图 1 Simufact 求解器源自强大的 MSC.Marc 和 MSC.Dytran 2.2 用户界面的特点 ► 使用专业化语言 - 便于专业人士使用 ► 提供专用的材料数据库 ► 压力加工机器模块化 - 便于选择 ► 分析计算的自动化程度高 – 用户不需输入很多计算控制参数 ► 界面设计简单易懂 2.3 Marc 有限元求解器的特点 ► 30 多年历史的 MARC 是世界闻名的非线性大变形软件 ► 可自动产生和重新产生网格,避免大变形时的网格畸变 ► 可局部产生自适应网格以提高计算精度 ► 可分析弹塑性,各向异性,超弹性等非线性材料 ► 可对不同场问题作耦合分析- 如温度场和力场的分析 ► 可作并行计算,提高计算速度 ► 可分析接触摩擦问题 2.4 Dytran 有限体积法的特点 ► Dytran 是闻名的碰撞,爆破的动态分析软件 ► 大变形采用 Eularian 法,单元不畸变 ► 材料流动通过自动产生边界网格来表示 ► 可作温度和力场的耦合分析 ► 可作并行计算,提高计算速度 ► 采用显式计算,无收敛问题

2.5 FEM 和 FVM 的合理应用 – 扬长避短 2.5.1 FVM 应用举例  高温大变形  高温大变形的模具充填情况分析  高温大变形的材料折叠分析 2.5.2 FEM 应用举例  模具损伤分析  回弹和残余应力  板料成形  预应力模具  各种冷加工分析  铆接

103


 切削  弯曲  旋压加工 等 2.6 模块介绍 Simufact 软件主要包含以下模块: ● 金属成形工艺模拟环境(GUI) ● 机械连接工艺仿真模块 ● 焊接工艺仿真模块 ● 热处理工艺仿真模块 ● 材料数据库 ● 模拟结果分析 ● 工模具载荷分析 ● 网格划分模块 ● 机构运动模块 2.7 模拟分析能力 Simufact 可以模拟金属成形工艺生产过程中可 能出现的任何问题:其中包括金属成型工艺分析, 热处理分析以及结构分析。 △ 塑性加工工艺分析 包括自由锻、模锻、辊锻、 旋压、墩挤、挤压、焊接、拉拔和轧制等体积成形 工艺和冲压 等板料成形工艺。 △ 微观组织分析 包括塑性变形或热处理过程 中材料的相变、动态再结晶过程、产生的微观组织 变化等。 △ 热分析 包括热-固耦合分析、热处理和热加 工过程中的稳态/瞬态热传导、对流散热、热辐射、摩擦生热和热应力分析等。 △ 结构分析 包括成形过程中材料的断裂,预应力模具受力分析,工模具失效、磨损和寿命分析,成形 和卸载后材料的回弹及残余应力分析等。 3 技术优势 3.1 纯 windows 风格界面,容易操作 纯 Windows 风格的图形交互界面,易于掌握;内置各种成形工艺模版,优化不同成形工艺的模拟参 数;采用拖放技术快捷的建模;建模、运算和结果显示集成在同一界面中。

图 2 Simufact 简便的操作和后处理界面 同时,软件界面内置多种工艺过程窗口,包括:预锻、闭式模锻、正/反挤压、焊接、齿轮锻造、开 式模锻、弯曲、轧制、剪切、强化、冷却等。非常方便专业技术人员的操作使用。 3.2 强大的 CAD 和铸造软件接口功能

图 3 Simufact 与 CAD 和铸造软件拥有强大的接口功能

104


Simufact 软件自身具有软件三维实体造型功能,并且同时兼容各种主流 CAD 软件:如 Solidworks、 CATIA、ProE、UG、AutoCAD 等。ProCAST、Magma 文件直接导入。 3.3 求解速度快、模拟精度高 将 MSC.Marc 和 MSC.Dytran 求解器融合在一起,提供 FEM 和 FVM 两种求解方法,能够解决各种 复杂的金属成形工艺问题,且具有极高计算精度。 Simufact 不仅采用传统的有限元法求解金属成形工艺 问题,还首次应用有限体积法求解高度非线性大变形问题。尤其是对于大型铸锻件的模拟,FVM 方法能 有效地提高计算效率。计算效率比传统有限元法提高至少 5-10 倍。 金属成形是高度非线性工艺过程,多数情形下毛坯形状相当简单,但最终产品的几何形状非常复杂, 采用基于有限体积的材料流动模拟技术,突破了传统有限单元技术模拟极度大变形材料流动的障碍。 Simufact 采用的固定在空间的有限体积 Eulerian 网格技术,是一个固定的参考框架,单元由节点连 接构成,节点在空间上固定不动。非常适于精确模拟材料大变形问题,完全避免了用有限单元技术难于 处理而又无法回避的三维网格的重划分问题。并且软件将 Lagrange 格式的有限元方法(FEM)和 Euler 格式的有限体积法(FVM)并存,允许单独使用这两种方法,也可以将二者结合使用。

图 4 Simufact 独特的有限体积法技术大大提高了计算效率 Simufact 采用了分辨率增强技术(RET)自动加密工件表面离散的小平面,提高对材料流动描述的 精度。 多道次锻造过程,跟踪材料表面的小平面数量会非常大。Simufact 提供的图形界面网格稀化器,可 以在两个锻造道次之间稀化材料表面小平面,使模拟速度大大加快,减少所需内存。 3.4 集成二维和三维模拟 Simufact 不仅可以模拟三维成形过程,同时也具有二维模拟能力。并且支持多工步模拟,能够自动 将二维轴对称模拟向三维模拟进行无缝过渡,从而允许在一次分析中全自动地进行先二维后三维的多工 步成形分析。

图 5 Simufact 可以进行 2D 和 3D 模拟分析 3.5 网络自适应技术 在 Simufact 中采用全自动的四面体和六面体网格划分和重划分自调控技术,用户不需要额外掌握单 元划分技术。

图 6 Simufact 网格自适应技术

105


Simufact 增强的网格自动重划分技术不但能依据分析的需要自动调整网格的疏密,还能对因过度变 形产生的畸变网格自动的重新划分,以消除网格畸变对求解精度的影响。

图 7 Simufact 可以自动调整网格疏密 对于高级用户可以设定控制单元重划分准则,及重划网格的目标单元尺度后, 程序自动地控制何时 划分、怎样划分。 3.6 完善的材料数据库和设备数据库 Simufact 软件拥有材料数据库和加工设备数据库,数据库为开放式结构,用户可以对数据库进行修 改和扩展。同时支持用户自创建材料数据库。 设备数据库中包含锻锤、曲柄压力机、螺旋压力机、液压机、机械压力机和辊锻机的参数,用户也 可自定义工模具的运动方式 系统提供超过 200 种材料,300 多个条目的材料数据库,包括:钢材、工模具钢、铜、铝等有色金 属、钛合金和锆基合金等。 用户可将描述弹性材料或刚塑性材料流动的选项与引入温度影响的选项组 合成四种分析类型,即弹塑性、刚塑性、弹粘塑性和刚粘塑性,供用户自由选择。

图 8 Simufact 拥有强大的材料和设备数据库

106


3.7 强大的二次开发子程序功能 Simufact 为用户提供了 30 余个可访问和修改程序缺省设置的用户子程序接口,用户利用这些接口可以 完成许多重要的仿真分析。 3.8 支持多 CPU 并行求解 Simufact 支持多 CPU 的 SMP 和 DMP 并行运算,以及多机集群运算。 可以同时提交多个模拟任务,无需人工干预,系统按顺序自动完成各个模拟任务,如果某个模拟过程意 外终止,那么将继续进行列表中的下一个模拟任务.

图 9 Simufact 可以同时提交多任务 4 SimuFact 应用实例

107


图 10 Simufact 典型应用实例 4.1 Simufact 环轧(辗扩)工艺仿真模拟实例 环轧是生产优质无缝环件的压力加工工艺,其特点是用局部连续变形的积累来达到整体成形,因而变形 力小,设备投资省,振动噪声小,无飞边与斜度,材料利用率高;金属纤维沿环向分布,组织质量好,工业中应用 广泛。

图 11 环轧(辗扩)工艺应用十分广泛 环轧过程控制的关键技术之一是轧制载荷的 控制,轧制载荷与压力辊的进给速率密切相关, 并随环件的尺寸、材料性能和轧制规程变化。 Simufact 凭借其优秀的 Simufact.forming 求解器, 可以精确地进行环轧工艺计算机模拟仿真分析。

图 12 环轧工艺 Simufact 建模

108


图 13 Simufact 环轧工艺模拟结果分析 4.2 Simufact 旋压工艺仿真模拟实例 Simufact 有针对旋压的专业工艺模块进行旋压成型工艺的仿真模拟分析。可以方便地进行旋压成型 的各种工艺参数的设置。其中包括:旋轮运动路径、旋转轴以及转速的设定,任意个旋轮的设定、从动 和主动运动、摩擦力驱动等。

图 14 Simufact 旋压工艺前处理参数设置

图 15 Simufact 旋压模拟结果

图 16 Simufact 剪切旋压模拟

109


图 17 Simufact 旋压模拟结果分析 4.3 Simufact 冲压工艺仿真模拟实例 Simufact 可以进行冲压、钣金成型工艺仿真模拟分析,并且通过其强大的基于 MARC 的求解器进行 精确分析,可以进行板料回弹分析。

图 18 Simufact 板料冲压成型分析

模拟结果 真实结果 图 19 Simufact 模拟板料回弹与真实结果对比 4.4 Simufact 弯管工艺模拟实例

图 20 Simufact 弯管分析建模

110


图 21 Simufact 弯管成型模拟结果 4.5 Simufact 大型件锻造仿真模拟实例 对于开坯锻和径向锻造,Simufac 提供以下的强大功能:  所有复杂的模具和设备的随动力学  坯料的自动控制  模拟实际的锻造工序  多个模具的运动

大型内燃机曲轴件通常采用分级锻造的成型方式。由于每根曲轴都有自己本身的特点,因此对工艺 设计和生产来说具有巨大的挑战。

图 22 大型货运船舶内燃机曲轴件锻造工艺面临挑战 Wildauer Schmiedewerke GmbH 公司是欧洲少数能生产这类大型锻件曲轴的厂家之一,这家公司具 有可以生产 3500Kg 锻件的大型压力机。大型内燃机曲轴作用非常重要,在内燃机的工作中必须满足各 种极端条件要求。对于此类大型曲轴的成型过程,由于压力机的限制,需要进行多级成型工艺设计。

111


图 23 大型曲轴锻件建模

图 24 Simufact 大型曲轴模拟结果分析 4.6 Simufact 热处理分析

112


图 25 Simufact 热处理分析结果 4.7 Simufact 焊接成型分析 Simufact.welding 为 simufact 公司开发的针对焊接成型分析的前后处理工具。Simfact.weilding 支持 以下求解器: ------IFE WELDSim ------MSC.Marc Simufact.weilding 后处理器可以分析焊接变形、温度、应力、畸变等。

图 26 Simufact.welding 前处理界面

图 27 Simufact.welding 焊接模拟结果分析

113


自由锻压设备的翻新 (中英文版,论文) Erhard Paller,压力机项目经理 (威普克液压有限公司,德国) 在过去几年中,我们销售出的全新锻造机数量可观。但同时,对老旧设备进行翻新和改造的业务也 不在少数。目前,威普克潘克有限公司(Wepuko Pahnke GmbH)已经收到了大量有关锻压机及其装备 翻新和改造的业务咨询。其中包括更换锻造机机械系统的各种零部件(如横梁和导向件)或对液压系统 进行优化。在液压系统方面,主要是用可自行变量变向的调节泵加上可带来节能效果的油压控制系统替 代老旧的水控系统,或是将电子系统更新至最先进的技术水平。 锻压机的升级改造业务范围非常广。通常,客户 都希望为自有设备添加一个全新的锻压工具库或一个 高效的上砧更换装置。此外,威普克潘克公司还收到 了有关加装台面移动装置的业务咨询。而这对于能够 将大型曲轴或环形锻造所用的特殊砧具放入锻造机工 作台面上而言是很必要的。同时锻造操作机和钢锭升 降旋转台的翻新也属于客户咨询的业务范围。 锻造机的使用寿命通常超过 30 年。即便目前仍有 大量的全新锻造机在投入市场,却很少有老旧锻造机 报废的情况。所以可遇见的是这些老旧的锻造机无法 满足目前全球市场所要求的高标准。这些标准包括需 之后处理的锻造部件、平行性、非圆性、表面品质过 量和锻造过程的记录。 而在锻造机翻新方面,通常也包括生产线内机组 的翻新。这些机组包括窑炉、台车和升降工具或锻后 热处理炉。 22 MN 自由锻压机的翻新 即便是出于成本或时间原因必须逐步进行翻新, 也是可以逐步提升设备的效率。其中一个例子就是对 位于印度的一台 22 MN 型锻造机进行翻新(见图 2)。 该设备是一台配有三个主工作缸和一个水压驱动装置 的锻造机。该锻造机原本通过与水阀直接接合的手柄 图 1:威普克潘克 185 MN 型自由锻压机, 操控。锻造团队由一个六人小组组成。主工作缸的使 用寿命已经降低至三至四天。因为液压系统泄漏严重, 2011 年生产情况 所以乳状液添加剂的成本过高。 接下来所述的是潘克工程技术有限公司对该锻造机翻新所采取的措施。 主缸活塞是全新制成的。在活塞和活动横梁之间加装了一套双球铰连接装置。通过该连接件,主缸 活塞不再需要承担活动横梁的导向任务。活动横梁的导向仅由支柱和活动横梁上的导向件来负责完成。 而支柱上的导向件因此需要延长和加强。该装置在主缸中的使用寿命也因此提高了 11 年以上。而两个回 程缸也同样如此。且主工作缸的泄漏问题也得以排除。 设备维护所需的维护团队可以缩减。备件库存规模也得以大大减小。长时间运行后,该类型的组件 可以继续预紧。锻造机的使用时间也因此提高了几倍,由 27%提高至了 98%,从而降低了锻造成本,提 高了客户的竞争力。锻造机的所有耗材也得到了翻新。再加上全新升降测量装置和全新电子控制系统的 投入使用,锻造精度也随之提高。

114


图 2:由潘克工程技术有限公司改 造的 22 MN 型自由锻压机

图 3:主缸活塞连接的改造 示例

改造升级最重要的一部分就是全新的油压驱动装置和全新的电子系统。全新驱动装置由 8 台径向柱 塞泵组成。柱塞泵负责对锻造机锻造和回程过程进行速度和压力调节,无需在锻造机和泵之间安装控制 阀。

图 4:威普克的径向柱塞泵作为潘克生产的 22 MN 型自由锻压机 的驱动装置 通过该先进的泵直传驱动装置,所需要的占地面积相对老旧水压驱动装置而言仅占很小一部分。在 其它改装项目中,该优势得到了充分发挥,因为有些项目中,锻造机仅采用一半的泵效率运行,同时在 露天场地上运行时安装全新驱动装置。 径向柱塞泵的伺服调节控制既快又精确,从而节约了锻造钢锭的使用量。通过这些泵不仅可以调节 锻造砧具的位置(即锻造尺寸),也可以对锻造速度和所设置的压力进行调节(这对于锻造机的安装和 镦锻而言非常具有优势)。对于较大型的锻造机而言,工作台面也采用这种泵作为驱动装置。

115


图 5:潘克的改进型正弦直接驱动系统(PMSD)的图示 液压系统中的仅有阀门只用于在例如停电等情况发生时设备的限压和安全。系统简单和阀门数量少 相应降低了备件库存量,从而降低了成本。在这种改造项目中, 主泵的主电机可以继续使用,这样也降低了改造成本。 当然另外一方面威普克潘克对维护团队的培训也相当重视, 维护团队必须学习确保系统液压油的良好过滤。 这种改造的最大优势不仅在于提高了生产效率,同时还在 于该泵直传驱动系统的节能性,相对常规水驱动系统可以节能 30%。 特别是如今,能源成本不断飙升,客户对于能源效率越来 越重视。相对带锻造阀的控制系统而言,潘克改进型正弦驱动 系统(PMSD)省去了高压油的溢流装置,驱动系统中的油直 接用于压机锻压和回程。因此,不会有能源浪费在锻压阀中的 油溢流方面,而锻造机横梁下降和主缸油泄压时的蓄能将被回 收利用,从而进一步降低了能耗。而以前因为通过锻压阀泄压 导致系统油温升高而使用高耗能散热系统再冷却油,该方案所 附加成本同样也得以节省。 所有之前提及的技术特点和优势加在一起便大大降低了锻 造部件的生产成本,从而提高了客户的竞争力。 63 MN 自由锻压机的翻新 另一个例子便是 2009 年对一台上传动的 63 MN 型锻压机 的翻新。活动横梁的导向装置不是带预紧力的圆柱,锻造机采 用的是带蓄能器的水压控制系统。上横梁和下横梁情况良好, 图 6:由威普克潘克改造的 63 MN 自由 没有裂纹。活动横梁则带有一些已经无法修复的裂纹。出于技 术和生产停滞时间较长的原因,客户不希望对锻造机完全拆卸。 锻压机(2009 年) 该项目的任务是:  在不拆卸锻造机的情况下对活动横梁进行翻新  改善锻造精度  改善活动横梁的导向性  提高水阀和水泵的使用寿命

116


改造第一阶段 因为活动横梁无法再修复而锻造机又不能拆卸,因此 必须将锻造机内的活动横梁拆解。之后,上横梁用于预紧 的螺母将被拆除。因为之后要对螺母进行更换,所以在拆 卸时无需考虑保留螺母。 我们通过液压缸将上横梁升起。然后将四条新的空心 柱安装好。新柱子由两个半柱形组成。每根柱子已经在预 装状态下进行了机加工。通过螺栓和销钉可以在最终拆卸 后将这些半柱形重新准确地拼接在一起。改装后,外部由 四方柱来负责实现威普克潘克的导向系统功能。 柱子则通过上横梁和下横梁中已有的钻孔定心。在上 横梁下降之后,锻造机可以通过上横梁上全新的液压螺母 预紧。所有四根柱子的预紧力均高于锻压力。这样一来, 上横梁、柱子和下横梁始终固定在一起。柱子在该结构中 仅承担压力和挠应力。拉杆则承担锻造时的拉力。该预紧 结构大大提高了锻造机主要部件的使用寿命。在后续检查 一台大型锻造机时,我们在 30 年使用时间后所测得的与 图 7:威普克潘克对活动横梁的一个可 当初预紧力的偏差仅为 5%。 调节导向单元示例 因为新的柱子外观平整,所 以使用如图所示的平面导板。这 样一来,在镦锻或长时间锻造时, 热胀现象便不会再造成活动横梁 卡住的现象。 如果导向装置磨损,可以很 快对导向件进行调整。而如果是 圆形导向装置便无法做到这一点。 导向件的备件成本相对所有 圆形导向装置而言仅为其一小部 分。因此,备件成本得以大幅降 低。 活动横梁的结构采用多部件 组成形式。其中包括带上砧夹紧 装置的主部分和组成新柱子的四 个半柱形。柱子上配有全新回程 图 8:威普克潘克对活动横梁的一个四棱导向装置示意 缸的固定装置。 铸钢件以及全新导向柱由客户自行加工。这样也降低了改造成本。 威普克潘克对于主锻造机部件完全采用钢铸件,而非球墨铸件。从而提高了重要锻造机部件的使用 寿命。此外,钢铸件中的裂纹之后可以通过焊接修复。 锻压机的全部机械改造工作在六周内便完成。之后,锻造机又重新投入生产。也就是说,大部分的 改造时间得以在工厂假期之间完成,确保了客户的产品供货期不会拖延。 改造第二阶段 改造第二阶段在一年后进行,所涉及的改造部分是水压控制系统。水阀的使用寿命非常短。因此总 是造成生产中断。管道网络已陈旧,状态很糟糕。在第二阶段,现有的水箱将被清洁并采取防锈除锈处 理。 整个管道系统将被拆卸和更换。所有控制阀将被更新为新阀门或液压组件。通过使用更好的法兰连 接装置,管道网络的泄漏情况得以大大改善。全新的水阀采用油预控系统,实现了非常高的调控灵敏度。 陈旧水控系统的震动程度也被大大减弱了。

117


在改装控制系统后,高压泵采用经过过滤的低压水供给。这样一来,进入阀门和压力缸内的完全是 经过过滤的高压水。阀门、压力缸和衬套的使用寿命得到了大大 的提高。 总结 另一个锻造机翻新项目距离 2012 年中国国际自由锻会议的举办 地不远。河南中原特钢股份公司于 1992 年委托潘克工程技术有限 公司对一台老旧的 19MN 锻造机进行了改造。我们对该设备的机 械系统进行了翻新。驱动系统采用了油直传驱动型节能系统,即 潘克的改进型正弦直接驱动系统(PMSD),至今使用情况良好(部 分主泵使用超过 70,000 小时)。 总体而言,锻造机翻新的优势毋庸置疑。针对性可以是多方 面的:       

改用耐用的机械、液压和电气组件改善设备的可用性 通过安装附加装置缩短额外操作时间,例如锻造工具的 更换时间,较小铸锭的热损失 更改机器参数,例如增大压力,加长柱子等。 提高生产效率和产品质量,例如尺寸精度,表面品质等。 达到最新的环保法律标准 提高操作人员舒适度 保留老的地基结构,从而降低改造成本

改造的另一方面在于备件的可替换性。在电子数据处理方面,过去几年的创新速度突飞猛进。其中 一个例子就是西门子 S5 CPU 的淘汰,目前已经没有相应的备件供应。如果损坏,可能会造成生产中断。 因此,转换成全新中央控制单元的翻新不可或缺。此外许多的液压原件也已经有新一代产品并且性能提 升,替换性也更高了。 改造升级项目的主要目的不是将旧有的技术装置替换成全新的技术装置。其更重要的目的在于翻新 的意义有多大?相关要求是否是不可或缺的?此外,还需要考虑到老旧的锻造机无论如何还是一台老旧 的产品,某些风险在翻新后还是存在的,例如无法识别结构部件中的裂纹。只有通过专业合作伙伴的咨 询和检查才能帮助您做出最佳的决定,需要探讨包括翻新的方式和各种不同的方案。而在这方面,威普 克潘克公司拥有专业、经验丰富的团队。欢迎您与我们接洽! 作者:Erhard Paller 压力机项目经理 电话:+49-7123-1805-0 传真: +49-7123-41231 E-Mail: Paller@wepuko.de 地址: Wepuko Pahnke GmbH, Max-Planck-Str. 10, 72555 Metzingen, Germany

118


MODERNISATION OF OPEN DIE FORGING PLANTS (Chinese & English version, Paper) Erhard Paller ďźˆWepuko Pahnke GmbH, Germany In recent years, a great number of new forging presses have been produced. Nevertheless, old units are often upgraded and repaired. At the moment Wepuko Pahnke GmbH receives numerous requests for upgrading and modernisation of forging presses and associated hardware. The requests are about, for example, the replacement of individual parts of press mechanisms (such as the upper crossbar and guidance elements) or optimization of the hydraulic system. In the area of upgrading of hydraulic systems, the requests are about, for example, the replacement of the control systems of water supply with new energy-saving hydraulic control systems running on oil and having controlled adjustable pumps, as well as the upgrading of electrical equipment with the latest technologies. The range of possible options for modernization of forging presses is very broad. The customers often want to equip their units with an additional new magazine of forging tool replacement or efficient device for the replacement of the upper forging tool. Moreover, Wepuko Pahnke received requests for the movement of the table. This is necessary in order to be able to install the stamps on the presses with big crank shafts or large forging devices. In addition, the company receives requests for the upgrading of forging manipulators and turntables, as well as for their replacement with new hydraulic systems, that help to increase productivity. The typical operating life of presses is more than 30 years. The release of a large number of new presses does not mean that all the old presses will be decommissioned. But the use of these old presses does not make it possible to meet the high standards required in the global market. These standards do not match with the excessive sizes of the forging press details, which should be reduced, the possibility of the parallel execution of several kinds of work, out-of-round surface, as well as the protocoling of the forging process.

Figure 1: New open die forging press with 185 MN, manufactured by Wepuko Pahnke (2011)

During the upgrading of the presses serial aggregates, for example, stoves, cranes and drainlifting tools or stoves, used for heat treatment, were often updated.

Example 1: Modernisation of a 22 MN open die forging press Even if due to the lack of time and money the upgrading is being made in stages, it still improves the performance of the plant. An example of this is the upgrading of a press with a force of 22 MN in India. This press was equipped with three cylinders and a hydraulic drive. The work of the press was controlled with levers directly connected with the water drain valve. The team, working with the forging press, consisted of 6 people. The operation time of a set of press cylinders was reduced to three, maximum four days. The high degree of leakage of the hydraulic system did not justify the cost of adding the emulsion. Hereafter the measures, taken by PAHNKE Engineering to upgrade the press, are enumerated.

119


The pistons of the press were constructed in a new light. Earlier there were mobile yokes and a mobile upper crossbar between them. Due to such a junction the pistons did not function as the controllers of the mobile upper crossbar. The upper crossbar was controlled through columns and guiding elements on the mobile upper crossbar. In addition, the guiding elements of the columns were lengthened and improved. Thus, the operating life of the cylinder seals was increased by 11 years. The same measures were taken to improve the sealing of two cylinders, after which there was no leakage of fluid in the cylinders any more. These measures helped to reduce the maintenance team of the unit. They also helped to reduce the stock of spare parts. After prolonged operation it was enough to just strain the applied type of a sealer in advance for the next usage. The operating life of the press was increased by many times, in particular from 27 to 98 %, which meant a reduction in the costs of forging press maintenance, as well as increase in the competitiveness of the customer. In this regard, the wear parts were replaced. This fact, as well as the installation of a new piston stroke adjustment device in a new electronic control system, lead to the increase of the forging process accuracy.

Figure 2: Reconstruction of a 22 MN forging Press in India by Pahnke Engineering (1982)

Figure 3: Example of pistons’ junction by Wepuko Pahnke

Figure 4: Radial piston pumps, manufactured by Wepuko: press drive for a 22 MN press (1982)

120


The key point of the reconstruction was the installation of a new hydraulic drive and new electronics. The installation of a new drive was carried out through eight radial piston pumps, which controlled the descent and ascent of the press piston during the forging, at the same time there was no control valve between the press and the pumps. The new pump drive required only a small area on the surface of the old hydraulic actuator. In other press reconstruction projects this advantage was also used: When a press was operated intermittently (for example, only with half of the capacity of the pump) while the new drive was mounted on the free area. The control of the new radial piston pumps is so quickly and accurately, that it became possible to reduce the amount of additives for the production of forged products. With these pumps it is possible to control not only the position of the forging tool, i.e. its degree, but also the speed of the forging, as well as the value of the applied pressure (which is very important for the adjustment and compression of the press). In large presses with these pumps the tables can also be moved.

Figure 5: Scheme of a Pahnke modified sinusoidal direct drive, (PMSD drive) The only valves of the hydraulic system are used for the pressure limitation and safety of the unit, for example, in case of failures in the supply of power. A small number of valves and their standardization significantly reduced the stock of spare parts, and, in addition, the operating costs. In the course of such a reconstruction the large basic motors can be used further, which has a beneficial effect on the reduction of the reconstruction costs. The priority task for Wepuko Pahnke was the training of the maintenance crew. The crew had to learn how to ensure the high quality filtration of the liquid oil. A major advantage of the modernization project was not only in the improvement of the productivity level, but also in the economy of electrical energy during the use of the drive. In comparison with the traditional drives, this new drive made it possible to reduce the amount of used energy by 30 %. Today, when the energy prices are constantly increasing, the efficient use of energy during forging is essentially important for customers. In contrast to the control systems that work by means of forging press valves, the new presses do not isolate oils for high pressures, as only oil, used during the lowering and lifting of the press, is required for the work of the modified sinusoidal direct drive (PSMD) by Wepuko Pahnke. In addition, the electrical energy is not used through the oil flow section in the forging valve and the reduction of the amount of used electrical energy is achieved through the regeneration of potential energy during the lowering of the press and decompression of the oil. The oil, heated during its passage through the forging valve, should be recooled, which does not require additional expenditures.

121


As a result it was found, that the accomplishment of all the mentioned measures made it possible to reduce the expenditures for the production of forged items significantly, as well as increased the competitiveness of our customers. Example 2: Modernisation of a 63 MN open die forging press

The second example is the upgrading of a top floor 63 MN forging press in 2009. Initially loose columns served as the guiding elements of the mobile upper crossbar. This press was equipped with a hydraulic control system with accumulators. The upper and lower crossbars were in a good condition and had no disruptions. At the same time there had been some disruptions on the mobile upper crossbar for many years. These disruptions were not subject to repair. The customer refused from a complete disassembly of the press for technical reasons, as well as for the reason of the prolonged downtime of the press. The tasks of the press modernisation were the following:  Replacement of the mobile upper crossbar without disassembly of the press;  Improvement of the guiding elements of the mobile upper crossbar;  Improvement of the forging accuracy;  Increase of the performance capabilities of the water discharge valves and water pumps.

First stage of modernisation Figure 6: Reconstruction of a 63 MN As the mobile upper crossbar was not subject to forging press (2009) modernisation and it was not allowed to disassemble the press, we disassembled the mobile upper crossbar without removing it from the press. After that, the screw nuts, twisted into the upper crossbar, were untwisted and took off. As the screw nuts would have to be replaced later, it was not necessary to pay attention to their position in the course of the disassembling. We managed to raise the upper crossbar with the help of hydraulic cylinders. After that, four new hollow columns were installed. The preliminarily assembled columns were processed by means of a mechanical method. With the help of screws and fixing pins these halfpipes were put together again at the end of the installation. The holes in the columns were a little more than it was necessary for the existing columns. Since the beginning of the reconstruction of four-sided columns were installed. These columns confirmed the reliability of the guiding principles, developed by Wepuko Pahnke. The columns were installed into the existing holes in the upper and lower crossbars. After the lowering of the upper crossbar the press could be preliminarily strained with the help of new hydraulic screw nuts on the upper crossbar. It was impossible to use any strain devices, as the length of the old columns was insufficient for the strain and they were not subject to replacement. The force of the preliminary straining for all the four columns was more than the force of pressing. Therefore the upper crossbar did not rise during the pressing any more. The upper crossbar, columns and the lower crossbar were always reliably connected together. The columns in this construction fulfilled the functions of pressing and bending. The stretching screws fulfilled the function of straining during the forging. This construction of preliminary straining considerably increased the operating life of the main press details. During the re-verification of a large press after 30 years of usage, only a small 5 % deviation from its preliminary straining was discovered. 122


Figure 8: Example of a tetrahedral guiding element of the mobile upper crossbar of Wepuko Pahnke

Figure 7: Example of a mobile guiding element of the mobile upper crossbar by Wepuko Pahnke

As the surface of the columns is smooth, it is possible to use flat guiding elements by Wepuko Pahnke, which have already been applied for 30 years. At the same time it is not necessary to use the clamps of the mobile upper crossbar through the thermal expansion under compression. When the guiding elements are worn off, they can be quickly adjusted, which is impossible with cylindric guiding elements. The cost of spare parts for the guiding elements are small compared to the cost of the previously used cylindrical guiding elements. At the same time the total cost of spare parts will be substantially reduced. The mobile upper crossbar was designed so that in the end, it consisted of several parts: the inner main detail with the clamping device for the upper forging tool and four coupling halves, in which the columns were later installed. The clamping devices for return trace cylinders were located on them. The customer produced the steel moulded details and constructions of new guiding columns at its own enterprise. This lead to the reduction of the reconstruction costs. As for the main details of the press, Wepuko Pahnke always uses steel casting exclusively and not casting with spherical graphite. This leads to an increasing of the operating life of the main press details. Moreover, a possible emergence of disruptions in the steel casting in the future can be eliminated by welding. The general mechanical reconstruction of the forging press was carried out within six months. Finally, the press was put into operation again. As the major part of the reconstruction work was carried out during the vacation of the staff, it did not lead to a delay in the delivery of products to our customers. Second stage of modernisation The second stage of reconstruction was carried out a year later and was connected with the upgrading of the hydraulic control system. Initially, the operating life of the water valves was very short, which constantly led to temporary cessations of the production process. In addition, the pipeline network was old and in a pretty bad state. During the second stage of reconstruction the cleaning was carried out and protection against corrosion was applied to the existing tanks. The entire pipeline system was dismantled and replaced. All the control valves were replaced with new valves and hydraulic units. Due to the use of new flanges it was possible to reduce the degree of leakage in the pipeline network considerably. The new water valves

123


are regulated with a control system, running on oil, which, moreover, is very accurate. The number of impact loads of the water supply control system was reduced significantly. In order to extend the operating life and reduce costs, it was very important to install new filters and cooling devices with pumps. After the reconstruction of the control system, the water, cleared in filters, was delivered to the high pressure pumps. In the course of upgrading the operating life of vales, cylinders and sleeves was increased by many times. Summary On the whole, the advantages of rational upgrading of open die forging presses are indisputable. At the same time it is possible to set up different aims: • Successful use of the unit due to the long operating life of the mechanical, hydraulic and electrical systems • Reduction of nonproductive time (for example, time of forging tool replacements, time of the elimination of heat loss for small bars) due to the installation of additional devices • Change of the parameters of the unit (higher press force, longer columns, etc.) • Increase of productivity and quality of the products (for example accuracy of sizes, smoothness of surfaces etc.) • Increase of the convenience of maintenance • Preservation of the old fundamental construction and simultaneous reduction of reconstruction costs The problem of spare parts availability is another reason for upgrading. In the field of electronic data processing in recent years the speed of new technologies development has increased dramatically. As an example, we can mention the decommission of the S5 CPU processor, produced by Siemens, for which there is no spare parts at the moment. Breaches in the work of the device can lead to downtime of the production process. So the installation of a new device is unavoidable. Nevertheless, the simple replacement of old equipment to new one can‘t be the ultimate goal of upgrading projects. Moreover, it is necessary to find out how complex the upgrading should be. When thinking about requirements for upgrading and carrying out planned upgrading, it is necessary to consider the fact that on the whole, an old press will remain an old press. However, some risks remain, for example, the indistinguishability of disruptions in the structure. For optimal decision making, inspection and consultation with specialized companies are needed. In the course of such conversations it is necessary to find out and weigh all the opportunities and alternative proposals, connected with the upgrading. Wepuko Pahnke has a competent and experienced team of employees for its customers. If you have any questions, ask us! By the way, one of the presses modernized by Wepuko Pahnke is located not far from the Open Forge 2012 venue. In 1992, ZSSW (Henan Zhongyuan Special Steel Works) placed an order with PAHNKE Engineering for the reconstruction of an old 1900 t press. Besides an upgrade of the mechanics, the hydraulic energy saving PAHNKE modified sinusoidal direct drive (PMSD), was installed.

124


最强大的先进自由锻工厂 (中英文版,论文) Rainer Dango,执行董事(丹戈-丁南塔尔机械制造有限公司,德国) 任沁新,总经理;王春民,副总(中信重工机械股份有限公司,中国) Michael Pahnke,(Wepuko Pahnke GmbH,德国)

简介 锻造力 165MN(16,500T)的成型锻造和同心锻造镦粗力达到 185MN,是自由锻压机中最强大的。 配合该压机的操作机,提升力 2500KN 和力矩达到 7500KNM,同样是操作机独一无二的。 坐落在德国锡根 DANGO&DIENENTHAL 的家族企业,成立于 1865 年,从 1901 年一直致力于有色 金属领域的特殊机械。 DDS 非常荣幸为这台操作机提供设计和液压和电气的关键部件。其中一些主要机械部件也由 DDS 来做。 以下这些特点使得这套系统成为世界最强大的自由锻锻造厂:压机和操作机强大的油压驱动,最大 的下压力,和夹持力以及操作机夹钳最大的力矩。 毫无置疑,设计和建造此类最大型的设备是具备极大挑战的。材料的选择,结构和设计原则都是经 过周密考虑的。以现有生产装备和如何运送和安装这些部件,这些部件如何保证质量下生产必须精心的 考虑(参见图 1)。正常来说,设计工作,包括用最尖端的技术进行精确计算,同样是个挑战。在设计者 和生产专家的配合下,以上挑战均被攻破。

图 1,上横梁,520T 重的铸件 这座巨型锻造系统的用户同时也是压机操作机的机械部件的生产者 中信重工机械股份有限公司(CITIC HMC),坐落于中国洛阳,在大型水泥矿山机械制造领域,有着 悠久的历史。项目开始的时候,中信重机提高了钢产能至令人吃惊的 900T 钢水,以便制造钢锭和超过 600T 重的成型铸件。为锻造最大的钢锭,订购了具有 165MN 下压力和 185MN 镦粗力的全新自由锻造压 机。升级的钢厂和铸造厂从 2008 年已经投入生产,生产了一些压机和操作机的大型锻件铸件。 压机设计的主要标准 压机机械,液压却东和操作车的大小的技术参数选择的出发点是,部件需要锻造后进行安装。大的 钢锭可以达到 500T(铸件的前头已经去掉),非常不好操作,同时锻造工程非常漫长。 因此压机的设计和辅助设备的设计需要考虑钢锭重量以及巨大的热能。比如,这种特殊设计的回转 台,能提升 500T 重的钢锭,与普通的设计看起来截然不同(图 2)

125


压机的设计经过了周密的考虑,寻找不同设计原则的 可能性和优点。最终专家们选择了两柱式预加压力式框架 结构。Wepuko Pahnke 最终提供了这座庞然大物的设计和 进口部分。 除此之外,这座巨大的压机框架设计也是一个挑战。 通过有限元素分析优化应力集中和周密的计算后,材料的 选择和质量得到了周密的考虑。FEM 技术同时被应该用发 现在工作状态下,框架有摇晃的倾向,一种特殊的设计将 这种危险性降到了最小。 主要的聚焦点在于单独框架部件的尺寸。设计者通常 更倾向尽可能的用少的部件以便减少摩擦和安装维护维修 的便利性。但是,这种大型压机的框架部件轻易的超过 300T 重,具备生产如此大部件的厂商寥寥无几。因为中信 重机已经投资了更大的铸造能力,加热装置和机加能力, 所以中信重机想自行生产。最终框架设计定格在了五大件 模式上,底盘被分成了两大部件。其他部分,不入上横 梁,,立柱和动梁均由一个部件组成(图 3)。最终的一件 在加工后重大 445T,需要 800T 的钢水进行浇铸。机械部 分总重达到 4000T。压机框架受到电子压力测量系统的保 护,以防止意外超载。这种系统跟大型模锻应用的系统类 似。

Max. Ø 3600

±0

- 9750 图 2: 500 吨重的回转台

压机的液压驱动系统 大型压机通常由水蓄能器系统驱动。这是由于惯例或 现有崔在的水蓄能器站。现今,提供一套全新的水液压系 统没有意义。制造和生产过程中成本非常高。 因此,油压驱动的决定较早的决定下来,但还有许多 细节需要斟酌。类似此类大型压机,驱动空闲时间通常要 超过实际使用时间。所以值得深入研究的是驱动的能源效 率,尤其是驱动在无载的情况下(图 4)。

图 3:在安装过程中的 185MN 压机框架

图 4:185MN 压机系统的泵室 压机的液压驱动,20 个世界最大的 RX-泵,占据了 1250 立方米

126


有轨锻造操作机的选择 当压机最终确定后,中信重机决定制造世界上最大的有轨锻造操作机。 这台设备具备夹持 250T 的能力,力矩为 750MT!夹钳最大张开达到 4M. 这台操作机设计紧凑(图 5 和图 6)

图 5:有轨锻造操作车, 250T 夹持力和 750MT 力矩

图 6:操作车正在工作

单元体设计及优点 由于这台操作机的庞大,一部分部件由中信重机来制造。作为制造者同时能对部分部件负起责任。 大部分的机加工也是在这里完成的。这台操 作机的设计是由在此领域超过 75 年历史的著 名制造厂商 DDS 公司来完成的。 DDS 专注于 3A 标准,ACCURACY (quality),准确性(质量), ACCELERATION(SPEED)加速(速度), ACCESSIBILITY(MAINTENANCE), 可达性 (维护)。在关键的问题上给出了有效地解 决方案,结果是在相对低的运营成本下,工 厂的高效率。 工厂的准确性是由叫无间隙驱动的驱动 系统来完成。一旦机器由设定的数值定位后, 所有的液压电机在牢固的位置上。 图 7:单元化设计-德国制造 由于单元体的结构和此种特殊的设计在市 场中是顶尖的。管线由管子所代替。DDS 达到 了最大化的维护便利性和最低数量的液压密封。(图 7) 安装了强大的引擎,以便达到最大可能的 加速度并确保最有效的生产和最小化锻造循环。 由于位置为定原则-结果是好品质的锻造,小 的震动能使后续的加工时间和后续工序时间节 省。

图 8: High Accuracy due to POSISTABIL design 操作机和压机的控制 这样的现代化的压机操作机的电控系统安装是非常重要的一部分。界面描述保证了操作机动作的精 准联动,在试车阶段已经应用到许多不同的安装中。双方的 PLC 原件均通过以太网频道链接,也就是说

127


链接所有控制以及控制台(包括外围设备)(图 9)。一个操作者同时操作压机和操作机-可以对一个料 进行手动锻造,半自动和全自动锻造。

图 9:锻造厂的电控 目前的状况和展望 压机和液压的订单先定下后,很短的时间操作机订单定下。2010 年年底,所有大件均已安装并具备 调试。最大的挑战及时制造大型的铸件,锻件以及压机操作机的焊接框架(包括由中信重机制造的世界 上最大的和精密件的加工). 巨型工厂(图 10——在 2010 年 12 月初已经全部安装完毕。

图 10: 185MN 锻造厂平面图 仅压机加操作机及液压站占据了 2200 平方米。功能测试在 2011 年 1 月中旬开始,第一次锻造已经 在一月底完成。在中国新年后,也就是 2 月底,一切进展顺利。复活节前,冷调和初步验收政府已经完 成。2011 年 5 月热试和操作工的培训已经展开,2011 年 6 月最终验收完成。

128


图 11: 185MN 压力机锻造 250 吨钢锭现场 结论 同时,在过去十年中,超过 45 个大型的自由锻压机(100MN 及以上)和强大的有轨操作车(100T 夹持力及以上)被提上日程,或已经投产或已经安装。锻造能力的增长主要取决于火电厂和大型锻件的 需求之大。似乎仍需要更大的锻造能力,毕竟在如此短的时间内已经造就了这样大的锻造能力。 作者:Rainer Dango,执行董事(丹戈-丁南塔尔机械制造有限公司) 地址:Maschinenbau GmbH,Hagener Str. 103, 57072 Siegen, Germany 电话: +49 271 401 101 传真: + 49 271 401 210

129


The Most Powerful and Most Modern Open Die Forging Plant (Chinese & English version, Paper) Rainer Dango,Managing Director (DANGO & DIENENTHAL Maschinenbau GmbH, Germany) Ren Qinxin, President; Wang Chunming, Vice President (CITIC Heavy Machinery Company Ltd., China) Michael Pahnke (Wepuko Pahnke GmbH, Germany) Introduction An open die forging press with a maximum forging force of 165 MN (16,500 t) for bar and shape forging and an upset force of 185 MN for concentric forging is the strongest press of this type. The press is combined with an integrated rail-bound forging manipulator of 2,500 kN lifting force and 7,500 kNm load moment, also unmatched by any other existing forging manipulator. The family-owned DANGO & DIENENTHAL in Siegen (DDS), Germany was founded in 1865 as a nonferrous metal foundry has been manufacturing special machinery for metallurgical plants since 1901! DDS was awarded to supply the design and many key components such as hydraulic as well as electrical equipment for the manipulator. Main mechanical parts have been imported as well. The following characteristics make this system the world’s most powerful open die forging plant: Strong oil-hydraulic drive for the press and for the manipulator, maximum press forces, the respective carrying capacity as well as the maximum load moment of the manipulator tongs. It is of course always a challenge to design and build the largest machine of its kind. Special care must be taken about the selection of the materials, their structure and design principle. It must be considered how the parts can be produced (Fig. 1) with the necessary quality by means of the available manufacturing equipment and how the parts can be handled and assembled. Naturally, also the design work as such, including careful calculations with most up-to-date methods, was a challenge. This was done in close cooperation between the designers and the manufacturing experts.

Figure 1: Top cross head casting with 520 t weight The Customer for this extra large Forging System was also the producer of the mechanical equipment for press and manipulator

130


CITIC Heavy Machinery Company Ltd. (CITIC HMC) in Luoyang, China, is a long time manufacturer of very heavy equipment for mainly the cement and mining industries. By the time this project started HMC increased the steel making capacity to an astonishing 900 t pouring of liquid steel to produce ingots and shape castings of over 600 t weight. To forge the largest ingots a new open die press with a capacity of 165 MN for cogging and 185 MN for upsetting was ordered. The upgraded steel and casting plants are already in operation since about 2008 and have been used for the production of the very large press frame castings as well as the large forgings needed for the press and the manipulator.

Selection of the Basic Criteria for the Press Design The starting point for the selection of the technical parameters for the press mechanics, the hydraulic drive system and the size of the manipulator is, of course, the products to be forged on the installation after all. Very large ingots with a weight of up to 500 t (after the head of the casting is removed) are difficult and slow to handle and stay in the forging press a very long time during the forging process. Therefore the press design and the design of the handling equipment needed to take the ingot weight as well as the huge heat energy into consideration. The pop-up turn table for example, which is capable of lifting the 500 t ingot looks quite different from the “normal” design (Fig. 2).

Max. Ø 3600

±0

- 9750 Figure 2: 5000 kN Pop-up Turn Table For the press design careful considerations were done to check the possibilities and the advantages of different design principles. Finally the two column version with pre-stressed frame was chosen by the experts. Design and imported portion for the giant press has been delivered by Wepuko Pahnke (WPE). Nevertheless, the design of the frame for this very large press was quite a challenge. Besides careful considerations of the materials and their properties for large pieces, detailed calculations were carried out by finite element analysis optimizing stress concentrations. Further to this, FEM was also used to investigate the potential of the frame to start swinging under working condition. A special design minimizes the danger of resonance. The other major concern was the size of the individual frame parts. Any designer should prefer to use as few pieces as possible to avoid connections with their additional wear and potential for failure and additional requirement for maintenance and repair. However, for presses with this force the finished weights for the main frame parts exceed 300 t easily. The available number of manufacturers with equipment to produce such heavy castings, heat treat, and machine them quickly reduces to a small number. CITIC HMC wanted to manufacture the press in their own shop and they could since they had invested into larger steel casting capacity, as well as into accompanying heat treatment and machining facilities. The frame design was finally fixed to a five piece model where only the base plate is split into two pieces. All of the other parts, such as top cross head,

131


columns as well as the moving beam are made in one piece (Fig. 3). The heaviest piece weighs about 445 t after machining, requiring over 800 t liquid steel for the rough casting. The total press mechanics weigh over 4,000 t. The press frame will be protected against accidental overload by an electronic stress measuring system similar to what is regularly used on large closed die presses. The Hydraulic Drive System for the Press Larger presses are mostly being powered by water accumulator systems. This is again mainly because of tradition or already existing water-accumulator stations. Nowadays it makes no sense at all to supply a new waterhydraulic system. It is much more expensive to manufacture as well as during operation. Therefore the decision for an oil-hydraulic drive was made early, but more needed to be looked at. On big presses like this the idle times of the drive are typically exceeding the actual operating times. This leads to a close look of the energy efficiency of the drive, especially when it is not under load condition (Fig. 4).

Figure 3: Frame of the 185 MN press during assembly

The hydraulic drive of this press with 20 of the largest RX-pumps occupies a pump room extending 1250 m². Selection of the Railbound Forging Manipulator As soon as the press was selected, CITIC HMC decided to procure the world’s strongest rail-bound forging manipulator. This machine has a carrying capacity of 250 t combined with a load moment of 750 mt ! Maximum tongs opening is 4 m. A compact design was requested and found finally (Fig. 5 & Fig. 6).

Figure 4: Pump room of 185 MN press system

Figure 5: Railbound Forging Manipulator with Figure 6: Railbound Forging Manipulator 250 t carrying capacity and 750 mt load in Operation moment

132


Modular Design and Merit Points Due to its size the manipulator was partially manufactured by CITIC HMC, as the manufacturing facilities here enable the customer to take the responsibility for certain fabrication jobs. Most of the machining has been performed there as well. Design was generated by THE original supplier for such equipment well-known for its long-term (more than 75 years!) experience in the field of open die forging – DANGO & DIENENTHAL in Siegen (DDS). DDS focuses mainly on the triple “A”: such as Accuracy (quality), Acceleration (speed) as well as Accessibility (maintenance). Giving efficient solutions to these important issues generate a highly productive plant with low operational cost involved. The accuracy of the plant is determined by a so-called back-lash free drive system. All hydraulic motors are in braced position as soon as the machine is positioned by the control to the set value. Due to its modular structure as well as the use of a central manifold block the design is superior in the market. Hoses are replacing many pipes. DDS achieves a high degree of maintenance friendliness as well as a design with a low number of hydraulic seals (Fig. 7).

Figure 7: Modular Design – Made in Germany

Strong engines are being installed to achieve the highest possible acceleration to ensure a most efficient production and minimize forging cycles step by step. Due to the so-called POSISTABIL– principle the result of such a modern plant are high quality forgings with low tolerances enabling the forge master to reduce machining time at a later stage of production (Fig. 8).

Figure 8: High Accuracy due to POSISTABIL design Manipulator and Press Control The electrical control of such a modern press and manipulator installation is a vital part of the plant. Accurate integration of manipulator motion is ensured by an interface description, which has been applied to many different installations during commissioning phase. Both PLC units are being connected by an Ethernet channel, which connects all controls as well as the control desk together with the peripheral devices (Fig. 9). One operator for both – press and manipulator – is able to forge a work piece in manual, semi-automatic as well as in fully automatic mode.

133


Figure 9: Electrical control of the forging plant Current Situation and Outlook The order for the press and the hydraulics was placed first and short time later the manipulator was ordered. End of 2010 all of the large equipment components had been installed and prepared for commissioning. The main challenge of producing the large castings, forgings and welded frames for press and manipulator including the precise machining on some of the world’s largest and most sophisticated machine tools was successfully mastered by CITIC HMC. The giant plant (Fig. 10) was completely assembled in December early 2010.

Figure 10: Layout of 185 MN forging press plant Only press with manipulator as well as hydraulic station are occupying round about 2,200 m². The functional tests started mid January 2011 and the first forging was produced already before end of January. After Chinese New Year, that is at the End of February the fine tuning continued and the cold test with preliminary acceptance certificate were finished just before Easter Holidays. In May 2011 the hot commissioning test as well as training of the operators started and resulted in the final acceptance in June 2011. The decision for the design criteria has shown to be right (Fig. 11).

134


Figure 11: 185 MN forging plant with 250 t ingot Conclusion Meanwhile more than 45 installations of large size open die forging presses (100 MN and above) as well as very strong rail-bound forging manipulators (100 t carrying capacity and above) have been planned, are in production or already installed during the past decade. The increase of forging capacity is mainly due to the huge demand in electrical power plants and the large forged pieces to build those in the world. It seems to be that more capacity as needed after all has been generated in such a short period of time. Abbreviations Name maganewton metric ton kilonewton kilonewton meter meter tons meter square meter

Symbol MN t kN kNm mt m m²

Rainer Dango, Managing Director, DANGO & DIENENTHAL Maschinenbau GmbH Hagener Str. 103, 57072 Siegen, Germany Phone: +49 271 401 101 Fax: + 49 271 401 210

135


浅谈锻造液压机的发展 (中英文版,论文) 刘福海,董事长 (安阳锻压机械工业有限公司,中国)

摘要:本文主要介绍了锻造液压机在我国的发展历程及目前现状,阐述了数控锻造液压机的 一些结构及特点,指出节能、环保、自动化程度较高的锻造液压机是我国锻造设备发展的必 然趋势。 关键词:锻造液压机发展 0 前言 锻造液压机是在 1950 年发展起来的一种锻造设备,广泛应用于机械、钢铁、有色冶金、 铁路机车、船舶、风电核电、航空航天等行业,适用于有色与黑色金属钢锭开坯等自由锻造 及胎模锻造,也适用于锻造温度范围窄的高合金材料和 Ti 合金材料的锻造。在自由锻设备 中目前被认为是发展的主要方向之一,世界各工业发达国家都在大力开发,特别是近几年随 着液压技术和微电子技术的飞速发展,更加速了这种发展进程。锻造液压机具有生产效率高、 节能、锻造能力强、锻件质量高的优点,具有振动小、噪音低、自动化程度高的优点,减少 了操作人员,改善了锻造工人的劳动环境和劳动强度,是一种较为理想的自由锻设备,也是 锻造设备的更新换代产品。 1 锻造液压机简介 锻造液压机的组成如下图所示,主要包括以下几部分: 本体部分,它是压制锻件的主要执行机构,主要零部件包括三横梁、四根立柱、主副油 缸、移动工作台等。 液压系统,是机器的动力部分和心脏部分,主要零部件包括油泵-电机组、集成控制阀、 管路、油箱及各类控制附件。 电气系统,主要包括电机启动柜、PLC 集中控制柜、操作控制台及各个检测传输控制站 等。 现代锻造液压机综合应用了机械液压技术、微电子技术、电控技术、网络通讯技术、传 感测试技术、信息处理及软件编程等相关技术,涉及到机械、液压、电器、土建、通风、给 排水等专业领域,是一项大型的系统工程。 2 锻造液压机的发展现状 锻造液压机是近年来在锻造水压机的基础上发展起来的,具有能耗低、无震动,生产率 高,锻件精度高,劳动工作环境好等优点。国外于 1950 年广泛开展研究,并于 1960 年在实 际工业中应用。锻造液压机在国外的发展,从技术先进性要首推德国,主要是德国 MEER、 PAHNKE、SPS、辛北尔康普公司生产的,代表着国际最高水平和锻造液压机组的发展方向。 其主机的结构形式为双柱下拉式(中、小型)和双柱上推式(大、中型),其驱动系统为油 泵直接传动,传动介质为液压油,在液压控制方式上有阀控和泵控两种控制方式。阀控方式 中,油泵为定量泵,采用开关阀控制系统流量和压力,可靠性好,成本低,但系统调整难度 大,元件参数变化对系统稳定性影响较大,参数调整取决于调试维护人员的现场经验,虽响 应快,但易于引起液压冲击和振动,快锻次数的提高受到结构性局限,德国 MEER 公司和

136


SPS 公司的产品代表着阀控方式锻造液压机的最高水平。泵控方式中,采用变量泵调节系统 流量和压力,可逼近光滑正弦曲线,使系统运行十分平稳,快锻次数大幅度提高,且系统布 置结构简单、紧凑,但系统泵、阀元件十分昂贵,对油液清洁度要求高,使用条件苛刻。泵 控方式锻造液压机以德国 PAHNKE 公司的产品为代表,国内现引进的锻造液压机中,主要 以阀控方式为主,国内最初开发的锻造液压机就是立足于阀控系统。 我国从 1965 开始了锻造液压机的研制工作。从应用的实际要求出发,对锻造液压机的 运行机理、主机结构、基础元器件等方面进行基础应用性研究,制作了 100T、200T 试验样 机取得了一些实验室研究项目的进展和阶段性成果。到 1975 年,国内部分科研院所与企业 合作制造出我国第一台 2000T 锻造液压机,装备于四川长城钢厂,但由于对锻造液压机运行 机理的研究水平在技术上还未成熟,且受当时基础元器件的局限,该设备未能解决液压冲击 造成的振动和噪音,无法正常应用于生产,未能取得成功,在之后相当一段时间内处于停滞 状态,严重制约了锻造液压机在我国的发展,并由此拉开了引进国外锻造液压机的序幕。 从 1979 年到 2000 年,随着改革开放和我国经济的快速发展,掀起了引进国外先进设备 的高潮,我国大部分锻造液压机就是在这一时期引进购置的。到 2011 年,我国大型锻造设 备的发展进入迅猛崛起、跨越发展时期,大型锻造液压机在吨位上位居先进行列,其中洛矿 的 18500 吨压机为世界最大,但是国内生产的压机总体水平还比较落后,设备能耗高、自动 化程度和机械化配套水平低。 在此期间,我国部分重机企业一直在进行锻造液压机的研制,到 2000 年之前均未能取 得成功。如兰石重工为更新原 5T 蒸汽锤,于 1982 提出了设备更新改造计划,用 800T 锻造 液压机取代 5T 蒸汽锤,立足于国内市场进行调研和可行性分析研究,并被列为“六五”期 间机械部重大科技攻关项目。经过近五年的研制,于 1987 年在兰石投入试生产,该机组主 机采用了下拉式结构形式,但由于受当时技术、制造、配套等各方面条件的约束,故障停机 率较高,不能满足正常的生产使用要求。 在这种情况下,我国兰石重工、沈阳重型、天津天段等重型企业根据国内的实际情况, 立足于自己的力量,联合院校进行开发,在总结前期研究成果的基础上,对国外引进的锻造 液压机的基础元件、运行机理、电控系统等方面进行了充分调研,并经过多次研究与改进, 终于生产出能够正常使用的 800T 压机产品,并由此初步掌握了锻造液压机的关键技术,培 养了一批有设计、使用和维护人员组成的技术队伍,为锻造液压机的产品开发奠定了基础。 自 2003 年以来,锻造液压机的技术日趋成熟,国内已经能够生产 4500T 以下锻造液压 机,使我国锻造液压机的研制工作又上了一个新的台阶。主机结构形式分为整体铸造机架及 预紧力焊接机架,主缸密封技术也达到了国外同类产品技术水平。液压系统由大通径精密插 装阀及快速滑阀组成,结合电气控制系统,实现了对系统流量、压力的电控调节,综合了传 统阀控、泵控方式的优势,而又避免了其原有的缺陷,达到了比较理想的控制效果。控制系 统在硬件配置和软件功能上均达到了国外产品水平,采用工业计算机及可编程分级控制,更 有利于扩充功能,进一步发展了先进控制技术在锻造领域的应用。 3 现代锻造压机的新特点 我国的节能减排工作任重而道远,特别是为实现“低碳经济”和绿色环保的发展要求, 进一步提高企业的竞争力,必须要更加重视锻造数字技术的应用,提高自由锻造液压机的性 能和档次,降低生产能耗。安锻公司多年来一直致力于锻造液压机的开发与研究,开发出简 单可靠、现代化的数控锻造液压机,该设备具有全面周到的运行监测系统、故障诊断系统、 137


压力行程检测系统等;具有自动化程度高、锻造频次高、噪音低、锻造精度高的优点。通过 计算机控制可实现主机和操作机联动,并具有完善的针对不同材料的锻造参数专用数据库, 可实现无人化远程控制程序自动锻造。 数控锻造液压机的性能特点: (1) 简单智能化的 PLC 操作控制系统,数字控制精度高。 设备采用 TFT 真彩显示触摸屏人机界面和磁致传感器测量系统,采用 OMRON 高性能 的 CPU 及 DeviceNet 多供应商现场网络数据处理系统,能提供丰富多彩的“可使用功能”, 方便输入、修改数据和联动,指令应答时间达到 0.04μs ,行程、位置数字控制精度高。可 对锻造尺寸随时设定和修正,对设备实现了智能数字化、简单化控制,锻造频次达到 60 次 /min,锻造精度达到±1mm。 操作控制系统以控制台内的 PLC 为控制核心,通过专用电缆按照下图 1(系统结构控制 框图)的顺序把各个框图内的从站连接在一起,形成一个 DeviceNet 多厂商网络,可自由控 制油泵,电磁阀等终端(64 个节点内)。可按预先设定好的行程自动锻打工件,提高工作 效率和锻件精度。 (2) 采用液电最佳组合的快速卸荷技术,实现 PLC 控制的多点、多级液压系统快速平稳 卸荷,减少了液压冲击造成的震动、噪音及机器故障。 通过电子、液压相结合的方式在液压机系统的不同部位设置多个多级卸荷装置,能够在 极短的时间内将系统内存储的高压能量全部释放,而不发生大的液压冲击和噪声。快速卸荷 系统主要由主缸和副缸一级卸荷阀、主管道一级卸荷阀、主缸和副缸二三级卸荷阀组成,液 压系统上安装有压力传感器,PLC 通过采集压力传感器输出信号,经过运算比较依次控制各 个液压阀卸荷时间。并且所有一级、二级卸荷阀均采用带有调节杆的插装阀,通过调节该调 节杆可实现对卸荷效果的辅助调节。 该装置使机器提高了锻造频次和锻造能力,大大减少了锻造液压机在工作过程中的液压 冲击、震动和噪音,避免了由于震动而引起的泄漏、管道断裂、焊缝开裂等故障,减少了机 器故障率。提高了机器的安全性和生产效率,使机器的总体性能达到了很大提高,实现运行 平稳的快速锻造。 (3) 采用创新了液压机快速回升弹簧技术,减短了回升时间,提高锻造频次。 该回升装置主要利用高压系统中液体压力能的存储与释放,使活动横梁快速回程。主要 由插装阀、溢流阀、蓄能器组成液压弹簧,压力传感器传递信号使补液回路适时补充压力, 使该液压弹簧始终保持一定的刚度。当压机的活动横梁快速下行进行锻造时,把回升缸内的 油压入蓄能器内,存储回升压力能。能够在任何锻造压力和回程高度的情况下,液压系统在 卸荷的同时活动横梁就随动回程,实现快速回升,减少了液压阀切换的响应时间和主泵供油 回程的时间,实现稳定的快速回程,提高锻造频次,实现快速锻造。而且运行平稳,机身振 动小,满足了快速锻造要求。 (4) 具有气动控制的快捷换模功能,缩短辅助工作时间,提高了锻造效率。 该装置由两个气缸驱动,四个插销插入定位圆销内,很方便的把上砧固定在上垫板上。 当需拆卸上砧时气缸活塞伸出,拔出插销拿下圆销,就可把上砧拆卸下来。反之,上砧就固 定上垫板上。该装置主要包括垫板、上砧块、气缸、插销、定位圆销等,耐磨气缸套镶嵌在 垫板内,密封采用耐高温的金属涨圈密封,的这种设计结构简单实用,维修方便,具有耐磨 损、耐高温、密封性好的优点。

138


该装置能够方便快捷的自动换模,可进行热承载模更换等特殊作业,满足大型设备快速 换砧的需求,缩短辅助工作时间,提高了锻造效率。 (5) 安全高效的零距离、零压力快速补排液功能,具有缸内建压快、防油液外泄的优点。 油缸顶设置开放式大容积补液箱和大流量的自吸式补液阀,具有补液充分和回油迅速的 优点。同时由于充液阀内置,防止了高压油泄漏外流而造成的危险。 主机结构一般采用三梁四柱上推式结构形式,主要零部件三梁四柱及缸体在设计上采用 有限元分析计算、Solidworks 三维模拟实体分析等多种方式计算保证其设计强度和刚度,在 工艺上通过完善的工艺措施和质量保证体系保证其制造质量。主柱塞与活动横梁的连接采用 球头浮动连接,在出现偏载时,使主柱塞始终保持与主缸同心和铅垂度,有效解决偏载的危 害;主柱塞设计成空心结构,使液压压力面最大限度的接近活动横梁,减少了由于偏载产生 弯矩对主柱塞和缸体的损害;加长活动横梁的导向长度,增大其抗弯矩能力,提高了整机的 抗偏载能力及导向精度。 4.结束语: 我国近年来自由锻造液压机达到快速发展,我国万吨级以上的自由锻造液压机已有近十 台,大型锻造液压机在位居世界前茅,标志着我国已经进入世界锻件制造的先进行列,但是 设备总体水平还比较落后,自动化程度和机械化配套水平低。特别是近年来新投资的中小型 锻造液压机,大部分档次太低,效率低,能耗严重。因此,为适应国内外市场经济的发展, 需要大力发展高性能的锻造液压机,重视锻造数字技术的应用。安阳锻压机械工业有限公司 多年来一直致力于向用户提供成套的锻压设备,在锻造设备领域为我国锻造技术的进步不断 探索,希望和致力于锻造技术进步的有识之士合作,以高、精、尖作为技术的发展方向,为 我国锻造工业的发展和技术进步贡献自己的力量。 参考文献 1 帅长红.液压机设计、制造新工艺新技术及质量检验标准规范实务全书[M].北方工业 出版社,2006:687 2 蔡墉.我国自由锻液压机和大型锻件生产的发展历程. 2007,No.3 3 俞新陆.液压机的结构与控制. 北京:机械工业出版社,1989. 4.新编锻压精密技术实用手册 5.江木正夫,箫欣志.日本液压技术动向[J].液压气动与密封,2004(1):12-14

139


Discussion on the Development of Hydraulic Forging Press (Chinese & English version, Paper) Liu Fuhai (Anyang Forging Press Machinery Industry Co., LTD, China) Abstract:This article mainly introduces the development process and the presentsituation for hydraulic forging press,elaborated structure and characteristic for numerical control hydraulic forging press, indicating hydraulic forging press with energy conservation, environmental protection and higher degree automation is the natural trend for Chinese forging equipment. Key word: hydraulic forging press, development Preface Hydraulic forging press is a kind of forging equipment,which is developed from 1956 year and widely used in machinery,steel, nonferrous metallurgy,railway,shipment, wind power and nuclear power,aviation etc fields, apply to open die forging and forming die forging for nonferrous metal and ferrous metal, also apply to high alloy material forging with narrow range forging temperature and Ti alloy material forging. In the open die forging equipment, hydraulic forging press is one of main development direction, the industry developed countries are developing energetically, specially with the development of hydraulic technology and microelectronics technology, which hasten development process for hydraulic forging press. Hydraulic forging press has high production, energy conservation, strong forging ability and good quality forgings advantage, also has small vibration, low noise and high degree automation advantage, which reduce operating person and improve working environment and working intensity, so hydraulic forging press is ideal open die forging equipment and updating forging equipment. 1. Brief introduction for hydraulic forging press The constructions for hydraulic forging press are as following, main include following parts: (1) Body part is main operating mechanism to press forgings, which include three beams, four columns, master vice cylinder, moving worktable etc. (2) Hydraulic system is power part and heart part, which include oil pump-motor group, integrated control valve, pipeline, oil tank and control attachment. (3) Electrical system include motor start cabinet, PLC integrated control cabinet, operating control table and inspect transmission control station etc. Modern hydraulic forging press integrated apply machinery hydraulic technology, microelectronics technology, electrical control technology, network communication technology, sensor test technology, information handling and software programming technology, involving machinery, hydraulic, electrical, civil engineering, ventilating, drainage etc major fields, so it's large scale system engineering. 2. Development status of hydraulic forging press Forging hydraulic press is developed on the basis of water forging press in recent years, with low energy consumption, no vibration, high productivity, high precision forgings, good working environment etc advantages. In foreign countries, it is studied widely in 1950, and is applied to practical industry in 1960. The development of forging hydraulic press in foreign countries, Germany technology is the most advanced, the main manufacturer included MEER, PAHNKE, SPS, SIEMPELKAMP Company, represents the international highest level and development direction of forging hydraulic forging press. The structure form of main frame is double column pull-down type (middle and small type) and double pull-up type(large and middle type), its driving system is pump drive, driving medium is hydraulic oil, and there are two hydraulic control modes: valve control and pump control. On valve control mode, oil pump is measuring pump, adopts switch-valve controls system flow and pressure, good reliability and low cost, but the system adjustment is difficult, the change of element parameters has a great influence on system stability, parameter adjustment is depending on the maintainer's experience on site, the feedback is fast, but it is easy to bring hydraulic shock and vibration, fast forging number increase is limited by structure, Germany MEER and SPS company represent the highest level of valve control fast forging hydraulic press. On pump control mode, adopts variable pump adjusts system flow and pressure, approximating smooth sine curve, system running is very smoothly, fast forging number is

140


increased greatly, and system layout structure is simple and compact, but the price of system pump and valve elements is very high, the requirements for oil cleanness is higher, use condition is harsh. Pump control forging hydraulic press is the product of Germany PAHNKE Company as representatives, the introduction of forging hydraulic press in China mainly is valve control type. The original development of hydraulic forging press in China is based on valve control system. We began to study forging hydraulic press from 1965 in China. According to the practical application requirements, do the basic application research on operating mechanism, frame structure and basic elements etc aspects of hydraulic press, produced 100T, 200T experimental prototype and made some laboratory research project progress and periodical achievement. Some research institutes together with enterprises to produce China's first 2000T forging hydraulic press in 1975, this hydraulic press is installed in Sichuan Great Wall Steel Company, but due to the research level for operating mechanism of forging hydraulic press is not mature on technology, and is limited by basic elements, this hydraulic failed to solve the vibration and noise caused by hydraulic shock, can't be applied in production, failed to achieve success. After a considerable period of time at a standstill, seriously restricted the development of forging hydraulic press in China, and thus opened the prelude to the introduction of foreign forging hydraulic press. From year 1970 to 2000, along with the open policy and fast development of Chinese economy, start the page of importing foreign advanced equipments, most of Chinese hydraulic forging presses are imported at this period. Till 2011, the large forging equipments enter into fast grow up, span developing period, and large forging equipments rank to world first class, therein the 18500ton hydraulic press in LUOYANG Mine Company is the biggest press in the world, but the general level of domestic production of hydraulic press is still get behind in the world, the equipments with high energy consumption, with low automatic and mechanism level. In this time, some of heavy machinery building company are straight on the research and study of hydraulic forging press, and didn't procure success till year 2000. for example, Lanzhou heavy machinery company bring forward to modernize the 5Ton steam forging hammer, and planed to use 800ton hydraulic forging press to replace old 5Ton steam forging hammer in 1982, and made investigation and feasibility report base on domestic market, which is listed into most important science and technology item during Chinese No.6 five year plan. After 5 years research and manufacturer, the 800Ton hydraulic press was dive into trail production, the machine designed as pull down structure, but because of restricted by technology, manufacturing capability, and accessary equipments at that time, and also the high change malfunction, the hydraulic press can not satisfied the normal production At this condition, the Lanzhou heavy machinery company, Shenyang heavy machinery, and Tianjian Tianduan etc combined together, as per the actually situation of china and their strength, made summarization of previously results, and also made investigation of foreign hydraulic forging press basic elements, working principle, and electro-control system, after many times research and modernize, finally produced 800Ton hydraulic forging press which can satisfy normally production, and command the key manufacturing technology, cultured some a group technique which able to designing, operating and maintenance team, established the foundation for hydraulic forging press’s development. Since 2003, the technology of hydraulic forging press is gradually mature, domestic company able to produce hydraulic forging presses below 4500Ton, and made a new step on Chinese hydraulic forging press. The structure of hydraulic forging press include whole piece casting structure and welding structure, and main cylinder sealing technology also reach world level of similar hydraulic forging press. The hydraulic system composed by big diameter precision insert valve and fast slide valve, combined with electrical control system, realized system float capacity and pressure electrical control adjustment, integrated with the traditional advantages of valve control and pump control, avoid it’s disadvantages, reach a ideal control purpose. The control system reached foreign products level both on hardware and software, adopted industrial computer and PLC, more better to expand its function, and developed the advanced control technology in forging industry. 3.The features of modern hydraulic forging press Chinese energy conservation is a long way to go, especially for the realization of low-carbon economy and green development. To further improve the competitiveness of enterprises, we must pay much attention to the application of digital forging technology. Forsake of improving the performance and grades of open die forging hydraulic press and to lower energy consumption. Anyang Forging Press Machinery Industry Co., Ltd has been committed to develop and research on forging hydraulic press, and we have developed the simple and reliable and modern CNC forging hydraulic press, the device

141


has a comprehensive and thoughtful running monitor system, fault diagnosis system, and the pressure stroke detection system. With the advantage of high automation,high forging frequency and low noise and high precision forging. The interaction between hydraulic forging press and hydraulic manipulator can be achieved by computer control and the dedicated database to improve the forging parameters for different materials to complete the remote control and automatic forging. The features of modern hydraulic forging pressďźš (1)Simple PLC control system and high digitalized precision. The hydraulic forging press is equipped with TFT color display touch screen, and the system of humanmachine interaction and the magnetic sensor measurement system in the usage of OMRON's highperformance CPU and DeviceNet multi-vendor live network data processing system can be provided a variety of "function" to facilitate the operation. It is convenient to modify data and linkage and the command response time of 0.04Îźs, so the stroke and position is highly precision controlled. Forging size can be set or modified at any time, and the simplified and digitalized control can be achieved in the forging frequency up to 60 times / min and forging accuracy of Âą 1mm.The PLC of operating control system in accordance with Figure 1 (structural control block diagram) via a dedicated cable from the station within each block diagram are connected together to form a DeviceNet multi-vendor network, and to control pump , solenoid valve terminal (node 64) freely. According to a predetermined stroke to forge work piece automatically, so the work efficiency and forgings accuracy can be improved accordingly. (2) The hydraulic forging press is adopted the rapid unloading technology of the best combination of fluid power, so the multi-point, multi-stage hydraulic system is controlled by PLC to achieve rapid unloading and the hydraulic shock vibration, noise and machinery failure is reduced. Multiple multi-level unloading device is set up in different parts of the hydraulic press system through a combination of electronic and hydraulic, so high pressure energy reserves system can be released in a very short time without a major hydraulic impact and noise. The rapid unloading system composes of an unloading valve fitted in the main cylinder and vice-cylinder and an unloading valve fitted in the main channel and the second-third unloading valves fitted in the main cylinder and vice-cylinder. The pressure sensor is installed on the hydraulic system, so the pressure sensors are sent signal through the PLC in order to control the various hydraulic valve unloading time. And all unloading valves, second unloading valves are used with the adjustment lever cartridge valve, so it can be achieved by adjusting the adjustment lever on the effect of unloading function. The device makes the machine improve the forging frequency and forging capacity, Greatly reduce hydraulic shock, vibration and noiseduring thehydraulic forging press operation, and avoid the leakage, pipeline rupture and weld failure due to vibration to reduce the machine failure rate, improve the safety and productivity of the machine, improve greatly the overall performance of the machine to achieve the smoothfast-forging. (3) Adopt the innovative hydraulic forging press quickly upturn spring technology to shorten the upturn time and improve the forging of frequency. The upturn device mainly take advantage of the store and release of the fluid pressure energy in the high-pressure system to make the moving beam fast return. The cartridge valves, overflow valve and accumulator mainly compose the hydraulic spring. Pressure sensors send signals to make the fluid circuit timely supplement pressure to make the hydraulic spring always maintain some rigidity. When the moving beam of the forging press fast downwards forge, press the oil in the hydraulic upturn cylinder into the accumulator, in order to storage upturn pressure energy.In any case of forging pressure and return height, the hydraulic system uploads while moving beam servo return to achieve rapid upturn, reduce the hydraulic valve switchingresponse time and the return time of the main pump supply the oil. To achieve the stable rapid return, improve forging frequency for fast forging. And operate smoothly, the machine body vibration is small, to meet the need of rapid forging. (4) have the function of quickly changing die with pneumatic control to shorten the time of auxiliary work, and raise forging efficiency. The device is driven by two air cylinders, four bolt are inserted the positioned round pin. It is convenient to fix the upper anvil on the upper shim plate. When it needs to disassembly the upper anvil, the piston of air cylinder will be out. Then pull out the bolt and take off the round pin, the upper anvil will be able to be removed. Conversely, the upper anvil will be fixed.

142


The device mainly includeslim plate, upper anvil block, air cylinder, bolt, positioned round bin and so on. The wear-resistant air cylinder set is inserted in the slim plate, and for sealing, heat-resisted metal expander ring will be used to seal. This design is easy, practical and easy to maintenance and have the advantages of resistant to wear, heat-resistant, good sealing. The device can be easy to change the die and can meet the need of heat carrying mold replacement special operations, meet the need of large equipment changing the anvil fast, and shorten the time of auxiliary work, raise the forging efficiency. (5) have the function of safe and efficient zero distance, zero pressure to quickly fill and discharge the liquid and have the advantage ofquick build the pressure in the cylinder and oil leakage prevention. At the top of oil tank, an openand largevolume hydraulic replacementtank and a high-flowselfpriminghydraulic replacementvalve will be set to replace the oil fully and oil back soon. Besides, because the prefil valve set inside, the danger of the high pressure oil leakage will be prevent. The main unit structure use the model of up push three beams and four columns body structure; the major parts like three beams and four columns, cylinder body are analysis and calculated by finite element and Solid Works three-dimension modeling method, ensuring the strength and stiffness of the design. The connection of main valve plunger employs the technique of floating ball head connection to avoid the non-uniformly distributed load by keeping main valve plunger homocentric with the master cylinder and verticality. The main valve plunger is designed as hollow-core construction to make the hydraulic pressure surface best approach the activity crossbeam prevent from the damage to the main valve plunger and cylinder body due to the non-uniformly distributed load. The extended activity crossbeam increased its resistance to bending moment ability, improved the overall anti-partial loading capacity and guiding accuracy. 4. Conclusion With the highly development of Open Die Forging Hydraulic Machine, our country has manufactured dozens of Open Die Forging Hydraulic Machine in the level of ten-thousand tons above, leading status in this field. However, the overall level is more backward and the degree of automation, Mechanization degree of form a complete set is still in low level. Particularly, the most of the recently invested small and medium size Forging Hydraulic Machine are in the poor level, among which the machine is inefficiency and high energy consumption. Hence, we need to research in the high performance Forging Hydraulic Machine and pay particular attention to the application of forging digital technology in order to adapt to the economic development of domestic and foreign markets. Anyang Forging Machinery Industry Co., Ltd. has been committed to provide users with a complete set of forging equipment, continue to explore the progress of China's forging technology in the field of forging equipment, looking forward to cooperate with the people with vision, developing the high-tech to contribute to the development and technological progress of China's forging industry. Reference 1. Hydraulic Design and Manufacture New Technology and Quality Inspection Standard Practice Encyclopedia by Shuai Changhong, The Northern Industrial Press, 2006, page 687 2. The Development of Open Die Hydraulic Forging Press and the Production of Large Forgings in Our Country, 2007, No.3 3. The Structure and Control of Hydraulic Machine, China Machine Press, Beijing, 1989 4. New Edition Practical Guidebook of Microtechnic 5. Trend of Japan’s Hydraulic Technology by 江木正夫 and Xiao Xinzhi Hydraulics Pneumatics and Seals, 2004(1): 12-14

143


径向锻造—成功的锻造工艺 (中英文版,论文) Ing. Rupert Wieser, DI Robert Koppensteiner (GFM GmbH,奥地利) 摘要: 利用径向锻造系统将钢锭转换成棒材以及生产阶梯轮轴和空心轴是一个重要而又成功的锻造方法。 数十年来适用于各类钢种、合金、钛、耐火材料。这种金属热加工工艺一直被用来确保各类产品的强度、 韧性、可靠性和高品质。如今,这些特性在操作温度、载荷、应力增加方面显得更为重要,在可靠性和韧性 方面也变得更为关键。 大型锻造设备的发展对于制造商和用户一直是一个挑战。径向锻造设备数十年的研究经验,使得新 的RF设备得以实现。锻造工艺的知识,机械、电气、液压元件的组合是成功开发径向锻造设备的基础。 环境和经济情况也影响锻造工厂的利润。 由于各类机械传动系统的技术差异和不同的应用领域,我们会介绍它们的工作原理。 1、锻造设备的背景和发展 几千年来对钢铁的开发和使用便是锻造工艺的历史。在古代锻造是金属塑性变形中最重要的技术。 在埃及、伊朗、美索不达米亚、印度、中国和欧洲不同地方的考古发现,证据表明这种技术甚至出现在 5000 年前。金属加工是制造金属产品三大主要技术中的一种,另外两种是铸造和粉末冶金。金属加工或许 是这三种技术中最古老、最成熟的。金属加工是金属坯料借助工模具而变形的工艺。这种工艺的设计和 控制取决于对于工件材料特性的了解,工具/工件的表面情况,塑性成形的性能(金属流动),设备的使 用以及成品件的要求。 18 世纪末工业革命时期,诞生了这种工艺,由于钢铁的大批量生产,满足对于金属制品的需求。这便需 要大容量的锻造设备。这种需求来自高速蒸汽锤的发明,其锤头动力通过蒸汽实现,而液压机的动力源于 液压。

水驱动锤 蒸汽锤 径向锻造机 在过去的 100 年间,新型的金属加工设备以及具有特殊性能及应用范围的新型材料得以发展。在过去 的几十年,成形工艺复杂的数学公式分析使得金属加工行业生产高质量的产品,效率也得到提高。 现今的期望和要求是质量、连续性、效率、低劳动成本和环境因素。锻造工人通常都会经历热、噪 音、灰尘和威胁生命的情况。所有这些因素,必然推动自动化锻造生产线的发展。径向锻造概念最初是 由 GFM 公司提出的,大约有六十年了。快速发展的这种成形技术存在众多优点。几乎无切削的棒材和管 件在尺寸公差及材料利用率方面具有超高的精度,这便是径向锻造应用于生产关键工程零件的最重要的 优势。特别在锻造那些只有及其有锻造可行性的材料,高合金和超级合金。 径向锻造通常用于精密成形圆形或者管状工件,减少钢锭或棒料的直径,内部或者外部有形状要求。 径向锻造在汽车行业传动系统中扮演着重要的角色,以及在许多其它市场范围,材料的节省和力学性能的 改进是至关重要的。 奥地利 GFM GmbH 是一家现代化的、可靠的机械制造公司,位于奥地利斯太尔,四十年前开发了数 控锻造设备。整合该设备成为一个自动化工艺,是一个成功的工艺。

144


1.1.

2锤头对比4锤头

2 锤头系统 在自由锻造工艺中存在很多问题。下面的图表中显示了,相同平面内 2 个锤头出现的一个非常严重 的缺点,那就是出现了自由延展。在这些区域,材料发生延展,出现拉应力。

这些拉应力限制了锻造工件的可使用性。这对于普通钢种没有太高要求,但对于高合金钢、工具钢、 高速钢,主要对于高温合金来说有所限制。另外延展出去的材料需要锻回来。因此,延展也限制了技术的 选择和降低成形工艺的效率。两锤头设备,用圆形或 v 形锤头尽可能减少影响。使用圆形或 v 型锤头受 到局限,因此取决于锻工的技能去找到最佳工艺条件。 四锤头系统

四锤头锻造机技术在以下几方面不同。在径向锻造机上,然而,一个工件通过同一平面的四个锤头而成 形。由于锤头的反向运动,力不会传送到机器以外。因此,机器底座几乎不存在冲击载荷和振动。我们必须 确定与之相关的有意义的参数,以此来描述设备和锤头箱的几何限制。这一点很明显,四锤头机器锤头之 间受到干扰。锤头顶端和底端宽度不再相同,顶端宽度明显缩短。就这一点,我们假设锻工对于他能够 组装一个锤头的范围感兴趣。他所感兴趣的是,在一火内什么时候多久需要停产来更换锤头。这一点很 关键,因为更换锤头不仅会导致停工而且意味着工件需要回炉。由于技术原因工件有时也需要回炉, 因锤头 范围的限制应避免回炉。因此, 在这方面对于机器的使用者来说最重要的一点是决定,使用什么样的锤头箱, 什么时候更换它们。上图显示,过度的增加调整范围没什么用,此种情况调节范围不再受到限制,因为锤 头顶端宽度限制了某些初始横截面。受到几何 形状的干扰,多数情况下无法使用大的调节幅 度。 2.0 设备的驱动概念 一般有三种机器驱动,四锤头同步运动。 2.1.机 械 驱 动 GFM SX系列采用了这种驱动设计,每个锤 头的锻造力从20吨到3000吨做了上百次实验。 GFM SX系列是最有名的。大约有500台 SX径向锻造机销往全世界,这便证明这个系列的 设备是机械径向锻造机最具有代表性的。 四锤头径向锻造机主要是短行程机械压力

145


机。需要注意的是实际上模具按压工件,具有很高的锻造频次,模具实际上也就相当于锤头。径向锻造 过程的变形率在压机操作过程中很典型。径向锻造工艺锻造频次高,由于锤头非常接近工件,完成下一行 程只需要很短时间。 锻造锤杆的行程始于偏心轴。偏心轴安装在箱体中,对四个锻造锤杆的行程位置进行调整。一个或两 个电机通过驱动齿轮来驱动偏心轴,同时控制四个偏心轴的同步运动。行程位置中改变锻造锤头,可以四 锤头同步或者两个锤头同步,因此可以锻造圆的、方的或矩形截面。 继 SX 系列之后,1995 年设计出一种新型的中低 型号的 SKK 模型。 一个齿轮使四个偏心轴同步。这些偏心轴引起锤 头的运动行程为正弦函数。更高的锻造频次(大于300 /分钟),这是避免可压缩流体唯一合理的设计理念。采 用变频驱动,锻造频次发生变化。 SKK 系列可以锻造直径 10 ~ 250 毫米,锻造力 达到 600 吨。在锻造操作中精度、灵活性和硬度很重 要。由于空隙较小,锻造力传输保证了精度。对螺杆 轴锤头调节,保证灵活性而且锻造模具在较大范围内 精确定位。关闭的密封锻造箱集中润滑,运动的工件配 备滑动板和衬套, 即便锻造力很大能延长使用寿命。 SKK 系列适用于高合金和耐热材料的锻造,高成 形温度、材料的韧性和技术相结合生产出高性能的产品。 GFM SKK 型号 型号

SKK 06

SKK 10

SKK 14

SKK 17

SKK19

SKK 21

最大初始尺寸(mm)

60

100

140

170

190

210

公称锻造力(kN)

800

1250

2000

2800

4000

6000

最大锻造频次(min-1) (根据应用领域)

1600

1200

800

500

500

600

直径调节范围(毫米)

60

60

100

130

70

90

最大驱动功率(KW)

75

132

200

315

315

500

2.2.液 压 驱 动 GFM在二十世纪七十年代对四锤头径向锻造系统申请了专 利,由于大量的风险,高压同步的应用等其它原因而没有制造。 但液压缸系统原理从那时起一直没有改变。主要在电子和伺服 阀技术上得到更大的发展。各种自由锻压力机制造商已经开发 出径向锻造压机,一些制造商同时也推出市场。 起初,液压机械很具吸引力而且是最合理方法,通常用液 压机进行开坯。不过这会存在严重的缺点,需要详细解释。主 要缺点是庞大的液压系统。导致接触时间长和功率消耗高。造 成能量损失,因为产生了热量以及冷却费用。由于强有力的相 互依存的锻造频次和负荷,可以阻止有益的平均高度减少(大 于120 /分钟)和更高的锻造频次。 液压驱动系统锻造频次取决于以下几个方面: 液压缸的尺寸(D)-由最大锻造力(F)和压力(p)决定 活塞的运动高度(h) 锤头速度降低v (由泵打出的油量决定(Q) ) 锤头速度恢复 阀门作用力 压力作用下的封闭油量(V) 油的压缩系数(%/100 bar) 空转锻造频次和油量计算(无锻造力)

146

四锤头液压直驱系统


t 周期时间 = t 锤头下降时间 + t 阀动时间 + t 锤头回程 时间 + t 阀动时间 t 下降 = h/ v 下降 t 回程 = h/v 回程 锤头速度可以通过液压泵系统 的液压油流量得到 v 下降 = Q/D²π/4 此外,达到一定油量所需要的功率,对于安 装电源是一个更重要的计算值。 液压直驱四锤头系统,通过下面的例子来进行计算: 举例,公称锻造压力2000吨,空转 缸体直径870mm 锤头行程 h= 40 mm 锤头下降速度145 mm/s t 周期时间: t 下降 =40/145= 0,27 s 锤头回程速度200 mm/s t 回程 =40/200= 0,2 s t 周期时间 (忽略阀门时间): 0,27 s + 0,2 s = 0,47 s 计算得到 128 strokes/min 油流量计算: 单锤头Q=5945 dm²*1,45 dm/s *60 =5170 dm³/min = 20680 l/min 4锤头 额定负荷下锻造频次和功率的计算 空转状态下,作用于锤头轨迹反方向的锻造力,将会很大程度上影响周期时间和锻造频次。在锻造 行程中上升锻造力增加,导致气缸中的油压增加。为了得到合理的锤头速度,尤其是在接近阶段,没有 产生锻造力或者产生更低的锻造力,液压泵系统通常设计能够得到两种压力等级。封闭油的体积由压力 状态下的气缸、管路、液压阀组和泵系统的体积组成,将经历一个轻微的体积变化,这被称为压缩系数。 文献中压缩系数计算为每 100 bar 是 0,7-0,85 % 通常液压机械所有的泵是恒定的,每转具有固定传送量并设计成两个压力等级。任意一个压力等级只 有一定数量的泵运行并不增加总的装机功率达到不合理的值。低于压力等级所有的泵都在运行,高于这 个等级,通常情况50%的额定载荷,只有一半的泵运行,而且不向设备供油。以上是无负荷情况下的计 算,下面的数据是在额定负荷情况下计算方式。 公称锻造压力 2000 t 一级:到 160 bar 二级:到 320 bar 预计封闭油体积:单缸 178升+管路等 157 升 = 335升. 油压缩系数为0,75%时,油体积335 公升经历体积变化变成负8,6 公升,导致行程高度同空转运行相 比减少14,4毫米(请看图中虚线部分)。 在现实锻造生产中,单个锤头高度为 40毫米的运动分成几个阶段: 接近阶段,锤头没有接触工件 锻透性的第一阶段达到压力等级一 (最大锻造力小于<50%) 锻透性的第二阶段达到压力等级二 (最大锻造力) 油降压,阀门反应周期 设想空转情况在额定负荷下行程从 128降到76可以看到。可以肯定的是锻造 频次取决于实际的负荷和行程。 如果负荷和行程小,那么锻造频次很 147


可能更高。当行程变小,负荷最大是50%的实际锻造力,锻造频次高达每分钟200。 接触时间大约为一个周期的 70%,也是主要导致锤头热平衡以及工件和旋转增量的有效时间。 功率损耗。 油量的压力减小是最直接的功率损耗。在 行程的最终阶段,压力状态下的油需要快速解 压。中小量降低,液压径向锻造机通过对油解 压加热带来的功率比工件变形产生的功率更大。 需要大型冷却设备和地下通风设备。 锻造频次依赖行程,液压系统载荷为2000 t 例如:锤头运动(仅有油流动)需要功率, 锻造力为 2000 吨。 泵系统功率需求(P) 压力一级,油的流量 为 20680 升/分钟,压力二级油流量降低到 50%。 P= Q*p/600/η (kW) η: 假设水力效率因子约为0.85-0.9 (包括压强 损失) 功率计算: P=20680*160/600/0,9 =6127 kW增压器和过滤系统需要额外的功率 影响 巨大的整体液压系统和高功率消耗 接触时间长

由于油解压升温功率消耗

锻造频次减少和负荷的依赖关系

产生原因 四锤头及合理的锻造频次需要油的高速流量 压缩和解压时间长导致接触时间长。高流速和 接触时间不一致。如果锻造频次提高,油的流 速和封闭油的体积变大,导致压缩和解压得时 间增长。 液压油升温,需要通过换热器以及地下室通风 设备冷却。中型减少适用于高速钢或者高温合 金,液压径向锻造机通过对油解压升温带来的 功率比工件变形产生的功率更大。 锻工不能自由选择锻造频次。受到油流量、行 程长度和压缩油的影响。

2. 3.液压机械结合驱动(GFM系统) 在先前的 SX 锻造机的经验和研究基础上,GFM 公司在二十世纪九十年代末期开发了液压机械锻造 机,RF 系列。RF 就是径向锻造。目的在于结合机械和液压设备设计的优点。 通过偏心轴的机械同步产生行程,通过设备偏心轴和锤头之间的集成液压缸进行锤头调节。使用装 有四偏心轴箱的简单锻造箱,随即被认为是这 款模型的独到之处。 通过简单的同步齿轮,这款设备的动力学 显著提升。相比早期 SX 系列设备,驱动力增 强产量大幅上升。新概念设备的核心元素是锤 头调节系统。而 SX 系列设备锤头的轴线使用 调节箱进行定位。采用的方法如下: 锤头低端通过液压垫和锻造模具相连接, 而不是机械连接偏心轴。液压垫起到很多重要 作用:锻造尺寸可通过液压垫的高度来进行调 节, (比以前范围更大),同样作为一个保护系统。 抵挡冲击负荷,锻造力测量更为精确。提供了 更可靠的过载保护。较之先前的SX系列设备进 一步提高尺寸精度,通过使用独立式编码器精 确测量锤头的定位。另外RF系列具有更大的优 点在于它的小巧,紧凑设计。这种设备使用的 部件是先前设备的一半。从设备的经济效应来

148


说,降低了投资成本,减少维护费用,提高了锻造厂的实用性。 偏心轴系统(滑阀总成原理)使用飞轮组合- GFM设计 它的优点结合机械和液压系统。同时还保留了锤头精确的正弦同步运动的优势,允许存在变量锻造 频次。油压减少保证接触时间短。最先进的锻造机推荐锻造力大于五百吨。 这款设备根据滑阀总成原理来工作。 特点是系统由一个偏心轴移动滑块在一个 圆半径e的范围内运动。这半径e是轴的离 心率。滑块的一个板是固定的,锤头只在 垂直方向运动。 当偏心轴运行在一个接近恒定的速度, 锤头的运动是正弦曲线。一开始模具和工 件接触,取决于每个压力周期的高度降低。 这个高度降低取决于模具的几何形状、操 作机的推进速度和旋转增量。 在锻造行程中变形速度不断降低直到 在下止点时趋于零。受压区域或者接触区 域开始于模具接触工件,然后不断增加直 到行程结束。主要由于锻造力的反应,取 决于材料的流动应力。RF 系统提供了主要 成形参数的理想组合,如轨迹减少、应力和 张力情况、锻透力和很短的接触时间。

可变的锻造频次 为了提高核心密度和产量,需要实现可变锻造频次特性。锻造模具的锻造频次可以在较大范围内变化。 高行程数用于压平棒材,而且甚至在很高的锻造力下轨迹减小,高行程数是 GFM 设备重要的力量。低锻 造频次更适用于增加材料体积位移,每次行程可能对锻造工艺和材料性能有益。

149


当锻造材料对于温度特性非常敏感时,模具和工件的接触时间短是很好的状态。气缸调节同样需要 跳过运动行程。 跳过运动行程也就是说,虽然偏心轴产生一个行程,该行程并没有转移到工件上,但液压缸中的油打到蓄 电池中,然后再被推回到锤头准备下一运动行程。跳过行程,额外的锻造频次产生了。唯一的优点是,通过 这种模式,角度指数增加了一倍,这样机械手在行程之间有更多的时间将工件旋转一个角度。事实上, 锻工可以选择锻造频次和行程特性。 有两种选择: 改变偏心轴每分钟的r.p.m.值,或者跳过运动行程。

GFM径向锻造机通过动力学计算进行设计。根据飞轮的惯性来防止急剧下降的偏心轴转速。RF系列 设备通过行星齿轮系统或者一两个AC驱动或者4个液压马达来驱动。通过力值测量仪来保护设备,动态 测量整个偏心轴。设备可以在任何时候承受锻造力,对偏心轴定位,而且在整个偏心轴圈上。

新型的驱动系统 2005年GFM进一步改善RF锻造机的驱动概念。在RF系列的原始设计中,齿轮组通过一两个AC发动 机驱动。新概念的基本理念是:直接在偏心轴上提供动力。在最新的RF系列锻造机,液压马达直接安装在偏 心轴上提供必要的动力。这个新系统的另一个优点是,锤头之间的齿轮不再是传统的动力齿轮。除此之外,

150


矩形锻造案例,不用再两个锤头单元之间进行动力传送。因此,这些齿轮箱同步,不再需要提供完全的锻造力。 另一个优点是机架可以设计小一些,因为不再需要大型电机。 GFM RF 系列 型号

RF 30

RF 35

RF 40

RF 45

RF 60

RF 70

RF 100

300

350

400

500

650

780

1000

1

2

3,5

8

8

10

10

公称力(t)

500

750

900

1200

1350

1800

2200

最大锻造频次(min-1) 精整频次(min-1)

340 340

290 340

250 290

200 260

180 240

180 240

160 200

直径调节范围(mm)

180

250

280

300

350

400

460

最大驱动功率(KW)

600

950

1100

1700

2000

2500

2700

最大初始尺寸(mm) 工件最大重量(t)

3.

锻件

高性能灵活的现代锻造生产验证了产品的样品最高的技术要求。特殊合适的锻造设备工程,在上下游 生产,以及可靠的工艺技术确保高质量水平,不断满足锻造产品需求的增长。 坯料

用于锻造的毛坯有多种不同的形状和横截面,取决于不同的方法铸造或重熔,以及材料的成份。对 于高合金钢和高速钢,制造钢锭的铸锭方法是最常见的。8 吨重的钢水注入模具生成不同截面形状像多边 形或者方形。如果需要更重的或更大的钢锭,就需要在自由锻压机上进行开坯。对于特殊要求,像超洁 净材料钢种(高温合金、钛合金)就需要运用特殊的熔炼和重熔技术。 连续铸造(连铸坯)是最经济的材料加工方法,目前甚至应用于中型合金钢。 锻造管件需要空心工艺。可以通过不同的方式制造,像压、挤以及横轧冲孔。离心浇铸或空心重熔 (ESR)是额外的生产方法。 锻造前毛坯的表面情况很重要,因为锻件要避免缺陷,减少机械加工余量。易于产生裂纹的材料和 典型的高合金钢种,在钢锭浇铸或者重熔过程表面残留的裂纹要消除。压机预锻时由于高局部应力和拉 伸应力通常会产生裂纹。 典型的锻造产品

151


     

圆形、方形、矩形或者特殊截面棒料,一次加热截面减小率高达 15:1 通过辊轧和模锻需深加工的半成品 通过粉末冶金生产的材料 用于火车、火车、轿车、汽轮机、轮船和飞机的阶梯轴和锥形轴 抽油杆,尤其是通过冷锻或温锻生产的强力提高的无磁性的、不锈钢钻孔圈 用于皮尔格周期轧管机和管件轧机的芯棒

中空锻件

V& M

当然,这种锻造工艺不能跟制管机的高生产率相比,但它也有很多优点,市场定位在发电厂和石油勘 探领域。 管件锻造优点在于管道厚壁的范围或者高合金材料,普通的管件成形方法有它的缺点。 4.

总结

GFM 径向锻造技术具有四十多年的影响力。这种锻造系统取代了锻锤和压机。对于特殊管件的加工, GFM 径向锻造进入了一个新的市场领域。锻造设备设计方面的技术改进和更高的可靠性,使得该设备在 高合金材料和高温合金锻造工艺中一直处于领先地位。灵活性和锻造生产线的可靠性是至关重要的。 从能源效率角度来看,液压机械系统在径向锻造中将提供最好的状态,锻造力的应用范围是 5-22 MN。在低锻造力范围,精确的高锻造频次是最基本的,是机械驱动设备无法超越的。纯液压系统最好建 立在锻造行业更大的领域中,液压系统的能量密度使设备保持合理的尺寸范围。 References: [1] A Review of Radial Forging Technology including Preform Design for Process Optimization, J. P. Domblesky, R. Shivpuri, T. Altan, Contractor Report ARCCB-CR-94004, 1994

152


Radial Forging â&#x20AC;&#x201C; a successful process (Chinese & English version, Paper) Ing. Rupert Wieser, DI Robert Koppensteiner (GFM GmbH, Austria) Abstract:The use of the Radial Forging System in converting ingots to bar material as well as the production of stepped shafts and axles and hollows is an important and successful forging method. It is applied for all kind of steel grades, superalloys, titanium and refractory materials since decades. This process of hot working metals has long been used to ensure strength, toughness, reliability, and the highest quality in a wide variety of products. Today, these characteristics assume even greater importance as operating temperatures, loads, and stresses increase, and as reliability and toughness become more critical. Serious developments in large forging equipments are always a challenge for designer and user. Only due to experiences of decades in the knowledge and understanding of the radial forging machines the expectations in the new RF type can be fulfilled. The knowledge in forging technology, understanding and combination of mechanic, electric and hydraulic components is the basis of a successful development of radial forging machine. Environmental and economic conditions are playing also a major role in operating profitable forge shop. Since there are technical differences and application of various types of machine drive systems, a introduction of the working principle will be given. 1. Background and Development of Forging equipment The development in processing and utilization of iron during thousands of years is simultaneously the history of forging technology. In ancient times forging was the most important technology in plastic deformation of metals. Archeological findings at various places in Egypt, Iran, Mesopotamia, India, China and Europe show clear evidence of this technique, even 5000 years ago. Metalworking is one of three major technologies used to fabricate metal products; the others are casting and powder metallurgy. Specifically, metalworking is perhaps the oldest and most mature of the three.Metalworking consists of deformation processes in which a metal billet or blank is shaped by tools or dies. The design and control of such processes depend on an understanding of the characteristics of the workpiece material, the conditions at the tool/workpiece interface, the mechanics of plastic deformation (metal flow), the equipment used, and the finished-product requirements. During the Industrial Revolution at the end of the 18th century, processes were devised for making iron and steel in large quantities to satisfy the demand for metal products. A need arose for forging equipment with larger capacity. This need was addressed bythe invention of the high-speed steam hammer, in which the hammer is raised by steam power and the hydraulic press, in which the force issupplied by hydraulic pressure.

Water driven hammerSteam hammerRadialForgingMachine

153


The past 100 years have seen the development of new types of metalworking equipment and new materials with special properties and applications. In the last decades, the formulation of sophisticated mathematical analysis of forming processes has led to higher-quality products and increased efficiency in the metalworking industry. Todayâ&#x20AC;&#x2122;s expectations and demands are quality, continuity, efficiency, reduced labor costs and environmental aspects. Forging operators are generally exposed to heat, noise, dust and lifethreatening conditions. All these factors are the basis for the development of the automatic forging line. The concept of radial forging is about sixty years old and was initiated by GFM. The rapid progress of this forming technique is inherent in its numerous merits. Almost chipless manufacturing of bars and tubes with excellent precision on dimensional tolerance and material utilization are the majorbenefits of radial forging for its application in the forming of several critical engineering components. Specifically the high alloys and super-alloys were preferentially forged due to their limited magnitude of ductility. Radial forging is commonly used for the precision forming of round and tubular components for reducing the diameter of ingots or bars with or without the requirement for internal or external shaping in the product. Radial forging plays an important role in the automotive sector of the powertrain as well as in many other market segments where material savings and mechanical properties improvements is vital. The GFM GmbH Austria is a machine manufacturing company located in Steyr which developed forty years ago the CNC controlled forging machine. To integrate this equipment in an automatic process was a logical and successful progress. 1.1 2-Tool versus 4-Tool forging 2-Tool System However, there are a number of problems inherent in the open die process. On the figure below one of the most severe disadvantage of 2-tools in one plane are revealed, that is the free spreading of the material. In the areas, where the material spreads, tensile stresses prevail.

Thesetensile stresses limit the workability of the forged work piece. This might be uncritical for simple grades, but for high alloyed steels, tool steels, high speed steels and mainly super alloys this is a constraint. In addition the spread-out material needs to be forged back. Therefore, spreading also limits the technological options for and reduces the efficiency of the forming process. On two tools machines round or V-shaped tools are used for such cases to reduce this effect as far as possible. The use of round or V-shape tools are limited and hence it is up to the skill of the forger to find optimum conditions for his application.

154


4-Tool system

The technology of the four tool forging machine differs from that in the following aspect. In a radial forging machine, however, a work piece is formed simultaneously with four tools, arranged in one plane. Due to the opposing motion of the hammers, no forces are transmitted outside of the machine. Therefore the machine foundation remains virtually free from shock loads and vibration. Here again we have to ascertain what the relevant and meaningful parameters are to describe the geometrical limits of the machine and tool sets. At this point it becomes obviously that the interference of the tools become a constraint on four tool machines. Due to that the tool top width is not the same as the tool base width any longer, but distinctively shorter. From this point forward, we assume that the forger is finally interested in the range he can cover with one tool set-up. He is interested, what he can do in one heat and when and how often he has to stop production to change tools. This point is crucial, as any tool change does not only cause down-time but alsomeans, that the work piece has to go back to furnace. Going back to furnace is sometimes necessary due to technological reasons but shall be avoided due to tool range limitations. Hence, the most important point in this regard for a machine user is to decide, what tool sets to be used and when he has to change them. Figure above reveals, that is of no help to increase the adjustment range excessively. In this situation the adjustment range is not the limitation any more, as the tool top width limits certain starting cross sections. A large tool adjustment range cannot be used in many cases due to the geometrical interference. 2.0 Machinedriveconcepts There are in principle three machine drive concepts providing synchronized movement of the four tools: 2.1Mechanicallydriven This design is known as the traditional GFM SX type and was built several hundred times in different sizes from 4 x 20 tons forging force up to 4 x 3000 t forging force per ram. The well known GFM SX-type is the most renowned type of it. Approximately 500 of SX type Radial forging machines had been sold worldwide, which justifies todescribe this machine representative for mechanical Radial Forging machines. The four-hammer radial forging machine is basically a short-stroke mechanical press. It is important to note the distinction that the tools actually press the workpiece although it would appear that with the high stroking rate that the tools actually act like hammers. However, the deformation rates encountered in radial forging are within those typically encountered for press operations[1]. The radial forging process has a high stroke rate due to the fact that the hammers are spaced very close to the workpiece, requiring only a short period of time between subsequent strokes. The stroke of the forging connecting rods is initiated through eccentric shafts. The eccentric shafts are supported in housings that allow adjustment of the stroke position of the four forging connecting rods. One or two electric motors drive the eccentric shafts through a drive gear, which simultaneously

155


controls the synchronization of the four eccentric shafts. The forging ram can be changed in their stroke position either in unison or in pairs so that round, square, or rectangular cross sections can be forged. A new compact model Type SKK was designed in year1995 following the SX type in the lower and medium size range. A gear synchronizes the four eccentric shafts. These eccentric shafts cause a sinusoidal movement of the tools. For higher stroke rates (larger than 300 /min) this is the only reasonable design concept to go for since compressible fluid is avoided. With frequency drives stroke rate variation is implemented. The SKK type has its strength in the segment of forgings from 10 to 250 mm on diameter and forging forces up to 600 t, where precision, flexibility and rigidity is important on the forging operation. Precision is ensured due to the absence of clearances, where the forging forces are transferred. The screw spindle tool adjustment is responsible for flexibility and exact positioning of the forging dies in a wide range. The closed sealed forging unit is centrally lubricated, the moving parts are equipped with sliding plates and bushes for long life, even when high forging forces are applied. For application in the high alloyed and refractory materials market this is a speciality for the SKK system, where high forming temperature, material toughness and technology are combined to achieve high class products. Table of GFM SKK Types TYPE

SKK 06

SKK 10

SKK 14

SKK 17

SKK19

SKK 21

max.START

60

100

140

170

190

210

nominal FORCE (kN)

800

1250

2000

2800

4000

6000

max Stroke rate (min-1) (depending on application)

1600

1200

800

500

500

600

ADJUSTMENTRANGE on DIA (MM)

60

60

100

130

70

90

max DRIVE POWER (KW)

75

132

200

315

315

500

2.2.HydraulicallyDriven GFM has patented already in the 1970´s four ram radial forging systems which have not been built due to a lot of risks in the application of high pressure, synchronization and several other reasons. But the principle of a hydraulic cylinder system have not changed since that time. The development went further, mainly in electronic and servo valve technique. Various open die press manufacturer have developed radial forging machines, some of them disappeared from the market meanwhile. At first view the hydraulic machine looks attractive and the most logical approach, as cogging is normally done on hydraulic presses.

Four ram direct hydraulic driven system

Nevertheless it has some severe disadvantages that need to be explained in detail.The main disadvantage is a huge hydraulic system. It is responsible for unfavourable high contact times and higher power consumption. This will result in energy losses because of heat generation and their cooling expenses. Due to strong interdependency of stroke

156


rate and load it prevents beneficial high reduction on average (larger than 120 /min) and higher stroke rates. In a hydraulic driven system the stroke rate (n) is depending on a few main values:       

Size of cylinder (D)- determined by the max forging force (F) and pressure (p) Height of piston movement (h) Tool speed down v (determined by oil flow from pump supply (Q)) Tool speedreturn Valvereaction Enclosed oil volume under pressure (V) Compressibility of the oil (%/100 bar) Calculation of idle stroke rate and oil flow(no forging force): tcycletime =t down of ram movement + t valve reaction +tram return +tvalve reaction tdown = h/ vdown treturn = h/vreturn The ram speed is given by the available oil flow from the hydraulic pump system v down = Q/D²π/4 In addition the needed power to achieve the oilflow is a further important design value for the

installed power connection To get an impression for a hydraulic direct driven four ram system the following example will be calculated Example for Machine size with nominal forging force:2000t but on idle running cylinder diameter 870mm Ram stroke h= 40 mm Ram speed down 145 mm/s t cycletime: t down =40/145= 0,27 s Ram speed return 200 mm/s t return =40/200= 0,2 s tcycle time (neglecting valve times): 0,27 s + 0,2 s = 0,47 s this is corresponding to 128 strokes/min Oilflow calculation: Q=5945 dm²*1,45 dm/s *60 =5170 dm³/min for one ram = 20680 l/min for 4 rams Calculation of stroke rate and power requirement under nominal load: Opposite to the ram path in idle running the forging force will have a significant impact in the cycle time and resulting stroke rate. The rising forging force during the forging stroke will increase resulting in increasing oil pressure in the cylinder. In combination to have a reasonable tool speed especially in the approach phase where no or lower forging force occurs, the hydraulic pump system is frequentlydesigned to enable two pressure levels. The total enclosed oil volume consisting of the cylinder, piping, hydraulic blocks and pump system under pressure will undergo a slight volume change that is described as compressibility. In the literature this compressibility is calculated 0,7-0,85 % per 100 bar. Typically on hydraulic machines all pumps are constant pumps with a fixed delivery per revolution and designed for two pressure levels. In each pressure level there are only a certain number of pumps active not to increase the total installed power to unreasonable values. So typical there is a pressure level below which all installed pumps are active and above this level - typically at 50% of nominal load half of the pumps become inactive and do not provide oil flow to the machine. In addition to the above calculation with no load the following data are implemented in the calculation with nominal load.

157


Nominal forging force 2000 t Pressure level 1: up to 160 bar Pressure level 2: up to 320 bar Estimated enclosed oil volume: in one cylinder 178 l;+ piping etc. 157 l = 335 liter. At 0,75% oil compressibility the 335 l undergoes volume change of minus 8,6 l, which results in a stroke height loss of 14,4 mm compared to idle motion (see dotted line in the graphic) In practical forging application the 40 mm height movement of one ram is divided in different phases: o o o o

the approach phase, where no tool contact with the workpieceis taking place, the first part of the penetration up to pressure level 1 (<50% of max. forging force) the second part of the penetration up to pressure level 2 (max forging force) oil decompression and valve reaction time In considering this for the stroke rate calculation a change from idle 128 to 76 strokes/min under nominal loadis perceived. Definitely, there is a strong dependency of the stroke rate upon the actual load and stroke. If the load or stroke is small than higher stroke rates are possible. So for the planishingpasses, when the stroke becomes small and a load of max. 50% of nominal forging force prevail, the stroke rates up to 200 per minute are attainable. The contact time which is approx. 70% of one cycle will also be a main issue in heat balance of tool and workpiece and available time for the rotation increment. Power losses. Next to the time issue, the decompression of the oil is a direct power loss. The oil under pressure at the end of the stroke needs to bedecompressed fast. On medium and small reductions, the hydraulic radial forging machine brings more power into the oil via decompression heat-up than deformation power into the work piece. Large cooling facilities for oil and cellar ventilation are needed. Stroke rate dependency on stroke and load for 2000t hydraulic system

Example: power requirement only for ram movement (only oil flow) for machine size with nominal forging force:2000t The power requirement (P) for the pump system will consider the oil flow of 20680 l/min for the pressure level 1 as well as the oil flow during pressure level 2 which is reduced to 50%. P= Q*p/600/Ρ (kW) Ρ: hydraulic efficiency factor assumed to be approx. 0,85-0,9 (incl. pressure losses) Power calculation: P=20680*160/600/0,9 =6127 kW Additional power for booster and filtering systems is required.

158


Summing up we conclude the following main concerns and its causes:

Effect

Cause

Huge overall hydraulic system and high power consumptions

required high oil flow due to 4 tools and reasonable stroke rates

High contact times

high compression and decompression times increase contact time. The high flow rates forms a contradiction to the contact times. If stroke rates become high, the flow and finally the enclosed oil volume becomes large, that causes high compression and decompression times

Power losses due to decompression oil heat-up

The heat-up of the hydraulic oil needs to be cooled away by heat exchangers and ventilation cooling in the cellar. On medium reductions, which are typical for material with a high forming resistant like high speed steel or super alloys, the hydraulic radial forging machine brings more power into the oil via (de)compression heat-up than power into the work piece

Dependence of stroke rate on reduction and load

The forger cannot freely select stroke rates. It is limited on the upper side due to the constraints of available oil flow, stroke length and oil compression influence.

2. 3.Hydro-mechanicalDriven (GFM system) Based on the experiences and lessons-learned from the previous mechanical SX-forging machines, GFM has developed in the late 1990s a hydro-mechanical forging machine, the RF-type. The â&#x20AC;&#x2122;RFâ&#x20AC;&#x2122; stands for Radial Forging. The target was to combine the advantages of the mechanical and hydraulic machine designs. The stroke is generated by mechanical synchronized eccentric shafts and the tool adjustment is performed via an integrated hydraulic cylinder within the machine, i.e. between the eccentric shaft and the ram. Immediately recognizable as new in this machine model is the use of a simplified forging box to which the four eccentric shaft housings are mounted. The dynamics of this compact machine have been significantly improved through the simplicity of the synchronizing gear. Compared with the earlier SX model, the drive power has been increased, resulting in a significant rise in production output. The core element of the new concept is the tool adjustment system. While with the SX machines the hammer axes were positioned using adjustment housing the method adopted here is as follows: The rams with the forging tools fixed at their bottom ends are connected via a hydraulic cushion - rather than mechanically - to the eccentric shaft. This cushion performs several important tasks: the forging dimensions can be adjusted as required by modifying the height of the cushion (within a larger range than was previously possible), and it also serves as a protective system. Hard impact loads are dampened, the forging force is measured with greater precision and provides a more reliable overload protection. A further improvement in dimensional precision as compared with the earlier SX model has been achieved through the use of absolute encoders which measure the exact position of the rams. A

159


further advantage available with the RF model lies in its simpler, more compact design as compared with the predecessor machine type. The concept target of reducing the number of components by 50% was actually exceeded. For the runner of the machine, this means consequently lower investment and reduced maintenance costs coupled with increased availability of the forging plant.

Eccentric shaft system (Scotch Yoke Principle) with use of flywheel masses - GFM design It combines the advantages of the mechanical and hydraulic system. While maintaining the advantages of the sinusoidal and accurate synchronized tool movement it permits a variable stroke rate. Oil under pressure is minimized to keep contact times short. This most advanced type of forging machine is recommended for forging forces larger than 5 MN. This machine is working on the Scotch Yoke principle. Characterized is the system by an eccentric shaft that moves a sliding block on a circle with radius e. This radius e is the eccentricity of the shaft. The sliding block on which a sliding plate is fixed transfers only the vertical movement to the ram. As the eccentric shaft is running on a near constant speed, the motion of the ram is sinusoidal. The start of contact of the tool and the workpiece is determined by the height reduction during each pressing cycle. This height reduction depends on the tool geometry, feed rate of manipulator, and rotational increment During the forging stroke the strain rate decreases continuously and becomes zero at the BDC. The

160


pressed area or contact area starts when the tool is touching the workpiece and is increasing towards to the end of the stroke. It is mainly responsible for the reacting forging force depending on the flow stress of the material. These conditions on the RF system provide ideal combination of the main forming parameters like pass reduction, stress and strain condition, penetration as well as short contact time.

Variable Stroke rate In order to improve core density and output, a variable stroke rate feature is implemented. The stroke rate of the forging tools can be varied in a wide range. High stroke numbers for bar planishing as well for reduction passes even at high forging forces are applied and are the important strength of the GFM equipment. Lower stroke rates are essential for increased displacement of pressed material volume per stroke and may be beneficial for the forging process and material properties. But short contact times between tool and work piece enables excellent conditions when forging materials which are very sensitive in respect of temperature behaviour. The adjustment cylinder allows also to skip strokes. A stroke skipping mode means, that although the eccentric shaft creates a stroke, this stroke is not transferred to the work piece, but the oil of the hydraulic cylinder is pushed into an accumulator, from where it is pushed back to the ram for the next working stroke. By skipping strokes, additional stroke

161


rates become possible. The sole advantage of it is, that with this mode the index angle can be doubled, etc. as the manipulator has more time to turn the work piece a certain angle between strokes. So in fact, the forger has the capability to select the stroke rate and its stroke characteristics. There are two options: either change the r.p.m per minute of the eccentric shaft, or to use the stroke skipping rate. The GFM Radial Forging machines are laid out by use of dynamic calculations. The flywheelâ&#x20AC;&#x2122;s inertia is determined according to it to prevent any steep decline of the revs of eccentric shaft. On the RF machines the eccentric shaft is driven either via a pinion gear system by one or two ACdrives or by 4 hydraulic motors. The protection of the machine is done by a force measurement that is active throughout the whole eccentric shaft circle. The machine is capable to bear the nominal forging force at any time or eccentric shaft position. Hence, over the whole eccentric shaft circle. New drive system In year 2005 GFM has further improved the drive concept of the RF-forging machine. In the original design of the RF-machine the gear train is driven by one or two AC-motors. The new concept was based on the idea to provide the power where it is requested, i.e. directly on the eccentric shaft. So on the newer RF-type of forging machines, a hydraulic motor is mounted directly on the eccentric shaft which provides the necessary power. Another advantage of this new system is, that the gear between two rams is no traditional power gear any more. Except for the case of rectangular forging, there is no need to transfer power between two ram units. Therefore theses gearboxes just synchronize and do not need to provide the full forging power any longer. Another positive side effect was, that the machine frame could be designed smaller as there are no large electric motor supports required on itany longer.

Table of GFM RF Types TYPE

RF 30

RF 35

RF 40

RF 45

RF 60

RF 70 RF 100

max.START

300

350

400

500

650

780

1000

Max WORKPIECE WEIGHT (t)

1

2

3,5

8

8

10

10

nominal FORCE (t)

500

750

900

1200

1350

1800

2200

max STROKE RATE cogging (min-1) planishing (min-1)

340 340

290 340

250 290

200 260

180 240

180 240

160 200

ADJUSTMENTRANGE on DIA (mm)

180

250

280

300

350

400

460

max DRIVE POWER (KW)

600

950

1100

1700

2000

2500

2700

162


3. Forged-Products The high performance capability and flexibility of a modern forge production is demonstrated by way of product samples with highest technical requirements. The special suitability of plant engineering in the forge and in up- and downstream production units as well as reliable process technology guarantee the high level of quality and the compliance with ever rising requirements for forged products. Blanks to the Forging machine

The blanks which are selected to forge may have many different shapes and cross sections, depending of the method of casting or remelting and composition. For higher alloyed tool and high speed steels the ingot casting method is the most common practice of making. Up to 8 ton piece weight are poured into moulds with different cross shapes like polygonal or square. In case of heavier weights or sizes, cogging down on a open die press is typically required. For specific demands like very clean or segregation free material grades (e.g. Superalloys, Titanium alloys) a special melting and remelting techniqueshave to be applied. The continuous casting (CC Bloom) is the most economic way in material processing and is used even for medium alloyed steel grades nowadays. For forging of tubes a hollow perform is needed. It can be processed in different ways like pressing or extrusion and cross rolling piercing. Centrifugal casting or Hollow remelting (ESR) are additional manufacturing routes. The surface condition of the blank before forging plays an important role because the forged product should have no defects and minimum machining allowance for further processing. Crack prone material grades and typically high alloyed grades have to be ground on the surface due to remaining cracks from ingot pouring or remelting. In case of preforging on the press cracks are very common due to high local strain and tensile stresses.

Typical solid forged products

163


 Bars with round, square, rectangular or special cross-sections withreductions of up to 15:1 in a single heat.  Semi-finished products for further processing in rolling mills and closed die forges.  Materials produced using powder metallurgy.  Stepped and conical shafts and axles for locomotives, wagons, cars, turbines, ships, aircraft,  Drilling rods for oil field equipment. In particular, non-magnetic, stainless drill collars with the increased strength created by cold or semi-hot forging.  Mandrels for pilger and tube mills. typ. Forged Shapes-hollow

V&M

Of course, the forging process cannot compete with the high productivity of a tube mill, but it offers advantages and covers market niches e.g. in the sector of application for power plants or oil exploration. The advantages of pipe forging pipes prevails mainly in the thicker walled range or higher alloyed materials, where common tube forming methods have their weaknesses. 4. Summary The Radial Forging Technology from GFM had influenced the forging business since more than forty years. Hammers and hydraulic presses have often been replaced by this forging system. For special tube processing the GFM Radial Forging entered in a new dimension of market segment. Design advances of the forging unit for improved technology and higher reliability have always put this equipment in a leading position for high alloyed materials and superalloys processing. Flexibility and reliability of a forging line is essential to survive in the future. From the point of view of energy efficiency the hydro-mechanical system will provide the best condition in radial forging for the application range between 5 and 22 MN forging forces. In the lower range, where precision and high stroke rates will be essential, the mechanical driven machines cannot be surpassed. Pure hydraulic systems are best established in the larger segment of the forging business, where the energy density of hydraulic systems keep the machine in reasonable size ranges. References: [1] A Review of Radial Forging Technology including Preform Design for Process Optimization, J. P. Domblesky, R. Shivpuri, T. Altan, Contractor Report ARCCB-CR-94004, 1994

164


环件制坯柔性锻造系统 (中英文版,论文) 刘林志 (天津市天锻压力机有限公司技术部,中国) 摘要:介绍了一种新型的大型锻件的镦扁、冲孔设备。本设备主机为普通锻造液压机,并在立柱上增 加预冲回转机构、终冲回转机构、终冲下砧回转机构、终冲打料机构、对中同步回转机构,以及顶料 机构、废料传输机构等辅助装置,实现了整个过程实现机械化和自动化控制。 关键词:机械手预冲终冲对中抬起 1.引言 实现机械化与自动化是锻造生产的一项重要任务,它不仅提高劳动生产率和设备利用率、提高锻件 的质量和降低成本有极为重要的作用,而且是减轻劳动强度、改善劳动条件的根本途径。机械化与自动 化是今后锻造生产的主要发展方向之一。生产出优质和低成本的锻件是锻压技术所追求的基本目标,锻 造行业的技术改造相对缓慢,面对传统的锻件的镦扁、冲孔设备,生产效率低,并且落后的生产工艺, 无法保证锻件的质量。为了适应未来瞬息变化的市场及全球竞争战略的需要,优化生产工艺势在必行。 基于上述原因,我公司设计并生产了专门用于锻件的镦扁、冲孔设备。 2.主机概述 2.1 主机: 采用三梁四柱式机身,主要结构件采用钢板焊接而成,经高温退火消除内应力。滑块采用斜契式可 调型导轨导向,导轨间隙通过调整可调楔铁调整以补偿机械磨损造成的间隙增加;导轨板采用铜基合金 材料,可拆卸。滑块下平面、工作台上平面均设有 T 型槽,用以固定模具。滑块的压力控制采用压力传 感器结合比例压力阀,数字显示及控制;测量和显示精度 0.1Mpa。滑块的位置控制采用位移传感器,数 字显示及控制;测量和显示精度 0.1mm; 。 2.2 主缸、侧缸、回程缸: 主油缸采用三缸形式,主缸吨位 2000 吨,柱塞式结构;侧缸 2 个,每个吨位 1000 吨,柱塞式结构; 回程缸 2 个,每个吨位 100 吨,柱塞式结构,采用挑扁担结构;油缸密封及导向带均采用进口带自动补 偿的优质密封圈密封。柱塞杆采用优质碳素结构钢锻件,表面经硬化处理以提高硬度;缸体采用优质碳 素结构钢锻件,以保证材质的均匀性。 2.3 移动工作台: 移动工作台具备三个工位:上料工位、工作工位(a 镦扁、b 预冲、c 整平、d 终冲)、下料工位;为 防止氧化皮掉入道轨面,移动工作台后带金属防护罩,同时还具备工作台氧化皮清理装置。 2.4 对中同步抬起、旋转装置: 对中抬起翻转装置将工件对中后实现同步抬起并通过翻转机构夹持工件旋转 180°,旋转后定位同时 放下松开工件,实现翻转冲孔功能;对中装置的对中误差为 0.2mm。 2.5 废料收集和输送装置: 具有废料收集和输送装置,可及时的将压制产生的废料从压制区域传输出来。 2.6 配有模具一套: 本机配有模具一套:包括镦扁及预冲上砧、镦扁及预冲下砧、终冲下砧、预冲冲子、终冲冲子。 2.7 机械手装置: 本机具有机械手用于移动预冲冲头、终冲冲头、终冲下砧,机械传动装置安装于滑块和下横梁上; 机械手水平移入与上砧子的重复定位精度控制在±0.2mm 范围内。 2.8 电气控制系统: 电气系统 PLC(西门子系列)可编程控制器结合触摸屏(西门子)主控,可实现机床各种工艺动作 循环;分主控制台和 2 个移动操作台(即活动按钮站)。主控制台内设 PLC 和触摸屏,可完成该机的全 部动作的控制操作。操纵面板同时设置有主机各部分动作的操作按钮和功能转换开关、各部电机的起停 按钮、PLC 指示、压力数显及数控部分(通过触摸屏显示和控制) 、行程数显及数控部分(通过触摸屏显 示和控制) 、加压时间拨码盘、阀体通断指示及各部分的报警、监视指示灯等,随时掌握压机的工作状况。

165


2.9 液压系统: 主控制系统采用插装式集成阀,系统设有过载保护装置和液压支撑保险回路。高压泵采用进口德国 力士乐公司的定量高压柱塞泵。液压系统的管路采用高压法兰和部分高压管管连接。 2.10 润滑系统: 采用自动循环带监控的强制润滑系统。工作时各导轨的需油量可通过分流阀调整。流下的油液通过 导轨下面的集油槽油管回收经过滤后流回油箱。当油路断油或油压过低时操纵箱上润滑异常报警灯闪亮 并停机;只有在润滑系统正常工作时,主机才允许进行操作。 2.11 液压油过滤、冷却系统: 循环过滤系统中的滤油器为大容量精密滤油器,并带有堵塞报警发讯装置,当滤油器被污物堵塞即 可报警,提示维修人员清洗或更换滤芯。采用强制水冷却循环系统,采用热电阻作为温度传感元件,板 式换热器作为热交换器。 3.工艺动作 3.1 一次压扁工艺: 3.1.1 上料: 由机械手或天车将加热好的坯料放置在压扁下砧上,移动工作台由机身外侧,移至主机中心位。 3.1.2 镦扁: 移动工作台由上料位移至主机中心位,因锻件放置的位置偏,此时镦扁对液压机会造成偏载状况, 此时应用对中装置以锻件的外径为基准,将锻件的几何中心中与液压机中心重合(此过程称为对中),液 压机镦扁。

图 1 工艺流程图 3.1.3 对中: 镦扁后坯料的外圆尺寸发生变化,又因坯料的上下平面的平行度及内部结构的影响,使镦扁后的中 心与主机中心发生偏移,我们在进行一次对中,以镦扁后的坯料中心与主机中心重合。 3.1.4 预冲冲头回转预冲: 预冲冲头摆进到主机中心,下行预冲(在此之前要在锻件的中心撒一定量的润滑剂),将锻件冲成一 个带锥度的沉孔。 3.1.5 整形: 预冲下行时,锻件会随着冲头的挤入而局部向上变形,此时需要在次镦扁。

166


3.1.6 对中机构同步抬起、旋转: 以整形后的锻件的外圆中心再次进行对中,并将锻件同步抬起,旋转 180 度。 3.1.7 终冲下砧摆入: 对中机构抬起后,终冲下砧移至主机中心位,对中机构夹持锻件落下。 3.1.8 终冲摆臂移入并落料: 终冲摆臂将终冲冲头移入,终冲冲头下行冲孔。终冲冲头回程时,将废料落入终冲工位下方的终冲 下砧中,同时将锻件带起,当升到一定高度时,锻件被打料盘挡下,落在终冲下砧上。 3.1.9 出料: 操作机取料,终冲下砧摆出出料。 工艺流程图如图 1 所示: 3.2 多次压制特出工艺: 对于特出的大型锻件一次压制后不能达到所需要的尺寸,可进行多次压制工艺: 方法一:一次镦扁后,利用移动工作台的两个机动工位,将移动工作台偏移一定位置,使镦扁上砧 与锻件的接触面积减小,利用镦扁下砧自动旋转的功能,进行多次旋转压制。 方法二:设立专门的摆臂装置,将一长条扁砧摆至镦扁中心,同样可以使上砧与锻件的接触面积减 小,利用镦扁下砧自动旋转的功能,进行多次旋转压制。此方法可使液压机不受偏载力。 4.技术关键 4.1 位置精度: 4.1.1 移动工作台重复定位精度为:0.02mm. 4.1.2 对中机构的对中精度为 0.2mm. 4.1.3 压扁上砧工作面与工作台的平行度为 0.25mm 4.1.4 压扁上砧工作面与工作台的垂直度为 0.12mm 4.1.5 终冲冲头与终冲下砧的垂直度为 0.10mm. 4.1.6 预冲机械手与镦扁上砧的重复定位精度为 0.2mm. 4.2 对中装置: 普通锻造设备整个预冲、终冲孔过程中的精度没有控制环节,所冲出的带孔坯料质量无法保证。为 提高冲孔精度,我们须加以在过程中控制。此对中装置以锻件的外圆为基准,准确地将锻件的中心与主 机、冲孔的中心重合,减少偏载对设备影响的同时,同时保证了冲孔的精度.此对中装置还可以帮助完成 工位之间的转换。 4.3 氧化皮台面清理装置: 在移动工作台的两侧有氧化皮收集槽,当氧化皮落到工作台上进入收集槽中时,移动工作台上有一 个单向的推子,当移动工作台移动时(进行接料)带动推子同时在槽里滑动,将槽里的氧化皮往一个方 向推进,最前面的氧化皮会顺槽子的缺口下滑至下面的收集箱中。收集箱可收集大量的氧化皮,可一个 班次清理一次。 4.4 废料收集装置: 终冲废料(连同少量的氧化皮)从终冲下砧摆出,从机身内部的滑道进入收集箱中,此装置可沿导 向装置自动上升到地面以上,便于倾倒。由于废料落入地面以下,同时增加了设备的安全性。 5.总结 因本设备是专门用于锻件的镦扁、预冲和终冲工艺的,在进行上述工艺改动,位置精度都达到的前 提下,本设备所出的锻件在辗环过程中,环件的表面还会有夹层现象。经过对整个工作过程的观察,发 现在整形过程中,预冲孔的位置会随着有少量的偏移,现预冲冲头和终冲冲头直径设计为相等尺寸,当 预冲孔偏移后,在以同样的直径的终冲冲头落料时,就会有冲偏现象,导致坯料的剪切边有大量的毛刺, 经过以上分析,现将终冲冲头直径小于预冲冲头的直径,并将终冲下砧与终冲冲头的间隙改为 1mm,在保 证终冲孔在锻件形心的同时,切除掉由于形心偏移所导致的不利因素,为辗环提供优质的锻件毛坯。 主要参考文献: [1].俞新陆主编.液压机.北京:机械工业出版社,1982 [2].陈尚齐.自由锻造液压机的现代化改造.重型机械,1992,(4):9-1 [3].韩发明.锻压机械可靠性管理系统的研究.锻压机械,1994,(2):34-35 [4].NieShaomin,ZhaoXilu.Structure Optimization of the 3D-Frame of Hydraulic Press.Proceedings of the First national Conference on Research and Design of Metal Machines,1989

167


Ring Billet Flexible Forging System (Chinese & English version, Paper) Linzhi Liu (Research Institute, Tianjin Tianduan Press Co., Ltd., China) Abstract: Herein introduced a new type of equipment for upsetting and piercing large forging parts. This machine is common forging hydraulic press but add swing device for pre-piercing head, turn over device for final piercing device, rotated lower anvil, knock out device, centering device, ejector, wasted collecting and transporting device and some other auxiliary devices to realize mechanization and automatic control. Key word: Robot Pre-piercing Final piercing Centering device

1. Foreword Realize the mechanization and automation is a significant task in the field of forging industry. It can not only raise the producing efficiency and utilization rate of equipments, but also play a great role in raising the forging quality and decreasing the cost, and this is the ultimate method to reduce human labor and improve working condition. Mechanization and automation is one of the main directions that forging industry is developing to. Produce forging parts of high quality and with low cost is the basic purpose of forging technics. The improvement of forging industry is very slow comparing with other fields. While using traditional upsetting and piercing equipments, the produce efficiency is very low, and can not ensure the quality of products. In order to be suitable to the customersâ&#x20AC;&#x2122; requirements and the worldwide strategic competition, optimization of producing must be done immediately. Under this situation, our company designed and manufactured this professional equipment for upsetting and piercing forging parts. 2. Mainframe structure 2.1 Main machine The structure of this machine is three beams and four columns type, main parts adopt welded steel plates, annealing inner stress by high temperature. Guide rail of slide is adjustable type, whose gap is adjustable by guide rail in order to compensate the increased clearance created from mechanical wear. The material of guide plate is copper-based alloy steel, and the guide plate can be disassembled practically. On the lower surface of slide and upper surface of worktable, there sets T-slots for fixing mould. The pressure control of slide adopts pressure sensor combined with proportional pressure valve, and adopts digital display, its precision of measure and displaycan up to 0.1 MPa. The position control adopts displacement sensor and digital display, its precision of measure and display can up to 0.1mm. 2.2 Main cylinder, side cylinder and return cylinder: This machine adopts three main cylinders, the capacity of main one is 2000T, and capacity of each side cylinder is 1000T, plunger piston type; There are two return cylinders, 100T for each, and piston type. The structure is like a shoulder-pole. Use excellent imported seals which have auto equalize function for cylinders. The piston is good quality carbon forging part and has been hardened the surface to increase the rigidity. The body of cylinder is carbon forging part to ensure the evenness of material. 2.3 Moving worktable: The moving worktable has three work stations: loading, working(a. upsetting, b. pre-piercing, c. planishing, d. final piercing), unloading. There is fixed metal shield at the rear of moving worktable to preventoxide skin from entering onto the surface of guide rail, and there is also an oxide skin cleaning device on the worktable. 2.4 Centering device: Firstly, centering device will centering and lift the product, and then turn over the product. Secondly the device will center the product again and release it. The tolerance of centering device is 0.2mm 2.5 Wasted collecting and transporting device The press has wasted collecting and transporting device to transport the wasted material out of working area.

168


2.6 Mould The press has one set of moulds, including upsetting and pre-piercing upper anvil, upsetting and prepiercing lower anvil, final piercing lower anvil, pre-piercing head, and final piercing head. 2.7 Robot: The press has robot to move the pre-piercing head, final piercing head and final piercing lower anvil. The robot is set on the slide and lower beam. The horizontal precision of moving action of robot and relocation function of upper anvil isregulated within Âą0.2mm. 2.8 Electrical control system: It adopts PLC (SIEMENS series) combine with touch screen (SIEMENS) as the main control, can realize the cycle of all technic actions of the machine, there located a main operation box and two moving operation panels (that is the moving button station). In the main operation box there fixed PLC and touch screen, can finish all the operation of the machine. On the operation panel, there fixed action buttons together with function exchange switches, start & stop button of all motors, PLC indicator, pressure digital display and numerical control (through touch screen to display and control), stroke digital display and numerical control, dial plate of pressing time, valve on & off indicator and its alarm, monitor indicator lights, etc, can master the working condition of the machine at any moment. 2.9 Hydraulic system: The main control system adopts integrated cartridge valve, there sets overload protection device and hydraulic support insurance circle. The high pressure pump adopts high pressure fixed quantity plunger-piston pump imported from German Rexroth. The pipes in hydraulic system were linked by high pressure flanges and partly high pressure tubes. 2.10Lubrication system: It adopts automatic cycle compulsive lubrication system with monitor. The quantity of oil that guide rail needed can be regulated through diffluence valve while working. The flowed down oil will be collected by the oil collector under the rail and be transferred back to the oil tank after filtration. When the oil circle was cut off or the pressure is low, the alarm on the operation panel will blink and stop the machine. The press will be allowed to work only when the lubrication system is under normal working status. 2.11 Hydraulic oil filtration and cooling system: The filter in the cycle filtration system is a high capacity precise filter with a jam alarm device, it can send out alarm signal while the filter is choked to notice the worker to clean or change the core of filtration. It adopts compulsive water cooling cycle system, using thermoelectrical resistance as temperature sensor and plate-type heat exchanger as heat exchange device. 3. Action sequence 3.1 One time upsetting work 3.1.1Loading: Use robot or overhead crane to put the heated billet on the lower anvil, and then the moving worktable move in. 3.1.2 Upsetting: Moving worktable move to the center of press, because the billet maybe not in the center of anvil, so the centering device will center the billet. Then upsetting. 3.1.3 Centering Because the diameter of billet will be changed after upsetting, inner structureand parallelism affection, the center of billet maybe changed. So the machine will do the centering function again. 3.1.4Swing and work of pre-piercing head The pre-piercing head will swing to the center of machine, slide down (before it, the worker should put some lubricants on the center of billet), pre-piercing. 3.1.5 Blanking: After pre-piercing, the surface of billet will be changed, so the machine will do upsetting again. 3.1.6 Centering device: centering, lifting and turn over. Centering the billet again, lift the billet and then turn over it.

169


3.1.7 Final piercing lower anvil move in When centering device lifts the billet, lower anvil of final piercing will move to the center of machine. And then the centering device releases the billet.

Drawing 1 action sequence 3.1.8 Final piercing head The final piercing head will swing to the center of lower anvil, and then head down. When the head return, it will take the billet up(at the same time, wasted material will fall into the lower anvil), knock out device will knock out the billet when it reach a certain height. 3.1.9 Unloading : The lower anvil of final piercing will move out after the work, Manipulator can take the billet out The details please refer to the drawing 1. 3.2Multi-upsetting work For the big size of billet, we canâ&#x20AC;&#x2122;t finish the work in one cycle, so we need upsetting the billet for several times. I): Moving worktable can move to a position which has a little distance away from the center of upsetting work station. This method can reduce the square touching surface when upsetting. Then rotate the worktable, upsetting the billet, rotate again. After several times, we can finish the work. II) Use special swing arm device to put one long and thin mould on the center of upsetting head. This method also can reduce the touching surface area. Then rotate the worktable, upsetting the billet, rotate again. After several times, we can finish the work.

170


4.The key of technology 4.1Position precision: 4.1.1Relocation precision of moving worktable: 0.02mm 4.1.2Centering precision of centering device: 0.2mm 4.1.3Parallel precision between upper upsetting anvil and worktable: 0.25mm 4.1.4Vertical precision between upper upsetting anvil and worktable: 0.12mm 4.1.5Vertical precision between final-piercing plunger and lower final-piercing anvil: 0.10mm 4.1.6Relocation precision between pre-piercing arm and upper upsetting anvil: 0.2mm. 4.2 Centering device: Because common forging hydraulic presses don’t have special device to ensure the position of billet, so they can’t ensure the forging precision and quality of billet. To increase the precision, we must control the position of billet, so we use centering device to make sure the center of billet in the same center of machine. And the centering device can assist the machine to do the work station changing function. 4.3 Oxide skin cleaning device: There are grooves at the both sides of worktable to collect oxide skin. When the oxide skin fall onto the worktable and fill in the grooves, the single-direction wiper on the worktable will move together with the moving worktable while exchange work stations, and push the oxide skin at one direction into the collection box. The box has a large container to collect quantities of oxide skin, and can be changed each shift. 4.4 Wasted material collecting device: Wasted material (together with little oxide skin) after final-piercing will fall down from the lower finalpiercing anvil, and into the collecting box through a rail inside the body. This device can lift to the floor automatically and it is convenient to pour out. Because the wasted material falls under the floor, it increases the safety of equipment. 5. Sum-up Because this equipment is professionally used for upsetting and piercing forging parts, while making above mentioned technic changes, and reach all the position precisions, there still occurs interlining phenomenon on the surface of rings while rolling. After inspect the whole working procedure, we found that the position of pre-piercing hole has a little excursion while deformation. At present, the designed dimension of pre-piercing and final-piercing plunger is the same, after pre-piercing hole excursion, there will occur excursion phenomenon when do final-piercing with the same sized plunger, result in a lot of burr on the cut side of work piece. After above analysis, now the designed diameter of final-piercing plunger is a little smaller than that of pre-piercing, and change the gap between anvil and plunger to 1 mm, under the base that the pre-piercing hole is at the center of the forge part, and remove the disadvantage caused from center excursion, and provide excellent forge work piece for ring rolling. Reference: [1].俞新陆主编.液压机.北京:机械工业出版社,1982 Yu Xinlu, Hydraulic press, 1982 [2].陈尚齐.自由锻造液压机的现代化改造.重型机械,1992,(4):9-1 Chen Shangqi, Modernize free forging hydraulic press, 1992 [3].韩发明.锻压机械可靠性管理系统的研究.锻压机械,1994,(2):34-35 Han Faming, Research of forging press control system, 1994 [4].NieShaomin,ZhaoXilu.Structure Optimization of the 3D-Frame of Hydraulic Press.Proceedingsof the First national Conference on Research and Design of Metal Machines,1989

171


从淬火过程中消除烟雾和火的热处理 (中英文版,论文) (Heatbath/Park,USA)(北京天一永昌化工科技有限公司,中国) 保持油类淬火介质的性能,同时不产生烟和燃烧危害是基本的目标,特别是那些使用巨大淬火槽的 热处理加工。休斯顿最大的一个商用热处理企业就做到了这点,他们使用了一种水基聚乙烯化合吡咯烷 酮的聚合物。 特殊热处理公司位于德克萨斯州的休斯敦,是该城市最大的商用热处理企业,主要的操作环境是 “油田”环境,其 95%的工作来自于油田设备生产商,其他的则来自于军事和航天航空领域。该公司成 立于 1993 年,当时公司只有 3 个 8 英尺的炉子,这受限于当时的经济环境,零部件主要是在水或油中进 行淬火。 随着公司的不断发展,该公司增加了 5 台 25 英尺,1 台 15 英尺的炉子。这些炉子主要用于奥氏体 化淬火和回火工艺,拥有 20,000 磅的容量。起初,淬火工作都是通过水来完成,但是公司从建立之初的 目标就是建造 25 英尺大型设备并且使用聚合物淬火液。公司的总裁 Tom Moore 这样介绍。 淬火介质的选择 但是选择正确的淬火介质并不容易,根据 Moore 所说,加工的零部件种类繁多,在装载时经常是混 在一起装进炉子。4 英尺 6 英寸的零件交叉放在一起处理。例如,金属型号有 4140.4340 和 8630-后者是 一种含碳量较少的富钢。零件类型包括机械装管(0.5 英寸到 3 英寸不等),井口适配器,阀体,线轴框 和机械部件。零件的交叉范围从 0.5 英寸打 20 英寸不等。 “机械零件以多重交叉形式放置是最大的挑战。”Moore 说道,“因此,我们的淬火介质必须能够 成功地淬火所有零件。附属工厂可以一遍又一遍反复实验来寻找解决问题的方法。而我们必须直接找到 问题的根源。” “25 年的经验告诉我们,使用聚二醇来淬火范围很广的零件的时候,很难做到淬火时而不产生裂 痕。”Moore 继续说道,“我们需要做的是保持油类的性能:在 1550 华氏度能够有效-该温度是 4140 钢 奥氏体化的温度,--并且能够在 500 华氏度时停止硬化。传统的聚合物淬火介质在你想要停止冷却的这个 温度点会继续淬火冷却。它们很难减缓速率,除非你提高浓度,但是那样会造成其他的问题。或者降低 搅动速率能够起到一定的作用,但是相对于油类,普通的聚合物淬火介质兼容性不够好并且性能也不够 理想。 专用聚合物 2001 年,通过其他热处理公司的推荐,Moore 尝试使用一种高分子重量的聚合物淬火剂,该淬火剂 最初是设计来用在高合金钢,以及一些对变形控制很严格的应用中。该水溶性的聚合物是水基聚乙烯化 合吡咯烷酮的聚合物,使用浓度为 15%到 17%,能够在快速提供高硬度,同时降低零件变形或开裂的风 险。 这个冷却机制表现的非常缓和,同时也会有更短蒸发时期。这个可以让蒸汽快速,均匀一致的包围 零件,同时使散热更快开始。在这一时期内,在零件表面会产生一层绝缘的薄膜。这一层薄膜减缓了热 传导的速率,降低了转换的压力并且防止产生局部的温度偏差。这样就可以使得零件的整体都得到保护。 这个淬火介质就是由 Heatbath/Park 冶金公司提供的,叫做 Parquench90。它是完全水溶性的,最 高可以到水的沸点,因此,它可以在淬火的整个过程中提供冷却功能。在这方面,它比聚二醇有优势, 聚二醇在 145 华氏度到 185 华氏度期间会突然大量沉淀析出。

172


“我们称它为第二代的聚合物,”Moore 说,“我们所有的测试表明,虽然不是油的直接替代品, 但这绝对是一个不错的方法---一种结合了油类性能,兼容性良好,并且安全,环保的产品。并且我们也 证明了,你可以像使用油类那样使用这个聚合物---只有几点需要考虑” “首先,”他解释道,“相对于油,时间的把握对于这个产品很重要,热处理人员必须根据零部件 截面公式来计算时间,并且达到这个时间要求,根据金属性能的不同,上下差几个百分点。按照相同的 标准,一个干净,加工性能良好的钢件可以上下差 20%。而一个质量欠佳的钢件,上下差只能在 1-2%。” “第二个要注意的是搅动。我计时过许多次的淬火,最适宜的方法也许是在规定时间内满功率搅动, 然后在淬火的整个循环一半的时候,将功率降至 50%,这是临界点。” 搅动 “我们自己造了搅拌器。”Moore 说,“由于产生了比较剧烈的搅动,我们估计会产生一些泡沫。” 泡沫的产生往往是由于设备的问题,例如空气混入或者泵的气穴现象,或者是由污染物引发的泡沫,例 如清洁剂,或者金属残留物。泡沫是比较严重的问题,因为泡沫会粘附在金属表面,使零件内部产生热 量梯度,从而产生零件变形。但是 Parquench90 含有泡沫抑制剂,所以热量梯度不会产生此问题。 适当的搅拌可以良好的抑制聚合物的生物降解。生物降解是由于细菌的进入,细菌可能是由于冷冻 剂或者前面工序中残留液体带入淬火槽中。 从操作上来说,Parquench90 的一大显著特点是它的稳定性。根据 Moore 的介绍,“我们使用它 3 年了,尽管是在反复的使用,但是它仍然十分稳定,我们现在每周只需要检查它 2 次。” 适应性和维护保养 该淬火剂的适应性也非常好。“我们使用 15-17%浓度的该溶液,不过,并没有要求特别精准。” Moore 说,“聚二醇则恰恰相反,我们必须确定一个数字并且维持住---否则你将会看到大量的开裂零件。 同时,只有淬火槽内的浓度需要监控---这个浓度主要受到蒸发的影响。” 该产品同时也适应于间断性的淬火,而且对车间工人没有危害。这是因为不含有乙醛,酮或者其他 的危害物质产生。 对于淬火槽内淬火介质的保养主要限于去除浮沫(去除掉零部件带入槽内的加工残留物和液压油) 和半年一次的淬火槽除锈。去除残留物保证了淬火介质的加热/冷却性能维持在一个恒定水准并且保证了 搅动能够达到最佳效果。 高速淬火油和 Heatbath 的聚合物淬火剂有相同的特性,根据 Moore 所说,“两个产品都可以让你在 500 华氏度时减缓停止冷却,并且不会产生开裂和变形。热处理就是为了把 1600 华氏度的零件放入液体 淬火并且得到特殊的冶金结果。2 万加仑的油和热零件接触,马上就会起火。”他补充道,“这只会持续 几秒,但是当把覆盖了油层的零件重新放进去回火,又会产生更多的燃烧。现在我们已经找到了一种能 够达到我们的目的但是又无需使用 2 万加仑易燃油类的办法。”

173


Heat Treater Eliminates Smoke and Firefrom Quenching Operations (Chinese & English version, Paper) (Heatbath/Park,USA) (Tanee Chemical LTD, China) Getting oil performance without oil's smoke and combustion hazards is a common goal, particularly for heat treaters with large quench tanks. Houston's largest commercial heat treater has achieved this by using an aqueous based polyvinyl pyrrolidone polymer. Specialty Heat Treat Inc., Houston, TX, that city’s largest commercial heat theater, is primarily an “oil patch” operation. Ninety-five percent of its work comes from oilfield equipment manufacturers. The balance comes from military and aerospace applications. The company was founded in 1993, with three 8-ft. furnaces that were well-matched to those leaner times, when parts were quenched either in oil or water. As Specialty grew, five 25 ft. furnaces and one 15 ft. furnace were added. All are dedicated primarily to austenitizing-quench and temper processing and have a 20,000 lb. capacity. Water quenching was done at first, but the goal from the start was to upgrade to a polymer as soon as the company was firmly established in the 25-ft. marketplace, according to Tom Moore, SHT’s owner and president.

The Quenchant Challenge But there was a challenge in finding the right quenchant. And that was, according to Moore, a wide and changing range of products, as well as loads that were often mixed. Four and six-inch cross sections are processed together, for example. Materials include 4140, 4340 and 8630- the latter a rich steel with lower carbon. Parts include mechanical tubing (½- in. to 3-in.), wellhead adapters, valve bodies, casing spools, and machine parts. The parts’ cross-sections range from ½ in. to 20 in. “Machine parts with multiple cross sections were our biggest challenge,” says Moore. “And any quenchant we used had to successfully quench everything. Captive shops that do one thing over and over can experiment, and work out problems over time. We’re in the opposite camp: what we do has to work all the time. Twenty five years of experience told us that polyglycols could never consistently quench our range of parts without a high incidence of cracking,” Moore continues. “What we needed was the performance of oil: effectiveness at 1550°F- the austenitizing temperature of 4140 steel – and the ability to hit the brakes hard to 500°F. Traditional polymers tend to keep going at this point, when you want them to stop. They’re hard to slow down, or you have to increase concentration so high that you create other problems. Cutting the agitation rate down – way down – helps, but as an alternative to oil, common polymers are less forgiving and far from ideal.” Proprietary Polymer In 2001, on recommendation from another heat treater, Moore tested a high molecular weight polymer quenchant that had originally been engineered for high alloy steels, and applications in which distortion control was critical. The aqueous polymer based on polyvinyl pyrrolidone, used at 15% to 17% concentration, provided high hardness at high speed, while minimizing the risk of part distortion or breakage. The cooling mechanism is unusually gentle, with a shorter vapor phase. This allows the vapor blanket that develops around the part to collapse quickly and uniformly, and for heat extraction to begin sooner. During this stage, an insulating polymer film deposits on the part surface. This film moderates the rate of conductive and convective heat transfer, reducing transformational stresses and preventing localized temperature deviations. As a result, the dimensional integrity of the part is protected. The quenchant, available from Heatbath/Park Metallurgical, is called Parquench 90. It is fully watersoluble up to the boiling point of water, thus providing cooling at all stages of quenching. In this, it offers an advantage over polyglycols, which precipitate out between 145°and 185°F.

174


“We consider this ‘second-generation’ polymer,” say Moore. “All our tests showed that, while not a direct replacement for oil, this is an intelligent approach – one that combines performance that’s consistent and ‘forgiving’ like oil, but with safety and good environmentals. We have also proved that you can do the same with this polymer as you can with oil – with just a few considerations. “First,” he explains, “time is more important with this quenchant than it is with oil. A heat treater needs to come up with a time vs. cross section formula and hit that number, plus or minus a few percent, depending on the quality of the metal. A clean, well reduced piece of steel allows a plus or minus 20% for same result. Poor quality steel, which is a challenge anyway, gives you a smaller range plus or minus 1-2%. “The second consideration is agitation. I have timed a lot of quenches, and the optimum might be any given time at full power, and half way through the quench cycle, knock back 50%. That’s critical.” Agitation “We built our own agitator,” says Moore, and, “given the aggressive turbulence we produce, we expected some foaming.” Foaming can be created by equipment issues such as air leaks or pump cavitation, or by contaminants such as cleaners, or metal working fluids. It is an issue because bubbles adhering to the metal surface allow thermal gradients to develop within the part, thus producing distortion. But this quenchant has an antifoaming additive, so distortion from thermal gradients is not a problem. Proper agitation is also excellent insurance against the biological degradation of the polymer. This can occur because of bacteria that enter the bath on coolants or other process fluid residues. As an operations matter, one of the notable characteristics of Parquench90 is its stability, according to Moore. “We’ve had it three years, and even through it’s used continuously, it’s so stable, we now only check it twice a week.” Flexibility and Maintenance The quenchant also offers flexibility. “We use it between 15-17% concentration, but it’s not critical for it to be exact,” says Moore. “Polyglycols, on the other hand, force you to pick a number and stay there – or you’d see a lot of cracking. Also, only bath concentration requires monitoring – and that’s primarily due to evaporation.” The quenchant offers the flexibility of producing an interrupted quench, without hazard to workers or the shop. This is because there are no aldehydes, ketones, or other dangerous substances generated. Maintenance on the quench bath is limited to skimming (to remove machining and hydraulic oils that enter the bath on parts) and biannual descaling of tanks. Eliminating scale maintains the heating/cooling potential of the quenchant at a constant level and allows agitation to be optimally effective. High-speed oil and Heatbath’s quenchant deliver the same properties, according to Moore. “Both allow you to ‘hit the brakes’ at 500°F, with no cracking and no distortion. Heat treaters exist in order to put 1600°F parts into a liquid quench and produce a specific metallurgical outcome. “Twenty thousand gallons of oil making contact with parts that hot is an immediate fire,” he adds. “It lasts only seconds, but when oil-coated parts are put back in for tempering, there’s more burning. We’ve found a way to accomplish our objectives without involving 20,000 gallons of highly flammable oil.”

175


富京工业炉燃烧系统及蓄热式烧嘴 (中文版,幻灯片) Combustion System and Regenerative Burner of FUKIN Industrial Furnace (Chinese version only, PPT) (北京富京技术公司,中国) (Fukin Technologies Services (Beijing), China)

176


177


178


179


180


181


182


183


184


185


186


187


188


189


190


191


192


193


194


195


196


197


198


5 月 30 日上午 On the morning of May 30th

199


石油和石化装备行业现状和对大型锻件的需求及展望 (中文版,幻灯片) Recent Trend of China Petroleum & Petrochemical Equipment Industry, and Demand to Heavy Forging (Chinese version only, PPT) 赵志明 (首席顾问,中国石油和石油化工设备工业协会,中国) Zhiming Zhao (Chief Adviser,China Petroleum & Petrochemical Equipment Industry Association, China)

200


201


202


203


204


205


206


207


208


209


210


211


212


213


214


215


216


217


218


219


220


221


222


223


224


225


226


227


228


229


230


231


232


233


234


235


236


237


238


239


锻造十年 (中文版,幻灯片) Development of CFHI in Recent Ten Years (Chinese version only, PPT) 曲在文 (中国第一重型机械集团公司,中国) Zaiwen Qu (China First Heavy Industry, China)

240


241


242


243


244


245


246


247


248


249


250


251


252


253


254


255


256


257


258


259


260


261


262


263


264


265


266


267


268


269


270


271


272


273


274


275


276


277


中国二重大锻件研发进展 (中文版,论文) Development of R&D of Heavy Forging in China National ERZHONG (Chinese version only, Paper) 陈海堤、孙海燕、张清华、陈新倬 (中国二重集团(德阳)重型装备股份有限公司,中国) Haidi Chen, Haiyan Sun, Qinghua Zhang, Xinzhuo Chen (China Erzhong Group (Deyang) Heavy Industries Co., Ltd., China) 摘要:中国二重作为中国最大的大型铸锻件生产基地之一,为满足国家建设需要,经过近几年的大规模 技改、研发投入,在大型锻件制造领域取得了举世瞩目的成绩,本文简要介绍中国二重大锻件制造研发 与装备能力,以及成功开发研制的典型大锻件产品。 一、 中国二重概况 1. 概况 中国二重是中国最大的重型机械制造基地之一,始建于 1958 年,占地 261.1 万平方米,企业总资产 178.6 亿元,拥有员工 1 万 3000 余人,其中工程技术人员 3000 多人。 中国二重现拥有德阳和镇江两个生产基地以及坐落成都的国家级技术中心、工程实验室和博士后工 作站等科研机构,拥有 160MN 水压机、世界最大的 800MN 模锻压机等主要生产设备 6600 台。 中国二重具有一次性冶炼 1000 吨级优质钢水、浇铸 600 吨真空钢锭、锻造 400 吨级以上优质锻件 的能力,是中国最大的冶金、核电、水电、火电成套铸锻件、重型压力容器、大型传动件、大型航空模 锻件等重大技术装备制造基地。 随着国际、国内大锻件市场需求的不断变化与大锻件规模等级、质量等级要求的不断提高,近几年, 中国二重通过大规模技改、研发投入,在大锻件制造能力上产生了质的飞跃,在短短几年内,钢锭等级 从过去的最大 260 吨级上升到 600 吨级,并成功开发出 CPR1000、AP1000 成套核电大型锻件、5M 特 大型支承辊锻件、特大型双超加氢反应器锻件等大量制造难度大、技术含量高的大型锻件产品,在国际、 国内大锻件市场占据重要席位,为应对新的形势和挑战,中国第二重型机械集团公司在 2012 年初进行了 公司化改革,将原铸造分厂、锻造分厂等单位整合成铸锻钢事业部,同时为加大新产品开发力度,事业 部下属的技术部成立为大型铸锻件研究所,依托成都工程实验室和博士后工作站的科研研究支撑形成了 较强的大型铸件、锻件的研发能力。 2. 镇江出海码头

镇江码头为二重集团投资新建的镇江出海口制造基地码头,利用厂房起重行车起吊,行车起重能力 1700 吨(2 台 850 吨行车);行车跨距 34 米,港池水面宽度 34 米,岸上路面宽度 7 米,钩底距码头路 面最大距离 28 米(起升高度);港区水位常年在 10 米以上,无封冻期,可随时停靠万吨级船舶。 3.

成都工程中心

二重成都工程中心的工程实验室主要有对大型铸锻件的全过程有限元分析系统,包括铸造(包括冶 炼凝固)、锻造、热处理三部分,每部分与具有优势的国内外院所合作联合开发。要将大型铸锻件数值 模拟国家工程实验室建成代表我国大型铸锻件行业最高水平的数值模拟研究中心。 工程实验室主要设备有引进德国阿亨大学塑性成型研究所(IBF der RWTH-Aachen)计算机数值模 拟仿真技术,同时拥有铸造数值模拟软件 ProCAST、锻造过程有限元分析软件 DEFORM、热处理过程

278


软件 Sysweld 等先进有限元分析软件,能够对锻件从钢锭浇铸、锻造、热处理全过程进行有限元分析, 为工艺方案的制定提供有效支撑。另外还有拥有 TMTS 试验机、800 吨压机及配套设备、热膨胀仪、高 温金相显微镜+图象分析系统等材料性能检测设备,能完成金属材料各种物理参数的测定及比例件的成形 工艺模拟。

扫描电镜和金相分析

TMTS 试验机工作现场

X 射线衍射仪及高温膨胀仪 4.

二重铸锻钢事业部组织结构图 铸锻钢事业部

综 合 部

财 务 部

生 产 部

营 销 部

办 公 室

企 业 管 理 部

生 产 一 科

生 产 二 科

外 协 科

炼 钢 车 间

铸 钢 车 间

电 炉 车 间

模 型 车 间

水 压 机 车 间

设 备 部

锻 压 车 间

279

质 检 部

大型铸锻 件研究所

质 量 管 理 办

冶 炼 工 艺 科

锻 造 工 艺 科

铸 造 工 艺 科

机 加 工 艺 科

行 业 管 理 办

热 处 理 车 间

机 加 一 车 间

机 加 二 车 间

三 金 工 车 间

四 金 工 车 间

万 力 公 司


二、中国二重锻件制造能力概述 1.冶炼 冶炼采用电炉粗炼钢水,钢包精炼炉精炼、真空注锭,目前最 大钢锭已达 560t,最大能力可冶炼浇注 600t 钢锭。主要的冶炼设 备有 60t 电弧炉,80t 电弧炉,150t 钢包精炼炉 2 台,真空铸锭室 10 个。 2. 锻造 最大锻造能力公称压力为 160MN,最大锻件重量为 350t,主 要设备有 160MN、125MN、31.5MN、12.5MN 水压机。 3.锻后热处理 二重共有锻后热处理炉 43 台,主要设备有 7×18m 载重 600t 台车式热处理炉、7.5×15m450t 台车式热处理炉,4×(13+22)m 台车式热处理炉。其中去年新增 11 台热处理炉,每台热处理载重 均为 600t,最大热处理炉尺寸为:宽×长×高:7.5×18×8m。 车间最长锻后热处理炉长度为 22m。二重已具备大型锻件同时集 中锻后热处理的能力。 4.机械加工 160MN 水压机 中国二重具有大型铸锻件、超大型核电、加氢筒节、水电产品 的精深加工能力。主要大型精加工进口新设备有德国瓦德里西.西根Ф3.5m×21m(承重 350t)、捷克斯 柯达Ф4.2m×16m(承重 350t)等数控重型卧车,德国赫克力斯Ф2.2m×12m(承重 150t)数控外圆磨 床等设备,还有目前国产最大的Ф5m×20m 数控重型卧车(承重 500t),以及 30m 深孔钻床、Ф 200mm 数控镗铣床、Ф3.2×33m 重型车床等大型轴锻类的加工设备,同时还拥有以Ф12.5m(承重 250t)到φ6.3m 的数控立车群数十台。

Ф5×20m 数控车床(加工大型船轴)

Ф4.2m×16m 数控车床(加工核电低压转子)

5.性能热处理

280


主要设备有φ3.2×15(20)m 井式热处理炉、φ2.5×15(20)m 井式热处理炉、φ1.8×30m 井式 热处理炉、φ2.3×20m 井式热处理炉、φ3.8×35m 淬火油槽、φ9×8m 淬火水槽、35m 大型喷水喷雾 淬火装置。 6.技改计划 为适应大锻件产品生产需要,公司即将新增大型环轧机、700TM 锻造操作机,大型电渣重熔炉、等 重型锻造装备。 三、新产品和新技术开发 1.

300 吨以上大型钢锭制造的研制

针对核电等大型锻件制造的需要,完成了 300 吨到 600 吨大型钢锭系列的钢锭模的数值模拟分析研 究、设计和制造。并对 234t 大型钢锭进行了解剖分析,掌握了生产大于 300t 钢锭的多包合浇冶炼浇注技 术。 2010 年一年生产 290t 钢锭 14 支,300t 级钢锭 21 支,400t 以上钢锭 13 支,全年生产大型钢锭共 计 48 支。截止目前,二重还生产了核电发电机半速转子锻件用 560 吨钢锭共 6 支。目前已完全具备生产 600 吨钢锭的能力。

450 吨大型钢锭 560 吨大型钢锭 2. 核电蒸发器水室封头、上封头锻造的工艺研究 二重近一年来依托成都工程中心的数值模拟技术并结合生产现场实际成功锻制了大量核电封头,其 中成形方法分为整体旋转成形和板坯拉伸成形两种。其中具有代表整体旋转 AP1000 核电容器顶盖锻件 和拉伸成形中难度较大的 CPR1000 水室封头。 2.1 整体旋转成形的数值模拟

2.2 水室封头 2.2.1 水室封头拉伸模拟 CPR1000 水室封头成形方式:有板坯拉伸以及拉伸完成后进行翻孔。

281


水室封头拉伸与翻孔成形模拟过程

水室封头成品图 3.

上封头成品图

CPR1000 蒸发器锥形筒体制造技术研究

在进行大量数值模拟与小比例试验件锻造的基础上,二重完全掌握了特大型锥形筒体锻造技术,现 已经实现批量化制造,产品质量优良,各项性能指标都完全满足制造要求。

CPR1000 蒸发器锥形筒体

282


4.

AP1000 核电锻件研制

二重开展了 AP1000 核电大锻件的研制工作,主要的锻件包括管板、筒体、带法兰接管段筒体、补 水箱封头、壳体和稳压器等主要部件。 通过攻关,解决了特大型核电锻件钢水纯净度要求高、成分控制范围窄、性能要求苛刻等难题,最 大的核电 AP1000 锻件钢锭重量达 450t,在已出产产品的力学性能满足核电锻件要求。 二重已完成 AP1000 核电管板的制造,从生产的产品的理化检验的结果看,质量优良,完全满足了 第三代百万千瓦级核电管板制造的技术要求,性能指标达到国际领先水平。

AP1000 核电 SG 筒体

AP1000 核电锥形筒体

AP1000 核电补水箱壳体锻件

AP1000 核电补水箱封头锻件

AP1000 核电稳压器下封头 AP1000 核电管板的研制

AP1000 核电稳压器下封头

1160±20 (1081)

B印

φ4620±30 (4528)

AP1000 管板锻件图

AP1000 管板成品图

283


表 1 核电 AP1000 管板锻件力学性能分析结果: 试样 位置

热处 理状态

常温拉伸 方向

350℃高温拉伸

Rp0.2 (MPa)

Rm (MPa)

A4 (%)

Z (%)

Rp0.2 (MPa)

Rm (MPa)

A4 (%)

Z (%)

≥ 450

620~ 795

≥ 16

≥ 35

≥ 370

≥ 558

/

/

标准 样坯 A

HTMP+SPWHT

切向

505

660

27

70

475

640

29

74

样坯 C

HTMP+SPWHT

切向

525

675

27

70

460

635

30

75

表 2 核电 AP1000 管板锻件 Akv 和 RTNDT 测试结果: 方向

12℃(AKv(J))

-21℃(AKv(J))

TNDT(℃)

平均值

≥68

≥48

最小值

≥68

≥41

实测值

181,161,181

116,98,161

-40

实测值

176,187,186

159,123,153

-40

标准

第一块

要求≤-21

切向

表 3 核电 AP1000 管板锻件组织、非金属夹杂物及晶粒度分析结果 非金属夹杂物(级) 部位

晶粒度

组织 A

B

C

D

≤1.5

≤1.5

≤1.5

≤1.5

0.0

0.0

1.0

1.0

0.0

0.5

0.5

0.5

0.0

0.0

1.0

0.5

0.0

0.5

0.5

0.5

≤5 标准

水 口 端

样坯 A

样坯 C

5.

贝氏体回火组织

7

贝氏体回火组织

7

AP1000 不锈钢整锻核电主管道研制

针对世界首套百万千瓦级核电主管道和波动管,二重进行了大量的不锈钢锻件制造技术研究,带管 咀长直端主管道模压弯管制造技术研究,通过首件解剖,试验件各项性能数据及尺寸控制满足 RCC-M 和 ASME 规范和采购技术要求,掌握了冶炼,锻造,热处理和弯管等制造技术。目前已经进入批量生产。 其中,反应堆主管道热锻弯曲及其制造方法获得国家第十二届专利优秀奖。二重制造的首套 AP1000 主 管道产品已于 2012 年 3 月 16 日正式发运山东海阳核电站。其关键专有技术获得中国专利优秀奖。 主管道锻件弯曲成型数值模拟

主管道弯曲模拟

284


热段 A 弯管

热段 B 弯管

冷段 2A

冷段 2B

第十二届优秀专利奖 6.

大型水电锻件的研制

三峡镜板调质热处理

285


在大型水电锻件方面,主要用户有东电、阿尔斯通 等国内外厂家。目前二重已经独立自主生产了三峡 700MW 水电机组和向家坝水电机组的全部铸锻件,其 中生产的全国最大的水电镜板三峡 700MW 水电机组镜 板,锻件材质为 25CrMo4,零件尺寸φ5445/φ3975× 145.5mm,零件重量 12.422t。通过攻关使镜板的力学 性能、表面硬度、硬度均匀性等质量指标优良,替代了 进口。 目前,二重生产了国内最大的整锻贯流式水电主轴, 峡江水电主轴 其零件尺寸φ2200/φ410×8929mm,零件重量 90.357t。毛坯单重 174t,锭型 310t。锻件目前已经探伤合格,正在精加工。 百万千瓦核电发电机转子研制 1000MW 核电发电机转子是核电站中重大关键零件之一,由于该转子尺寸大,质量要求等级高,该 锻件同时也是代表目前世界上大锻件制造最高水平的标志性产品之一。 (1)转子锻件交货尺寸: 主截面直径:φ1955mm×7990mm,总长:15226mm。 (2)转子锻件重量: 交货重量:226.44t; 性能热处理重量:约 260t; 锻件毛坯重量:约 320t; 钢锭重量:约 560t。 7.

CPR1000 核电发电机半速转子锻造中 二重于 2009 年 3 月份成功冶炼第一支 560 吨钢锭,通过锻造、锻后热处理、机械加工、性能热处理 各工序,全部指标达到采购技术要求,使二重成为世界上第二家具有制造此类产品的厂家。转子锻件未 发现φ1.3 以上缺陷,转子中心 C 含量在 0.22~0.26%,转子偏析控制良好。截止目前已向用户合格交 付 5 支。

CPR1000 核电发电机半速转子加工中 8.

第一支核电半速转子交货状态

宽厚板特大型支撑辊制造

5 米及以上轧机是如今世界上最大级别的宽厚板轧机,其支承辊体积异常庞大,交货重量 200 吨以 上,所采用的钢锭重达 400 吨以上。

286


中国二重从 2007 年开始进行专用新材料研究,2008 年开始投料试生产,2009 年形成批量生产能力。 已分别为营口 5M、沙钢 5M、韩国现代等厂家生产 5M 支撑辊共 20 支。最大交货重量 226.4 吨。

5m 特大支承辊热处理中

5m 特大支承辊交货状态 四、结束语 当前市场形势复杂多变、订单不足困扰企业发展,不断出现的新情况新变化,对我们提出了新的挑 战。无论时代如何发展,企业的立身之本关键在于持之以恒的技术进步和技术创新,只有在技术进步和 创新的前提下不断制造出适应时代进步要求的过硬产品,企业才能获得立身之本,才能生存和发展下去。 中央企业作为国民经济的重要支柱和骨干力量,在加快转变经济发展方式中担负着重要使命和责任。 二重的技术进步和自主创新,不仅增强自身本领,同时也有利于国家综合实力的增强,有利于国家经济 发展方式转变的顺利推进。实事求是而言,我国装备制造与世界装备制造强国尚存一定差距,这种差距, 主要还是体现在自主创新和核心竞争力上。因此,我们要扩大市场份额,缩短与世界装备制造强国的差 距,在优胜劣汰的国际竞争中争取优势,就只有踏踏实实地在自主创新、提升核心竞争力上下真功夫, 添真本领。 中国二重将借助建设大型电渣重熔炉、75MN 环锻机、750TM 操作机等一系列新的技改措施,利用 国家级工程研究中心技术优势,进一步夯实基础,扩展大型锻件制造能力范围,提高大型锻件制造质量 水平;要提高产品的质量控制能力,把这些年大锻件研制过程中的技术、管理创新经验进行总结、升华, 并加以推广,以此提升企业向高端装备全面升级的能力,推动企业质量文化、创新文化的建设,以转型 升级来应对当前日益激烈的市场竞争和多变的市场形势。

287


内蒙古北方重工特殊钢生产能力现状与展望 (中英文版,论文) 雷丙旺,任胜利,白箴 (内蒙古北方重工集团,中国) 摘要:中国钢铁制造的发展使中国成为钢铁生产大国,而特殊钢的发展推动着一个钢铁制造大国向 钢铁强国转变。内蒙古北方重工以“科技创新、引领未来”的核心理念去发展企业的特钢事业,经过 50 多年的努力和追求,企业的技术水平和装备水平取得了巨大进步。尤其是国家重大装备 3.6 万吨挤压机的 成功研制和以 P91、P92 为代表的高温承压设备用大口径厚壁无缝钢管的成功开发,添补了国内空白, 打破了国际贸易壁垒,使我们能够站在行业的前沿,为企业进一步的发展奠定坚实的技术物质基础。本 文主要介绍北方重工特殊钢产业生产设备、工艺技术、新产品及特钢产业未来发展方向。 关键词:3.6 万吨挤压机 RF70 径向锻造机组无缝钢管工模具钢大型锻件 1 企业简介 内蒙古北方重工业集团有限公司(原名内蒙古第二机械制造总厂)是中国兵器工业集团所属的国家 特大型骨干企业和重点保军企业,始建于 1954 年,是国家“一五”期间的 156 个重点建设项目之一,建 厂多年来为国防建设做出了重大页献。公司占地面积 297.7 平方公里,生产性建筑面积 60 万平方米,现 有 7 个分公司、31 个子公司和一家上市子公司。 经过50多年的发展,资产总额70.9亿元,公司已具备特种钢冶炼、铸锻造、热处理、机械加工和总 装调试等能力,技术力量雄厚、科研手段完备、综合加工能力强,拥有国家级企业技术中心、国家第94 号试验室。公司质保体系完善、运行有效。通过GB/T19001-2000(idtISO9000:2000)质量管理体系认 证、GB/T24001-2004 (idt IS014001 :2004) 环境管理体系认证、GB/T28001-2001职业健康安全管理体 系认证,大口径厚壁无缝钢管产品先后取得了中华人民共和国特种设备制造许可证和ASME材料认可证书, 公司先后取得中国、美国、韩国、德国、法国、英国、挪威等国家的船用产品生产许可证,公司还通过 了欧盟认可机构UKAS对ISO9001:2008质量管理体系认证审核。公司每年还接受数十家国内、外公司第 二方审核,陆续通过了俄罗斯AME公司、丹麦Vestas公司、哈锅、东锅、上锅等10多家国内、外公司第 二方评审。成为国内军用大口径火炮动员中心;民用特殊钢、深孔加工及大型配套设备制造重点生产企 业。 近年来,公司在兵器工业集团的正确领导下,牢牢把握装备制造业快速发展的有利时机,以提升发 展能力,塑造“北方重工”品牌,打造百亿集团为目标;以谋求产品发展和资源优化配置为主线;以产品 结构、组织结构、人力结构持续调整为手段;秉承“铸强国利剑、造富民坚犁”有企业宗旨,以“目标 责任、考核评价、监督执行、服务保障”四大体系为保证,坚持走“集团化管理、市场化运作、专业化 经营、规模化发展”之路,着力提高市场意识、竞争意识、成本意识、服务意识、责任意识,形成了矿 用车及工程机械、特种钢及延伸产品、煤矿综采设备、改装车等代表产品,“十一五”期间,通过技术 改造,公司发展进入快车道,2010 年集团公司销售收入突破百亿元大关,社会地位突显。下面重点介绍 特殊钢版块设备能力和产品特点: 2 设备能力及发展 2.1 电炉、LF、VD(VOD)精炼炉

50 吨超高功率电弧炉

60 吨 LF 钢包精炼炉 288


拥有德国技术,具有世界领先水平的 50 吨超高功率电弧炉(偏心炉底出钢)+60 吨 LF 钢包精炼炉 +60 吨 VOD 真空除气+钢包底吹氩+车铸装置,该生产线的生产能力为:年冶炼碳结钢、合结钢、轴承钢、 弹簧钢、工模具钢、齿轮钢、高压容器钢、机车车轴用钢、高强韧专用钢、承压设备用高温铁素体无缝 钢管用钢、不锈钢等各类特殊用途钢 20 万吨。 2.2 电渣炉、真空自耗炉 公司拥有 5 吨、12.5 吨、15 吨、20 吨电渣重熔炉各一台,年生产电渣锭能力 1.5 万吨,用于高等级 产品的生产。十二五期间,公司将增建真空自耗炉,进一步提升产品的质量水平。 2.3 自由锻压机 公司拥有 3000t、2000t、1250t 等锻压设备多台,具备年锻造大型锻件 5 万吨的能力。采用 2000 吨水压机、3000 吨油压机锻造(台阶)轴类、方坯类、管坯类、筒类、饼类、圈类等自由锻件,可锻造 重量为 20 吨的钢锭,长 12 米的锻件。

20 吨电渣重熔炉(美国康萨克制造)

3000 吨自由锻油压机(德国 PAHNKE 制造)

2.4 3.6 万吨黑色金属垂直挤压机 曾几何时,我国发电用的高温承压大口径厚壁无缝钢管几乎全部进口,受国际生产巨头垄断,价格 居高不下且供货时间不能保证,严重制约我国电力乃至国民经济建设。北方重工集团以高度负责的民族 使命感和责任感,通过近三年的努力,我国自主设计、制造的世界上最大的 3.6 万吨垂直挤压机于 2009 年 7 月 13 日试挤出第一根大口径厚壁无缝钢管,结束了国内不能垂直挤压大口径厚壁无缝钢管的历史。 垂直挤压无缝钢管生产线的主机是 3.6 万吨垂直挤压机,这是继美国威曼·高登公司 3.15 万吨垂直 挤压水压机之后具有世界先进水平的大型垂直挤压设备,是具有国际影响的重大技术装备。该项目技术 含量高,工艺要求复杂,对发展我国大直径高压厚壁无缝钢管的制造起到重大的推动作用,同时为挤压 生产高强度合金钢、不锈钢、高温难熔合金及钛、铌等特殊合金的管材、异型管材和棒材奠定了坚实基 础。 设备制造按照未裂先分的原则,进行合理的剖分,将超重、超限的巨大结构件分成子件,制造后通 过组合(坎合)子结构组装成整体结构;预应力剖分坎合技术与预应力钢丝缠绕技术相结合,用预应力 场改善工作应力场形式,使拉应力变成压应力,消除应力集中(应力峰值),提高挤压机使用寿命,使 压机在保证强度、疲劳抗力和刚度的前提下达到重量轻、结构紧凑的目的;从另外一方面讲,全应力场 下的剖分-组合(坎合)处理方式,还使零件化大为小,减小重量,大大降低了各零件的制造难度,降低 运输成本和困难程度。目前,设备运行正常,工艺日趋完善,具备年产 5 万吨钢管的能力。

3.6 万吨黑色金属垂直挤压机

GFM-RF70 1800 吨精锻机(外来照片)

289


2.5 GFM-RF70 径向锻造机组 径向锻造机(以下简称精锻机)适合生产圆形、矩形、锥形等截面形状的各类碳钢、工具钢、不锈 钢、超合金钢,尤其对冷作工具钢、高合金钢、钛合金、硬质合金、高温合金、温锻钢种具有独特的优 势。GFM 提供的 RF70 式精锻机,是该公司 50 多年来在世界范围内为著名特钢提供的锻机经验积累下 来的著名而成熟的系统,此锻机是锻造生产线上的关键设备,其主要特点是工作中的四个锤头完全同步, 加之有特殊的斜度使其具有优秀的锻透性和变形均匀性,以及其特有的超高工作频次,可以实现高产量、 高质量和高精度锻造,这对提高材料利用率、提高劳动生产率,最终实现提高经济效益非常重要。该锻 机最大锻造力 1800 吨,可以生产最长工件为 20 米,最小外径 100mm,最大进料外径 700mm,最大重 量 10 吨,配置两台操作机及钢管空心锻造装置,年生产能力 5-10 万吨。该机组 2008 年订购,目前正在 安装,2012 年 6 月投产后必将对公司的锻造能力得到大的提升。 3 新产品及未来展望 3.1 无缝钢管 2004 年始,本企业依托管件热加工及深孔加工技术优势,在已有装备条件下研发电站用高温承压用 无缝钢管,先后试制了 SA106C、SA106B、SA-335P12、P22、P91、P92、TP316、TP304 及 WB36CN1 等材料钢管,均取得成功,特别是随着 2009 年 3.6 万吨挤压机的投产,钢管的质量和产量大 幅提升,推动了高端大口径厚壁无缝钢管制造技术的跨越式发展。特别是高端的 P91、P92 材料的钢管 的国产化,明白地展示了北方重工的制造能力,也极大地提升了企业的形象。该产品适用于超临界、超 超临界电站锅炉、电站四大管道;核电以及石化、航天航空等领域。主要用户有华能集团、中国核电工 程有限公司、中广核、上海电气、东方电气、哈电集团、中石化、印度 BHEL 等知名企业。主要建设项 目有:100 万千瓦超超临界上海外高桥、绥中、玉环、宁海及 100 万千瓦以下的印度莎圣、济宁、白洋 河、平凉、营口电站项目以及中石化镇海炼化 100 万吨聚乙烯项目。2006 年度,本公司生产的无缝钢管 获内蒙古自治区名牌产品称号。另外 3.6 万吨挤压机的成功研制和以 P91、P92 为代表的高温承压设备用 大口径厚壁无缝钢管的成功开发,进口产品价格大幅度下降,为采购企业节约巨额外汇。今后,北方重 工将依托 3.6 万吨挤压机,扩大生产钢管的尺寸规格范围和品种范围,重点巩固和扩大超临界、超超临界 火电用 P91、P92 钢管市场占有率,核电产品中 P280GH、WB36CN1 及其他一些不锈钢管核级产品形 成规模,2012 年 4 月,通过国家核安全局组织的“民用核安全机械设备制造许可证(核 2、3 级管道) 申请”的模拟件制造现场见证及专家审核验收。700℃以上超超临界火电锅炉用管材研发取得显著成效, 成为中国乃至世界高端大口径厚壁无缝钢管的顶级供应商。 3.2 工模具钢 工模具钢一直是本企业的主干产品之一,上世纪八十年代,公司与华中科技大学、中国第一拖拉机 厂、中国第二汽车制造厂等单位联合研发的 5Cr2NiMoVSi 热作模具钢因其特有的高强韧性、抗疲劳性能 和热磨损性及优良的淬透性,极大地提高了模具的寿命和产品成型质量,受到用户青睐,1989 年该钢种 纳入国家标准。公司独立研发的 P4410 高级镜面塑料模具钢,因其具有良好的耐蚀性和抛光性能,产品 一面世便在中国模具钢市场大放异彩,该产品在 1990 年 11 月广州第二届国际专利及新产品展览会上获 银奖。近些年,公司在热作、冷作模具钢产品开发上又迈出大的步伐,随着 1800 吨精锻机的投产,公司 将在新型工模具钢、高温合金等产品上获得长足的发展。

成品无缝钢管

成品风机主轴

3.3 大型自由锻件 3.3.1 风机主轴

290


公司具有从原材料冶炼、锻造、热处理到机加工和表面防腐处理的全套风电主轴生产线,适用于 0.75MW 至 3.0MW 风电主轴生产。材料包括:42CrMo4、34CrNiMo6、30CrNiMo8 等,产品加工精度高,性能 稳定,已陆续加入到国际知名品牌的供应链。特殊钢公司具有年产精加工主轴 400 支、粗加工毛坯 1000 支的生产的能力。集团公司还与德国 Repower 公司合资成立瑞能北方风电设备有限公司,使风电产品形 成产业链,扩大了市场的认识度。 3.3.2 冶金轧辊 公司从上世纪 90 年代初期,就开始生产各种材质和规格的冷轧辊、冷轧辊毛坯。规格≤Ф960/1740 ×4000;材质包括 9Cr3Mo、MC3A、MC3B、MC5 等。产品特点:经过多年的研制和生产,在工艺技 术上取得重大突破。材料洁净度高、组织致密、碳化物粒度小,弥散分布,淬硬层深度大,毫米轧制量 显著提高。 公司生产的冷轧辊毛坯已经批量供应宝钢集团常州冶金轧辊制造公司、中国一重常州华冶恒基轧辊公 司、陕西压延设备厂等厂家,部分产品出口到国际市场,受到国内外用户的好评。

机加工冶金轧辊

毛坯机加后的曲轴光坯

3.3.3 曲轴光坯 公司是国内高中速内燃机用曲轴坯料的主要制造商,这些类型发动机应用广泛,包括柴油-电力机车、 船用推进系或辅助电源、驻车发动机、空气压缩机等。公司自 1998 年成为中国南车集团资阳机车厂的曲 轴坯料专业供应商以来。所生产的曲轴坯料陆续取得中国、美国、韩国、德国、法国、英国、挪危等国 家船级社的认证。公司曲轴光坯料的产能为每年 15000 吨。高端曲轴坯国内市场占有率达 70%以上。 2004 年度,本公司生产的曲轴光坯获内蒙古自治区名牌产品称号。 4 结束语 内蒙古北方重工集团是国家的重要大型企业,50 多年来为国防建设和经济建设做出过重大贡献。随 着 3.6 万吨挤压机产能的释放和 1800 吨精锻机的投产,使热加工能力形成了自由锻造产品、精锻机产品、 挤压产品三条完整的生产线,成为国家大口径厚壁无缝钢管、工模具钢、大型自由锻件的重要生产基地。 “十二五”期间,公司将充分发挥自身的技术装备优势,与国内外厂商强强联合,推动公司特钢产业销 售收入跨越 100 亿元,为国家的发展做出更大贡献。 参考文献 [1] TECHNICAL APPENDICES TO THE CONTRACT FOR RF70 RADIAL FORGING MACHINE [2] 3.6 万吨黑色金属垂直挤压机工艺研究技术总结 作者简介 雷丙旺男 196606 吉林大学硕士内蒙古北方重工集团副总经理研究员级高级工程师 任胜利男 196610 内蒙古工业大学内蒙古北方重工集团特种材料研究院大型锻件产品开发室主任研究员级 高级工程师 白箴男 195605 内蒙古工业大学内蒙古北方重工集团特种材料研究院挤压产品开发室主任研究员级高级工 程师

291


Present Situation and Future Prospects of NHIC SpecialSteel Production Capacity (Chinese & English version, Paper) Bingwang Lei, ShengliRen, ZhenBai (Inner Mongolia North Heavy Industries Group Corp., Ltd., China) (hereinafter refer to as NHIC) Abstract: China has already become one of the biggest producers of iron and steels with the development of steel making industries, while the development of its special steel making is promoting the nation to convert from a big steel producer into a steel superpower. NHIC develops special steel cause with core value of “Science and technological innovation, leading the future”. After 50 years efforts and seeking, our enterprise has an earthshaking change on technical level and equipment level. Especially, the successful development of 36,000 tons extruder and large caliber thick wall seamless steel pipe like those P91 and P92 used for high temperature compression equipment fill domestic gap, and break trade barrier, so as to make us in the leading position, and as well as laying solid technical material foundation for further development. This article mainly introduces NHIC special steel production equipment, process technology, new products and special steel industry future development orientation. Key words: 36,000t extruder steel large forgings

RF70 radial forging machine set

seamless steel pipe

tool and die

1. Brief of NHIC Inner Mongolia North Heavy Industries Group Co., Ltd (NHIC) (the former Second Inner Mongolia Machine-building Company) was built in 1954 as one of the 156 key projects of the nation during its first 5-year plan. It is subordinated to China NORINCO Group, and is one of the largest and key enterprise nationwide and a state nominated manufacturer for assurance of military supply. It has made a greater contribution to national defense construction. The Company is constructed over a floor area of 297.7 square kilometers, in which production building area of 600,000 square meters. At present, it has 7 branch companies, 31 subsidiary companies and one listed subsidiary company. Over 5 decades of development, total assets up to 7.09 billion (RMB), and now the Company possesses the capability like special steel making, casting, forging, heat treating, machining, commissioning and attesting. With powerful technical capacity, complete R & D means and capable of all-round production, the Company boasts its state-of-the-art R & D team, nation-admitted technological center and National Laboratory No.94. The quality assurance system is perfect and runs validly. The Company has passed GB/T19001-2000(idt ISO9000:2000)quality management system certification, GB/T24001-2004 (idt IS014001:2004) environmental management system certification and GB/T280012001 occupational health security management system certification. The large caliber thick wall seamless steel pipe has achieved PRC Special Manufacturing License and ASME Material Authorized Certification. The Company has achieved marine products production licenses from China, the US, Korea, Germany, France, England and Norway etc., and also passed ISO9001:2008 quality management system certification audited by Europe-union authorized institution UKAS. The Company also accepts second side audit from several tens of domestic and foreign companies every year, and has passed second side audit from Russia AME Company, Denmark Vestas Company, Harbin Boiler Company, Dongfang Boiler Company, Shanghai Boiler Company etc.. Now the Company becomes domestic military large caliber gun mobilization center; key enterprise for civil-used special steel, deephole manufacturing and large corollary equipment fabrication. During recent years, under the leadership of NORINCO GROUP, the Company firmly holds advantageous opportunity of the speedy development to equipment manufacture, set the promoting of developing capability, portraying of brand “NHIC” and building of 10 billion (RMB) group as the objective; set the seeking of products development and resource optimized allocation as the mainline; set the continuous adjustment of products structure, organization structure and human power structure as the measures; set “Build up the Powerfulness of the Nation for the Prosperity of the People” as the enterprise principle; set four systems of “objective and responsibility, assessment and evaluation,

292


supervision and implement, service and safeguard” as the guarantee; uphold “group management, market operation, professionalized performance and scale development”; enhance market awareness, competition awareness, cost awareness, service awareness and responsibility awareness; form representative products as heavy-duty mining trucks and engineering machineries, special steel and its extending products, coal mine machineries, special-purposed vehicles, etc.. During 11th five-year plan, the Company developed very fast through technical modification, and sales in-come fulfilled 10 billion (RMB) in 2010. The special steel equipment capability and products characteristics will be introduced as follows: 2. Equipment capability and development 2.1 Electric furnace, LF, VD (VOD) refining furmace The Company possesses 50t superhigh power electric arc furnace (eccentric bottom tapping) (with Germany technology and leading level in the world) + 60t LF+60t VOD + ladle bottom Argon protection + car casting device, the production capacity of this production line is: annual special steel making up to 200,000 tons including carbon steel, alloy steel, bearing steel, spring steel, tool and die steel, gear steel, high pressure container steel, locomotive axle steel, high strength and toughness special steel, high temperature ferrite seamless steel pipe used for pressure bearing equipment, and stainless steel.

50t super-high power EAF

60t LF

2.2 Electric salg furnace, VAR The Company possesses each sets of 5t, 12.5t, 15t and 20t electric slag remelting furnaces, annual output of electric slag ingot is 15,000 tons, which used for the production of higher level products. During 12th five-year plan, the Company will build VAR to further increase quality level.

20t ERF (Made in America CONSARC)

3000t free die forging machine (Made in Germany PAHNKE)

2.3 Free forging machine The Company possesses 3000t, 2000t, 1250t and etc. forging machines, and with annual output of large forgings 50,000 tons. Therefore, the Company can forge the free forgings like axle (step), square billet, tube billet, cylinder, biscuit, ring type etc., the weight up to 20 tons and the length up to 12 meters. 2.4 36,000t ferrous metal vertical extruder Previously, in China, high temperature pressure-bearing large caliber thick wall seamless steel pipe used for power plant were almost imported, and due to monopolization of international magnates, the price was high and supplying time can’t be ensured, therefore our electric power and national ecnomic construction were restricted seriously. However, with strong national sense of mission and sense of responsibility, through 3 years’ efforts, the Company produced the first large caliber thick wall seamless

293


steel pipe with the largest 36,000t verticle extruder on July 13th, 2009. It marked the end that our country can’t extrude large caliber thick wall seamless steel pipe. The master equipment of this verticle extruding seamless steel pipe production line is 36,000t verticle extruder, which is large verticle extruding equipment with leading level in the word after America Wyman Gordon Corporation 31,500t verticle extruder, and it also has international effect. This project possesses high technical content and complex process requirements, and it plays a major role for developing our country large caliber high pressure thick wall seamless steel pipe, meanwhile lays the solid foundation for manufacturing high strength alloy steel, stainless steel, high temperature refractory alloy, special alloy like titanium and niobium, irregularly- shaped pipe and bar, etc.. Equipment fabricating conforms to the principle of “pre-seprating prior to cracking”, performs rational disassembling, first disassemble overweight and oversize structural piece to subparts, then assemble to integral structure through build-up substructure after fabrication; integrate pre-stress subdivision assembling technology and pre-stress steel wire wrapping technology, and improve working stress field with pre-stress field, change tensile stress to press stress, eliminate stress concentration (stress peak value), prolong the service life, so as to attain the target of light weight and compact structure on the premise of ensuring strength, fatigue resistance and rigidity; on the other sides, the method of disassembling-assembling not only decreases the weight but also decrease the difficulty of maunfacturing and freight cost. At present, the equipment runs normally, and the process is perfect generally so possesses the capability of annual output 50,000 tons steel pipe. 2.5 GFM-RF70 radial forging machine set Radial forging machine (hereinafter refer to finish forging machine) is suitable to forge carbon steel, tool steel, stainless steel and super alloy steel with sections like round, rectangle and tape, especially, it has unique advantages for cold work tool steel, high alloy steel, titanium alloy, hard alloy, high temperature alloy and warm forging steel. The RF70 finish forging machine which provided by GFM is famous system with full experience accumulated from over 50 years’ supplying for famous special steel factory in the world. This forging machine is the key equipment in forging production line, its main characteristics is four rams fully synchronized during woking, and it also has special pitch which make it possess perfect forge ability and even deformation. With its specific super-high working frequency, it can realize high output, perfect quality and high precision forging. The above mentioned are very important to increase material utilization ratio and productivity, then increase economic benefit finally. The max. forging force of this forging machine is 1800 ton, which can produce the workpiece with max. length 20m, min. OD 100mm, max. OD of feeding material 700mm, max. weight 10 ton. Two manipulators and steel pipe hollow forging device are fabricated together, annual output can up to 50,000-100,000 tons. This machine was ordered in 2008 and is being installed at present. The forging capability will be improved after putting into production in June 2012.

36,000t ferrous metal vertical extruder 3

GFM-RF70 1800t finish forging machine

New products and future prospects

3.1 Seamless steel pipe From 2004, relying on technical advantages of pipe fittings hot machining and deep-hole machining, the Company began to research and develop high temperature pressure-bearing seamless steel pipe for power plant, and successfully trail-produced steel pipes with material SA106C, SA106B, SA-335P12, P22, P91, P92, TP316, TP304 and WB36CN1 etc.. Especially, with 36,000t extruder putting into production in 2009, the quality and output of steel pipe has been raised by a large margin, and also promoted great-leap-forward development of large caliber thick wall seamless steel pipe manufacturing

294


technology. Sinicization of steel pipe with material P91 and P92 shows the manufacturing capability of NHIC and increases the image of enterprise. This product is suitable for such fields like supercritical and ultrasupercritical power station boiler and four large pipeline, nuclear, petrochemical and aerospace, etc.. Main users include Huaneng Group, China Nuclear Power Engineering Corp. Ltd., CGNPC, Shanghai Electric Corp., Dongfang Electric Corp., Harbin Electric Group, Sinopec and India BHEL, etc.. Main construction projects include: 1 million KW ultrasupercritical power station projects of Shanghai Waigaoqiao, Suizhong, Yuhuan and Ninghai, less than 1 million KW power station projects of India Shasheng, Jining, Baiyanghe, Pingliang, Yingkou, and 1 million tons polythene project of Sinopec Zhenhai. In 2006, the seamless steel pipe produced in the Company awarded the title of “Famous Brand in Inner Mongolia Autonomous Region”. In addition, successful development of 36,000t extruder and large caliber thick wall seamless steel pipe used for high temperature pressure-bearing (represented with P91 and P92) causes the imported price decreasing by a big margin, therefore save a large mount of foreign exchange for purchasing enterprise. In the future, NHIC will rely on 36,000t extruder, enlarge the specification scope of steel pipe and variety pattern, consolidate and enlarge market occupation ratio of P91 and P92 steel pipe used for supercritical and ultrasupercritical power station. In nuclear products, P280GH, WB36CN1 and other stainless steel pipe nuclear products will form a certain scale. In April 2012, the Company passed simulating piece manufacturing site witness and specialist audit acceptance of “Civil-used nuclear safety machinery manufacturing license (nuclear class 2 and 3 pipeline) application” organized by state nuclear security bureau. The research and development of over 700℃ ultrasupercritical pipe used for power plant boiler has got remarkable result, so that the Company becomes topmost supplier of large caliber thick wall seamless steel pipe in China, even in the world. 3.2 Tool and die steel Tool and die steel is one of trunk products in the Company. In 1980s, the Company researched and developed 5Cr2NiMoVSi hot work die steel cooperated with Huazhong University of Science and Technology, China First Tractor Factory and China Second Automobile Factory. This kind of steel is in users’ good grace because it increases the life and quality of mould with its proper high strength and toughness, fatigue resistance, thermal wear ability and good hardenability. This steel was brought into national standard in 1989. P4410 high-grade mirror plastic die steel was researched by the Company independently; it was warmly welcomed once it was put into market because of its perfect corrosion resistance and polishing property. This product awarded silver prize in Guangzhou Second International Patent and New Product Exhibition in November 1990. At recent years, the Company makes considerable progress in development new products of hot work and cold work die steel. The Company will acquire huge development on new tool and die steel and high temperature alloy with 1800t finish forging machine being put into production.

Seamless steel pipe finished products

Main-shaft for wind turbine generator finished products

3.3 Large free forgings 3.3.1 Main-shaft for wind turbine generator The Company possesses the whole set of wind turbine generator main shaft production line including raw material melting, forging, heat treatment, machining and surface anti-corrosion treatment, which is suitable for producing 0.75MW to 3.0MW wind turbine generator main shaft. The material includes 42CrMo4, 34CrNiMo6 and 30CrNiMo8, etc.. This product is characterized with high machining precision and stable property so that it has been added to supplying chains of international well-known brands. The annual output of Special Steel Company is 400 pieces of finish machining main-shaft and 1000 pieces of rough machining billets. NHIC set up a joint venture (named Repower North Wind Power

295


Corp., Ltd.) with Germany Repower Corp. to make wind power products form industry chain and raise market publicity. 3.3.2 Metallurgical roll From the beginning of 1990s, the Company began to produce variety of material and specification of cold roll and cold roll billet. Specification: ≤Ф960/1740×4000; material including: 9Cr3Mo, MC3A, MC3B and MC5; characteristic: high cleanness, dense texture, small granularity of carbide, dispersion distribution, deep harden layer and improved millimeter rolling.

Machining metallurgical roll billet

Crankshaft billet after machining

The cold roll billets produced by the Company have already been batch supplied to Baoshan Steel Group Changzhou Metallurgical Roll Manufacturing Company, China First Heavy-duty Machinery Factory Changzhou Huaye Hengji Roll Company, Shaanxi Rolling Equipment Factory, etc.. Some products have been exported to international market and are well received by domestic and foreign users. 3.3.3 Crankshaft billet The Company is one of main manufacturers of crankshaft billets which used for domestic high and medium speed combustion engine. These kinds of engines are widely used, including diesel-electric power locomotive, marine propulsion system or auxiliary power supply, braking engine and air compressor, etc.. Since the Company became crankshaft billet specialty supplier for China South Locomotive and Rolling Stock Corp. Ziyang Locomotive Factory in 1998, the crankshaft billets have been passed the certifications of state classification societies from China, the US, Korea, Germany, France, England and Norway, etc.. The annual output of crankshaft billets is 15,000 tons. Domestic market occupation ratio is over 70%. The crankshaft billets produced in the Company awarded the title of “Famous Brand in Inner Mongolia Autonomous Region”. 4. Summary NHIC is large state-owned enterprise, which makes great contribution to national defense and economic construction during over 50 years. With releasing of capacity of 36,000t extruder and putting into production of 1800t finish forging machine, three whole productions will be formed as free forging products, finish forging products and extruding products. Therefore, the Company will become important production base of large caliber thick wall seamless steel pipe, tool and die steel and large free forgings. During the period of 12th 5-year plan, the Company will fully exploit technology and equipment advantages, cooperate with domestic and foreign manufacturers to promote special steel sales income over 10 billion (RMB), and make greater contribution to national development. Reference documents [1] TECHNICAL APPENDICES TO THE CONTRACT FOR RF70 RADIAL FORGING MACHINE [2] Process research technological summary for 36,000t ferrous metal vertical extruder

296


通裕重工最新发展及技术创新 (中英文版,论文) (通裕重工股份有限公司,中国) 通裕重工股份有限公司(以下简称通裕重工)是国内新兴的重大装备研发制造企业,注册资本 3.6 亿 元,总资产 58.96 亿元,全体员工 1687 人。通裕重工现已形成集大型炼钢、铸造、锻造、热处理、机械 设计于一体的完整产业链,是国家级重点高新技术企业、中国大型企业竞争力 500 强企业、中国机械工 业优秀企业、中国工业行业排头兵企业、AAA 级信用企业。通裕重工现拥有三个园区,即创业园、创新 园、产业园。主导产品为:MW 级风电主轴、管模、冷轧辊、双超临界电站锅炉管等大型锻件。 近几年,通裕重工在做强做大的道路上取得了巨大的进步。首先,公司 A 股股票在深圳证券交易所 创业板挂牌交易(股票代码为 300185),为通裕重工未来的发展打下了良好的基石;其次,拥有国内先 进水平的大型炼钢、120MN 液压机、大型热处理炉等生产设施先后建成投产,大大增强了公司实力,丰 富了产品结构,完善了产品产业链;另外,公司吸引了大批具有高学历的研究人才,引入了各种先进的 研究设备和检测设备,为公司新产品、新工艺研究提供了有力的保障。 以下介绍了通裕重工股份有限公司至今的发展及取得的主要业绩。 1 通裕重工资质认证 通裕重工为质量(ISO9001)/环境(ISO14001)/职业健康(OHSAS18001)三标一体型认证公司。 具有包括中国船级社(CCS)、韩国船级社(KR)、日本船级社(NK)、美国船级社(ABS)、法国船 级社(BV)、挪威船级社(DNV)、德国劳氏船级社(GL)、英国劳氏船级社(LR)八家船级社船用 铸件和锻件产品生产认可。另外公司还具备特种设备压力管道元件产品制造许可证和压力容器安全注册 证书。 通裕重工于 2012 年 1 月份取得了 ASME 核级 MO 证书,并根据 NCA3800 建立了相关质量体系。 目前公司正在进行军工保密资质认证和特种设备压力容器制造许可认证。 2 通裕重工实力的提升 至 2012 年 5 月,通裕重工股份有限公司在生产条件和技术实力都有了质的飞跃。 2.1 新生产设备的建设 (1)大型炼钢生产设施建设 通裕重工大型炼钢生产设施已经建设完毕,其主要生产设备有: 熔炼设备:国内先进的 100t 超高功率电弧炉(图 2-1)、150tLF 精炼炉(图 2-2)、150tVD/VOD 真空精炼炉(图 2-3)。 浇注设备:真空浇注罐(图 2-4),极限真空度 10Pa,配备 500kg/h 真空泵。 大型炼钢生产设施建设完毕,其可生产双真空精炼钢锭最大锭型为 450t,最小锭型为 80t。 (2)大型电渣重熔设备建造 通裕重工现建有 80t(图 2-5)、30t、20t 数控三相电渣重熔炉各一台,可生产各种低碳合金钢、船 用钢、冷轧辊钢、不锈钢、核电站用钢等优质电渣重熔钢锭,目前可冶炼最大电渣重熔钢锭吨位 80t。

图 2-1 100t 超高功率电弧炉

图 2-2 150t LF 精炼炉

297


图 2-3 150t VD 精炼炉

图 2-4 真空浇注罐

(3)120MN 液压机及配套设施建设 通裕重工自行研发设计,拥有国际先进水平的 120MN 数控自由锻压力机及(图 2-6)与其配套的 450t·m 数控锻造操作机,550t 锻造行车、500t、400t、200t 起重行车,6 台大型天然气加热炉,7m× 10m、5m×25m(图 2-7)、6m×15m 等 6 台大型天然气锻后热处理炉等均已建设安装完毕,投入正式 生产。 目前通裕重工最大可锻造 450t 钢锭,生产锻件最大吨位 350t。几乎涵盖了国内所有大型锻件产品。

图 2-5 80t 数控三相电渣重熔炉

图 2-6 120MN 数控自由锻压力机

图 2-7 5m×25m 锻后热处理台车炉

(4)大型锻件热处理设施建设 通裕重工建有国内领先技术水平的 3m×25m、6m×15m、7m×10m 等台式热处理炉 13 台,另建 有φ3.2m×19m 天然气井式炉(图 2-8)、φ2.6m×30m 井式电炉(图 2-9)等井式热处理炉 13 台, 3.0m×20m 罩式热处理炉(图 2-10)1 台,大型双频淬火机床 1 台等热处理配套设施。 目前热处理工件最大能力: 井式炉:热处理工件最大直径 2.2×26m,重量 200t; 台车炉:热处理工件最长 15m,直径 7m,重量 220t; 罩式炉:热处理工件最长 20m,直径 0.8m,重量 100t。

298


图 2-8 φ3.2m×19m 井式天然气炉

图 2-9 φ2.6m×30m 井式电炉

图 2-10 3.0m×20m 罩式炉 2.2 研究能力的提升 (1)新的研发工具的引入 软件方面:通裕重工在引入 CAXA,AUTO CAD,Solidworks 等制图软件后,公司又引入了 DEFORM(图 2-9)、ANSYS、MARC、ABAQUS 等高级有限元分析软件,为公司新产品、新工艺研发 提供了有力的理论支持。 硬件方面:通裕重工正在进行国家认可实验室评定。目前为止,公司已配有的先进实验设备和检测 设备有:ICP 光谱仪 PE7000(图 2-9)、直读光谱 ARL4460(以及与其配套风动送样设备和全自动光谱 磨样机)、倒置式蔡氏金相显微镜(图 2-10)、Gleeble 3500 实验机(图 2-11)、全自动金相磨抛机、 全自动冲击实验机(实验温度最低可达-120℃)、电脑控制微机伺服拉伸实验机、美国派克 DA-400 磁粉 探伤仪、美国 GE USM-35 超声波探伤仪等。

图 2-9 Deform 在锻造中的应用

图 2-10 ICP 光谱仪 PE7000

图 2-11 倒置式蔡氏金相显微镜

图 2-12 Gleeble 3500 实验机

299


(2)研发机构的建立和与国内重点科研机构的合作 通裕重工于 2011 年建立了专职的研发机构:企业技术中心、大锻件研究所、机械研究所,拥有省级 企业技术中心和省级工程技术研究中心,现正积极创建博士后科研工作站。 目前为止,通裕重工先后与燕山大学、中国科学院沈阳金属研究所、北京钢铁研究总院、山东冶金 科学研究院、北京石油大学、北京科技大学、济南铸锻研究所等国内重点科研机构建立了长期合作关系, 并先后承担了多项省部级科研项目及课题。 (3)高级研究人才引进 通裕重工现有中高级工程师、技师共 47 人,其中包含教授级高工 2 人、高级工程师 23 人、高级技 师 5 人、工程师 17 人。最近两年,通裕重工大力引进高学历人才,其中有材料学博士研究生 2 人,各专 业硕士研究生 85 人,本科 200 人,为公司储备了雄厚的后备力量。 3 2011 年科研成绩和 2012 年新技术、新产品的研发 3.1 2011 年通裕重工主要科研业绩 2011 年度,通裕重工完成了 30MN 校直机设计研发,60MN 锻造液压机设计研发,异性面扩孔成形 技术研发,DN1600K 型管模锻造工艺研发、SA336F11 大型管板锻件的冶炼、锻造、热处理工艺研究, 日立轮盘制造技术研发等 6 项重大创新项目,其中日立轮盘项目的研发成功,使我公司成为国内唯一一 家满足供货条件的供货单位。 拥有自主知识产权的 120MN 自由锻油压机于 2011 年 10 月 26 日顺利通过了山东省科技厅和山东省 经济和信息化委员会组织的科技成果坚定及新产品新技术鉴定验收,综合技术达到国际先进水平。 另外,通裕重工对 SA182F91 大型锻制三通产品生产工艺进行了技术改进,通过实际生产验证,各 性能指标均达到了国际先进水平,实现了国内最大 F91 钢锭的冶炼并锻制成品(锻件重量 27160kg,锭 型 39t)。 3.2 2012 年通裕重工主要研发项目及进展情况 (1)AP1000 核电主管道制造技术研发 AP1000 核电主管道项目为通裕重工 2012 年度重点项目, 项目的主要难点为锻件的空心锻造成形技术研发。目前通裕 重工已完成 316LN 材质 1:2 试验件(图 3-1)的锻造试制。 经检验,锻件本体晶粒度 2-3 级,局部可达 4 级,其余各项 性能指标均检验达标。目前正在进行 1:2 试验件的弯制工作。 (2)内台阶孔风机主轴成形技术研发 2012 年 5 月,通裕重工完成了内台阶孔风机主轴成形技 术研发项目,成功的锻造出风机主轴内部台阶孔(图 3-2), 大大降低了锻件重量,很好的保持了锻件纤维流线,缩短了 图 3-1 AP1000 核电主管道 1:2 试验件 产品生产周期,提高了产品质量和市场竞争力。 (316LN 材质)

(a)轴身

(b)内孔 图 3-2 内台阶孔风机主轴

(3)12Cr10Co3W2MoNiVNbNB 喷嘴加强环研发 2012 年 4 月,通裕重工完成新材质 12Cr10Co3W2MoNiVNbNB 喷嘴加强环生产技术研发工作,设 计生产锭型为 4.8tESR,锻件重量为:3000kg(锻件如图 3-3 所示)。最终经检验,各项性能指标均满 足客户要求。

300


(4)高效宽厚水冷模铸坯开发与产业化研究 为了开发国内宽厚板坯高端市场,通裕重工专门建立了高效宽厚水冷模铸坯开发与产业化项目研究 小组。2012 年 3 月,公司进行了宽厚水冷模铸坯试制首次试验(图 3-4),试制铸坯规格为 1000×2500 ×3800,表面质量良好,化学成分检验符合验收标准, 经锻造后(直接拔长至 400 厚),各项性能均检验合格。

图 3-3 喷嘴加强环锻件图

图 3-4 水冷模铸坯成品

2012 年,通裕重工还在进行:超超临界百万千瓦汽轮机高压转子(E911)制造技术研发,25MW135MW 中小汽轮机转子(30CrMo1V)产品研发,600MW 低压转子(25Cr2Ni4MoV)工艺研发,细长 空心直孔锻造成形技术研究,大型锻钢冷轧工作辊系列产品技术开发等科研项目的研发工作。 4 通裕重工未来发展 通裕重工股份有限公司坚持“差异化、专业化”的发展战略,通过对工艺技术的持续创新引领行业 进步,打造较强的先进制造技术装备优势,实现低成本精整的战略目标。继续较大科学配置资源的力度, 加强对外合作,进一步整合提高低碳产业链的集中度和生产效率,充分发挥完整产业链的优势,以不同 的工序环节作为切入点,不断优化调整产品结构,优化升级产业技术,努力建成具有国际先进水平的热 加工、冷加工和装备制造业关键部件的专业化研发、生产中心,成为世界知名的装备制造优势企业。 二零一二年五月

301


The Latest Development and Technical Innovation of Tongyu Heavy Industry Co., Ltd. (Chinese & English version, Paper) (Tongyu Heavy Industry Co., Ltd., China) Tongyu Heavy Industry Co., Ltd(hereinafter referred to as Tongyu) is a newly emerged domestic major equipment manufacturer, with a registered capital of 360 million RMB, total assets of 5. 896 billion, and 1687 personnel. Tongyu has formed a complete industry chain of large steel-making, casting, forging, heat treatment, mechanical R & D integrated with equipment design and manufacture, and been awarded the High-tech Company, First 500 Leading Enterprise of China companies, Excellent Enterprise of China Machinery Industry, China's Industrial Enterprise, and AAA Grade Credit Enterprise. Tongyu has three parks, namely, Pioneer Park, Innovation Park, and Industrial Park. The main products are: MW-class wind power spindle, pipe mold, cold roll, USC power plant boiler pipes, and other heavy forgings. In recent years, Tongyu made great progress in the path of development. First, the company’s A stocks is listed for trading (stock code: 300185)in Shenzhen Stock Exchange GEM, laying a good foundation for the future development of the company; Second, with the domestic advanced level of large steel ingot making, 120 MN press, large heat treatment furnace and other production facilities put into operation, it has greatly increased the strength of the company, enriched product structure, perfected the product industry chain; In addition, the company has attracted large number of highly educated talents, and introduced various advanced study equipment and testing equipment, which provides a strong security for the company’s new products, new technology research. The following introduces Tongyu’s development and the main performance till now. 1 Quality Certification Tongyu is a company setting three standard authentication, including the ISO9001 quality management system certified, also the ISO14001 environmental management system, OHSAS18001 occupational health and safety management system and accreditation for Marine castings and forgings product production approval of CCS, KR, NK, ABS, BV, DNV, GL, LR Certification. And Tongyu also has Special equipment pressure pipe components products manufacturing license and pressure vessel safety registration certificate. In January 2012, Tongyu obtained ASME Quality system MO certificate, and built relative Quality System according to NCA3800. At present, the company is on Military Secret Qualification Certification and Special Equipment Pressure Vessel Manufacture License Certification 2. Strength Increasing Until May 2012, Tongyu has a qualitative leap in the production conditions and technical strength. 2.1 The Construction of the New Production Equipment (1) Large steelmaking production facility construction Tongyu’s large steelmaking production facility construction has finished, mainly including: Smelting Equipment: domestic advanced 100T Electric Arc Furnace (Picture 2-1), 150T Ladle-refining Furnace (Picture 2-2), 150t VD/VOD Furnace (Picture 2-3). Casting Equipment: Vacuum pouring cans (Picture 2-4), final vacuum 10Pa, equipped with 500kg/h vacuum pump. The constructed large steelmaking production facility can produce Double vacuum refining ingot, max single ingot is 450t, and minimum is 80t.

302


Picture 2-1: 100T Electric Arc Furnace

Picture 2-2: 150T Ladle-refining Furnace

Picture 2-3: 150t VD/VOD Furnace

Picture 2-4: Vacuum pouring cans

(2) Construction of Large ESR equipment Tongyu now has each one set of 80t (Picture 2-5), 30t, 20t ESR furnace, which can manufacture qualified ESR ingots of low carbon alloy steel, vessel steel, tool steel, stainless steel and nuclear steel. Max single ESR ingot is 80t.

Picture 2-5: 80t NC Elect-slag Remelting Furnace (3) 120MN Hydraulic press and the construction of its supporting facility Tongyu has one 120MN Hydraulic press that reaches the international advanced level designed and manufactured by ourselves(Picture 2-6) and its supporting facilities-450t·m CNC Forging Manipulator, 550t Forging Driving, 500t, 400t, 200t Cranetrolley, 6sets large-scale heating furnaces with natural gas, such as 7m×10m,5m×25m(Picture2-7),6m×15m,6sets large-scale heating furnace have finished installing and put into production. Now the max ingot Tongyu can forging is 450t,and the max forgings to be 350t,almost covers all the large-scale forgings at home.

303


Picture 2-6 120MN Hydraulic press

Picture 2-7 5m×25m hearing furnace

(4) Construction of large forgings heat treatment facilities Tongyu owns 13sets of car-bottom furnaces (size: 3m×25m,6m×15m,7m×10m,etc),13sets of vertical furnaces (size: φ3.2m×19m with natural gas(Picture2-8),φ2.6m×30m with electricity(Picture 2-9),1set cover-furance size 3.0m×20m(see picture 2-10),1set of Twice Frequency Induction Quenching Machine and other supporting facilities.

Picture 2-8 natural gas

φ 3.2m×19m Vertical Furance with

Picture 2-9 electricity

φ 2.6m×30m Vertical Furance with

Picture 2-10 3.0m×20m Cover Furance The best ability of heat treatment at present: Vertical Furance: 2.2×26m in size, and 200t in weight; Car-bottom Furance: max lenth:15m,max diameter:7m,max weight:220t; Cover Furance: max lenth:20m,max diameter:0.8m,max weight:100t. 2.2 Promotion of research ability (1)Bringing in new research tools The software: Tongyu has brought in many cartographic software such as CAXA, AUTO, CAD, Solidworks and etc. And has brought in senior finite element analysis software such as DEFORM

304


(Picture 2-9), ANSYS, MARC, ABAQUS and etc. All these can offer a powerful guarantee for the new products development.

Picture 2-9 The apply of Deform in forging The hardware: Tongyu is in the process of evaluating the NRTL, so far we have allocated many kinds of equipments,such as ICP XRF PE7000(Picture 2-9),Direct reading spectrum ARL4460(and the supporting facilities expressly pneumatic equipment and automatic grinding prototype spectrum),Upside-down chuas metallographic microscope(Picture2-10), Gleeble 3500 experiment machine(Picture 2-11),automatic grinding machine metallographic cast,automatic impact experiment machine(the lowest experiment temperature can be up to 120ยบC),computer control servo tensile testing machine,the USA Park DA-400 MT detector,the USA GE USM-35 UT detector and etc.

Picture 2-10 ICP XRF PE7000

Picture 2-11 Upside-down chuas metallographic microscope

Picture 2-12 Gleeble 3500 testing machine (2) The establishment of research and development institutions and cooperation with the domestic key scientific research institutions In 2011, Tongyu established its own scientific institutions: Enterprise Technology Center, Heavy forging research laboratory, Machineries Institution. In addition, Tongyu also has provincial Technology Center and Provincial engineering Research Center. At present, Tongyu have been establishing the postdoctoral research stations actively. 305


So far Tongyu established long-term cooperation relationship with many scientific research institutes and universities, such as Yanshan University, Shenyang Metal Research, and Chinese Academy of Sciences, CERIS, Shandong Metallurgical Science Research Institute, Beijing Petroleum University, Beijing University of Science and Technology, Jinan Casting Research Institute. Until now, Tongyu has undertaken some provincial scientific projects and subjects. (3) The introduction of high-level research talents There are 47 senior engineers and technicians, including 2 professor senior engineers, 23 senior engineer, 5 senior technicians and 17 engineers. In recent two years, Tongyu introduces the highly educated personnel vigorously, including 2 doctoral candidates with material science, 85 postgraduate students and 200 undergraduate students with various specialties, which reserves strong reserve force. 3 Scientific Research Achievements in 2011 and Research of New Technique and Development of New Products in 2012 3.1 The Scientific Research Achievements of Tongyu Heavy Industry in 2011 In 2011, Tongyu completed six major innovation projects, which includes the designs and development of 30MN straightening machine, 60MN forging hydraulic press, forging process development of DN1600K pipe mould, the smelting, forging and heat-treatment process development of SA336F11 large tube plate forging, the technology research and development of Hitachi chain wheel manufacturing, and R&D success of Hitachi chain wheel project makes our company becomes the only supplier that meets the supply conditions. On October.26,2011, 120MN free forging oil press with independent intellectual property passed the technological achievement identification and new product new technology appraisal acceptance, which organized by Shandong Province Science&Technology Department and Shandong Economic and Information Committee, and the synthesis technique reached international advanced level. In addition, Tongyu improved technology to manufacturing process of heavy forged three direct links, and the performance indexes reach international advanced level by actual experiment, and realized the smelting and forging of largest F91 steel ingot in China(Forging weight: 27160kg, ingot case: 39t) 3.2 The main R&D projects and development of Tongyu in 2012 (1) The manufacturing technology research of AP1000 nuclear power main pipeline. The project of AP1000 nuclear power main pipeline is the major project of Tongyu Heavy Industry in 2012, and the main difficulty is the technology research of hollow forging formation. At present, Tongyu has finished the trial-manufacture forging of test piece with 1:2 rate and 316LN material (Picture 3-1). The grain size number of forged body is grade 2-3, and grade 4 of forged parts, and the rest several of performance indexes were up to the standard. The bending work of 1:2 test pieces has been carried on.

Picture 3-1 Test piece of AP1000 Nuclear power main pipeline with the proportion of 1:2(material of 316LN) (2) The technology research of inner stepped holes formation of wind turbines main shafts In May, 2012, Tongyu finished the research project of inner stepped holes of wind turbines main shafts, and forged the inner stepped holes successfully(Picture 3-2), reduced the forging weight, and kept the forging fiber streamline well, shortened the production cycle, improved the products quality and intensified the market competitive power. (3) Research and Development of nozzle strengthening ring with 12Cr10Co3W2MoNiVNbNB 306


In April, 2012, Tongyu finished the technology research of nozzle strengthening ring with 12Cr10Co3W2MoNiVNbNB, 4.8t ESR of ingot cast and 30MT of forging(Picture 3-3). The performance indexes meet the customer requirements.

(4)forging body (b)inner hole Picture 3-2 Inner stepped hole of wind turbine main shaft (4) The development and industrialization research of high-efficiency heavy water-cooled mould casting blank

Picture 3-3 Forging pricture of nozzle Picture 3-4 Finished products of water-cooled strengthening ring die casting billet In order to develop domestic thick and wide slab high-end market, Tongyu establishes Efficient Thick and Wide Water-Cooled Die Casting Slab Development And Industrialization Projects Research Group. In March 2012, the company conducted the first experiment for thick and wide water-cooled die casting slab (Picture 3-4), with the test slab dimensions of 1000 x 2500 x 3800. The surface quality is good, and the chemical composition inspection meet acceptance criteria. After the forging (directly stretching to 400 thick), various mechanical performance are qualified. In 2012, the ongoing research work of scientific projects includes: the manufacturing research and development of double supercritical 1000MW steam turbine high pressure rotor(E911), small and medium steam turbine rotor with 25MW-135MW(30CrMo1V), 600MW low pressure rotor (25Cr2Ni4MoV), the forging formation of slenderness, hollow straight hole, large-scale forged steel cold rolling series. 4 Future development of Tongyu Heavy Industry Adhering to the "differentiation, professionalization" development strategy, our company cultivated a strong advantage of advanced manufacturing technology and equipments to achieve the strategic goal of low-cost competition through continued innovation for technology to lead the industry to make progress. By keeping increasing the strength of scientific resource allocation, further integration of lowcarbon chain to improve the degree of concentration and productivity, giving full play to the advantage of a complete industrial chain, linking the different processes as the intercept to continuously optimize the adjustment of product structure, optimizing and upgrading industrial technology, Tongyu will build itself into a professional R & D and manufacturing center for advanced hot & cold processing, key part producing for equipment manufacturing industry. Thus, a world famous predominant company in equipment manufacturing is built out of Tongyu. May 2012

307


FORGE 软件在自由锻领域的应用 (英文版,幻灯片) Open Die Forging Applications (English version only, PPT) (TRANSVALOR S.A.,法国) (TRANSVALOR S.A., France)

308


309


310


311


312


313


314


315


316


317


318


319


320


321


322


323


最新的工业燃烧炉燃烧技术 (中英文版,论文) Koichi Kitamura (加热系统部门,中外炉工业株式会社,日本) 摘要:近几年,全球变暖开始成为世界最大的环境问题,最新的节能燃烧炉(蓄热式燃烧器和 SRMG 换 热式燃烧器)可以通过回收高温气体大大提高燃料利用率,依靠这种优势这种炉子已经在世界各种工业 领域的工业燃烧炉中普及开来。尤其是在锻造加热炉中,建设核电设备、风电设备所需的大型锻件,从 一开始就一直引入蓄热式燃烧炉。如何让炉内温度分布最佳已经成为研究课题。这篇论文将介绍最新型 节能燃烧炉(蓄热式燃烧器和 SRMG 换热式燃烧器)和烧嘴安放在炉顶的最优化加热方法。 关键词:蓄热式燃烧器,SRMG 换热式燃烧器,炉温,炉顶安装

1.最新型燃烧器的特点 特点如下: 蓄热式炉 1) 燃料加热利用率:85%以上,温度效率:80%以上。 燃料加热利用率:(燃料燃烧发热值-炉子排放热量)/燃料燃烧发热值 温度效率=预加热空气温度/燃烧废气温度 2) 超低 NOx 含量排放技术(采用扩散燃烧方法) 3) 炉温最佳分布 SRMG 换热式燃烧器 1)高效嵌入式同流换热器 2) 超低 NOx 含量排放技术(采用扩散燃烧方法) 3) 炉温最佳分布 同老式加热炉相比新型燃烧炉通过回收排放热量加热助燃空气温度,采用扩散式加热方式,采用低 NOx 排放,炉温合理分布。(扩散加热方式:助燃空气和燃料混合在炉内混合并燃烧)(图 1)

图 1 扩散加热方式

2. 烧嘴安装在炉壁一侧的问题: 假设烧嘴安放在炉壁侧面,当加热工件上部时,工件下部温度会降低。通过模拟软件结果可以看出, 很少热量会流向工件底部,这就造成底部温度很难上去。(图 2)

324


Burner

Burner

3. 顶部安装烧嘴的作用 Work

我们决定把烧嘴安装在炉子顶部,这样可以

Work

使炉内温度合理分布,同时不会牺牲节能效果, 成本也不会变化。 最新型燃烧器采用无陶瓷结构,因此很容易 安装在炉顶,通过向下火焰可以提高工件底部温 图 2 侧壁烧嘴的温度模拟结构

度。 为了证实效果,我们做了温度分布模拟。通

过模拟结果,证实了工件底部可以获得足够热量。同样的结果在现实应用中也得到了证实 Burner

Burner

Work

Work

图 3 顶部烧嘴温度模拟结果

4. 结论 到目前为止,虽然新型节能烧嘴已经作为节能设备在大型燃烧炉中普遍运用,但是在中小型燃烧炉 中推广也是很重要的,为此我们需要设计结构相对简单的蓄热炉来减少原始和维护成本。 5.参考资料: [1] Isamu Ikeda : Monthly publication”Saving energy” Vol.62 No.12 (2010) 作者联系方式: Koichi Kitamura 地址:2-4,Chikko-Shinmachi,Nishi-ku,Sakai 592-8331,Japan 电话: + 81-72-247-1185 E-mail:Koichi_Kitamura@n.chugai.co.jp

325


Introduction of the Latest Combustion Technology of Industrial Burner (Chinese & English version, Paper) Koichi Kitamura (Thermosystem Division, Chugai Ro Co., Ltd., Japan) Abstract:In recent years, the global warming issue is greatly taken up as the most important problem of global environment in the world.And the latest energy saving burners (Regenerative burner and SRMG recu-burner) which can be achieved the great energysaving effect by the exhaust heat recovery have spread on the industrial furnaces of various industrial fields all over the world. Especially at the forging furnaces, which manufactures largesized metal parts required for construction of nuclear power generation and wind power generation, introduction of the Regenerative burnershave been progressing sincean early stage.However, it had become a subject how optimum of the temperature distribution in a furnaces is performed. In this paper, weâ&#x20AC;&#x2122;d like to introduce explanation of the latest energy saving burners (Regenerative burner and SRMG recu-burner) and optimization heat method of the burners installed at the roof of furnaces. Key words: Regenerative burner, SRMG recu-burner, furnace temperature, installed at the roof 1. The characteristics of the latest burner The characteristics of the latest burner are as follows. Regenerative burner 1) Available heat (AH) : 85% or over and Temperature efficiency : 80% or over Combustion caloritic value - Furnece discharge heat x 100 Combustion caloritic value Preheat air temperature Temperature efficiency= x 100 Combustion exhaust gas temperature AH=

2) Ultra-low NOx technology (adopted the diffusion combustion method) 3) Optimum distribution of furnace temperature SRMG recu-burner 1) High efficiency built-in recuperator 2) Ultra-low NOx technology (adopted the diffusion combustion method) 3) Optimum distribution of furnace temperature These latest burners can burn with high temperature combustion air by the exhaust heat recovery. And these have adopted the diffusion combustion method, and achieved further low NOx and optimum distribution of furnaces temperature compared with the old type burners. (The diffusion combustion method : The method which mixes combustion air with fuel and burns in the furnace) (Fig.1)

2. The problem of the burner installed at the side wall In case of the burners installed at the side wall, as the burners burn for the upper of work, the bottom of work temperature becomes low.Also according to the temperature simulation results, there was little Fig.1 The diffusion combustion method model heat flowrate to the bottom of work, and it brought a 326


result which lower temperature cannot go up easily. (Fig.2) 3. The effect of the burnersinstalled at the roof

Burner

Burner

Weâ&#x20AC;&#x2122;d like to propose the burners installed at the roof of furnaces as the method of better temperature distribution in the furnaces, without both sacrificing energy saving performance and equipment cost. The latest burnersare burner tile-less structure. Consequently, theseare easy to install at the roof of furnaces and aim to promote the rise in heat of the bottom of work by making the downward flame.

Work

Work

Fig.2 The result of side burner temperaturesimulation

In order to prove this effect, we carried out the temperature simulation.

Burner

Burner

According to this result, it was confirmed that the temperature of the bottom of work was achieved enough. The same resultswere confirmed also in the actual furnaces. (Fig.3) Work

4. Conclusion Although the latest energysaving burners have spread for the large furnaces as energysaving equipments, from now on, it is important to spread it for both small and medium furnace.For that purpose, we will need to design the burners of the simple structure which can reduce both initial and a maintenance costs.

Work

Fig. 3 The result of roof burner temperature simulation

5. Reference [1] Isamu Ikeda : Monthly publicationâ&#x20AC;?Saving energyâ&#x20AC;? Vol.62 No.12 (2010)

Author: Koichi Kitamura Thermosystem Division, Chugai Ro Co.,ltd. 2-4,Chikko-Shinmachi,Nishi-ku,Sakai 592-8331,Japan Phone : + 81-72-247-1185 E-mail:Koichi_Kitamura@n.chugai.co.jp

327


5 月 30 日下午 On the afternoon of May 30th

328


双柱式锻造液压机及其结构的力学行为分析 (中英文版,论文) 郭玉玺 (太原重工股份有限公司,中国) 摘要:本文简要介绍了太原重工最新研制的 125MN 双柱式快速锻造液压机与 1800kN/4000kN-m 全液压 轨道式锻造操作机成套技术装备的结构特点和主要技术参数,从双柱斜置式预应力机架的应用实践探讨 了自由锻造液压机的发展趋势,并从该结构的力学行为研究结果,分析了双柱式结构机架对于锻造工艺 的适宜性。 1.125MN 双柱式锻造液压机 2006 年以来,最大吨位的锻造液压机世界记录被中国一次次刷新,其主机结构和传动方式也被一次 次创新。由太原重工研制的 125MN 双柱式快速锻造液压机与 1800kN/4000kN-m 全液压轨道式锻造操作 机成套技术装备最近获得成功,成为中国第九台应用的万吨级以上的自由锻造液压机,同时也成为中国 自主研发的首台最大吨位的双柱式快速锻造液压机,如图 1,平面布置如图 2。

图 1 125MN 双柱式快速锻造液压机与 1800kN/4000kN.m 全液压轨道式锻造操作机成套设备

图 2 125MN 双柱式快速锻造液压机成套设备平面布置 液压机本体结构主要特点为:“日”形空心双柱斜置式多拉杆预应力机架,主缸柱塞与组合式活动 横梁的连接方式为双球铰式摇杆轴结构,活动横梁的导向方式为围绕立柱横截面四周可调间隙的平面导 向。成套设备除了 1800kN 操作机外,还装备有砧子横移装置、换砧机构、上砧快速更换装置和 2000kN 钢锭旋转升降台等。 液压泵站为由 14 组额定流量为 1500 l/min 的定、变量泵组构成的容积式调速直接传动系统,操纵系 统为压力和位置双闭环控制,以及由主缸快锻阀与回程缸常压蓄势器构成的快速锻造系统,可适应主缸 不同锻造力分级、不同锻造速度和快速精整节能锻造等程序不断变化的要求。其主要技术参数如表 1。 表1 项目 单位 数值 备注 MN 锻造力分级 38、76、114 液体最大工作压力 31.5 MPa MN 125 镦粗力 液体最大工作压力 34.5 MPa mm 3800 活动横梁最大行程 mm 7500 开口高度 工作台面与上垫板之间

329


mm 6000 立柱间的横向净空距 斜向开口可达 7400mm mm 移动工作台尺寸(长×宽) 10000×4000 mm/s 87-160 工作速度 最低镦粗速度 43.5mm/s 60 精整锻造频次 次/min kN 1800 操作机夹持重量 kN-m 4000 夹持力矩 mm 夹钳最大回转直径 φ4340 钳口开口φ2600mm mm 3700 夹钳最大升降行程 钳口中心最低位置 1700mm m 19 设备地面以上高度,约 m 设备外形(长×宽),约 64×39 含操作机和泵站 装备制造需要制造装备的装备。125MN 双柱式快速锻造液压机成套设备的研制成功,不仅使太重实 现了 25MN、35MN、45MN、63MN、80MN、125MN 和 200MN 双柱式快速锻造液压机系列化成套技术 装备的开发与供货,而且,通过重大技术装备与大型铸锻件国产化项目的建设,使太重形成了最大钢锭 450t、最大铸件单重 600t、最大锻件单重 260t 的生产能力,为该系列产品的产业化,以及各种高端重型 装备的研制提供了坚实的技术装备支撑,进而可在更宽阔的范围内,服务于国民经济各个关键领域。 目前,双柱式自由锻造液压机已在中国发展成为一个主流机型,由此产生的国家行业标准“油泵直 接传动双柱斜置式自由锻造液压机”业已进入报批阶段,将成为国内外首个锻造液压机的产品标准。双 柱式结构的锻造液压机的出现、发展及其在行业里所产生的重要影响,再次证明了:需要是发明的母亲, 创新是技术进步的永恒主题。 2.双柱式结构机架缘何成为主流机型 在传统水压机上百年的历史中,三梁、四圆柱式非预应力结构机架的应用一直经久不衰。即使在上 世纪最后三十年里,世界建造了十台万吨级以上的特大型自由锻造液压机,仍无法撼动传统结构的主导 地位。但不应否认,结构的多样化与技术进步已在悄然发生:其中一台于 1971 年在 JCFC 投产的 80/100MN 为双柱式结构,另一台于 1976 年在 Creusot Forge 投产的 90/110MN 为双柱式多拉杆预应力 机架;预应力结构和油泵直接传动系统开始应用于双柱和四柱式锻造液压机上。 事实上,双柱式结构锻造液压机起始于上世纪六十年代中期,机架结构有组合式和整体式、预应力 和非预应力之分,如表 2。其中以下传动式机架应用居多,压机重心低,稳定性好,上部晃动量较小,最 大限度地减少了油介质泄漏导致着火的危险。虽然存在运动部分质量较大,回程功率消耗较高,机架主 体、油缸和控制系统置于地下,基础深,造价较高,且不易维护观察和检修等诸多不利因素,但也一度 成为中小型锻造液压机的主要型式。 表2 预应力组合机架 非预应力组合机架 非预应力整体机架 上传动式 下传动式 上传动式 下传动式 上传动式 下传动式 应用较广泛 应用较广泛 有应用 有应用 主要为缸动式 广泛用于小型 七十年代后期,双柱单拉杆预应力结构上传动式机架、双柱整体机架上部缸动式结构的快速锻造液 压机先后问世。这些结构整体刚性好、运动部分质量小、快锻时的稳定性较好,也成为国内外纷纷着力 开发和应用的对象。 日本中村铁工所大门口一侧,耸立着一个标志性广告——一台油漆铮亮的退役锻锤,象征着锻锤时 代的结束,彰显着公司的从业领域。该公司从上世纪八十年代开始,就陆续装备了 5MN、8MN、10MN、 16MN 四台下传动式锻造液压机,进入本世纪后,又先后投产了 40MN 和 80MN 两台上传动式双柱预应 力结构锻造液压机,且均为油泵直接传动系统。而在日本岡本铁工合资会社,同一个锻造跨内,人们一 边在饶有兴趣地观看着由一人操作的 10MN 双柱式锻造液压机与操作机,一火内干成了一根连杆;又一 边在听着老板指着一台上世纪五十年代产的 20MN 水压机,踌躇满志地表示,还要让其继续服务五十年。 适用就好,在这里得到最好的诠释。 在中国,中小型双柱式锻造液压机多用于特钢厂及主要生产轴类锻件的企业。国内企业液压机产品 的自主研发取得不菲成绩,呈现出由完全进口到国产与进口并存,一直到国产为主导的局面。当时国内 最大的应属由国内外合作制造的两台 30MN 双柱下传动式锻造液压机。 但是,所有这些都不足以形成对传统四柱式结构机架的挑战。其中缘由,多少出于人们对双柱式结 构从不同视角赋予了不同认知:有说下传动式机架功率消耗较高, 50MN 以上的液压机不宜采用;有讲 双柱式的重量比四柱式结构重,80MN 以上的液压机不宜采用;有认为双柱式结构只适用于轴类锻件的专 业化生产;有质疑仅仅 30 多年历史的一两台万吨级双柱式结构液压机的可靠性,等等。以至在新造液压 机结构选型时,人们毫无例外地在对比分析一番后,求变屈服于稳妥,创新让位于传统。 330


然而,事物总是在发生着变化的,并且不以人们的主观愿望为转移。进入二十一世纪后,各个领域 对高质量大型锻件的需求剧增,中国锻造行业的发展进入一个兴旺期,从而引发了新一轮大型锻造液压 机研制热。2003 年,某钢厂进口的 45MN 双柱式快速锻造液压机与 430kN/900kN-m 操作机投产,其较 高的机械化、自动化程度及其先进性很快为人们所接受,燃起了国内多个锻造企业、机械厂、钢厂建造 大型双柱式锻造液压机的热情。 近六年来,中国新建成的七台万吨级以上锻造液压机,主机结构和传动方式发生了根本变化:一是 全部由预应力结构机架取代了传统结构;二是其中五台采用了油泵直接传动系统,仅两台沿用了水泵-蓄 势站传动方式,呈现出取而代之的趋势;三是双柱式结构机架占到三台,对四柱式结构机架形成了挑战, 分别为 100MN、125MN 和 185MN;四是下传动式双柱结构锻造液压机有向大型发展的趋势,如 45MN、 80/100MN。如果计入 25MN 到 80MN 双柱结构锻造液压机,新增台数当在 30 多台以上。其中,太重首 先在国内自主开发成功 80MN 双柱式快速锻造液压机,并成系列地延伸到 125MN、63MN、45MN、 35MN、25MN 级的产品。 2008 年西班牙召开的国际自由锻造(IFM)大会上传递出这样的信息:即使建造于 1976 年的 90/110MN 与另一台 75MN 锻造压机每天连续 24 小时运转,Creusot Forge 仍不能满足承担着 40%国际 市场份额的大型核电锻件和 28%市场份额的石化大锻件的供给和需求。同年,一台世界最大的 150MN 双柱下传动锻造液压机在韩国太熊投产。 双柱式结构机架缘何成为新宠,除了市场需求与人们的直观感觉外,其良好的力学行为和工艺适宜 性应该是该结构得以广泛应用的主要原因。上述无论是特大型还是中小型、上传动还是下传动机架的应 用实践和成功案例,远远超脱了人们对双柱式结构的种种认知,明确地回答了人们关于双柱式结构是否 能够长期可靠地使用问题,进一步诠释了双柱式结构的适宜性。 3.双柱式结构的力学行为及工艺适宜性分析 结构的力学行为表现为结构的失效抗力。如果说将预应力结构应用于锻造液压机,从而提高了机架 结构的整体性和抗疲劳性能,仅仅是传统结构形式上的变化,那么,双柱式预应力结构除了具有整体性 和抗疲劳性能外,还具有其它结构所不及的高刚性、高稳定性和强抗偏载能力,应该是一个本质上的变 革。太重所开发的系列双柱式锻造液压机摒弃了传统四柱式水压机结构,克服了传统和现有技术诸多不 适应锻造工况要求的弊端,解决了机架晃动、张力柱频繁断裂及较高维护成本的普遍性难题,其良好的 力学行为和工艺适宜性体现了这种变革的成果,为实现快速、高效、精密、控制锻造提供了一个精确、 稳定、且工艺适用范围宽、操作视域宽阔的工作载体。 1)高刚度的双柱、多拉杆预应力机架 在图 1 所示的双柱式锻造液压机上,开发了一种截面惯性矩最大的空心矩形立柱,一种低应力特殊 螺纹拉杆,提出了一种多拉杆变张力预紧的概念和一种精确的无源无线预紧测试的方法,通过增大拉杆 预紧力、优化拉杆的数量和分布,以及使各方向的允许偏载范围最大化的斜置式布置,见图 3,使上、下 横梁与立柱形成为一个坚固的整体。从而显著提高了预应力机架的整体刚性、抗偏载能力和拉杆抗疲劳 寿命,增加了液压机的稳定性,保障了产品的高可靠性。

特殊螺纹

锯齿形螺纹

图 3 双柱与四柱机架偏载范围比较 图 4 两种螺纹 FEM 应力分析 全接触 FEM 分析结果表明:允许偏载区域的面积是传统四柱水压机的 3.7 倍,是四柱单拉杆预应力 压机的 1.9 倍,是其它双柱多拉杆预应力压机的 1.7 倍以上;在相同偏心距下,比四柱单拉杆预应力压机 的上横梁横向摆动位移小 50%,纵向摆动位移小 20%;较四柱单拉杆预应力机架,多根细拉杆锻造组织、 热处理性能均匀,可远离立柱的中性轴布置,各拉杆的应力均衡一致,偏差小于 3%;大幅减小了拉杆的 脉动应力幅值,仅为最大工作载荷应力的 15%,其承载能力较水压机张力柱提高 45%;低应力特殊螺纹 拉杆的螺纹受力分布均匀,齿根应力降低 45%,允许提高预紧系数,达工作载荷的 1.56 倍,见图 4。彻

331


底消除了水压机用 45°锯齿形螺纹齿根圆角的高应力集中现象,例如,高强度拉杆材料的屈服强度为 700MPa,最大工作应力 234MPa,安全系数为 3,特殊螺纹处的应力安全系数为 2.4;若延用标准的 45° 锯齿形螺纹,安全系数仅为 1.3。 2)围绕立柱四周的微柔性、高导向精度的自适应式 加载系统 双柱式结构锻造液压机具有一种特殊构造的超长导向 结构、围绕立柱横截面四周的微柔性组合式活动横梁,如 图 5,以及双凹球饺接式短圆柱摇杆轴自适应式的加载系 统。当压机承载后,前述高刚度机架的立柱导向面变形大 为减小,即可有效减小立柱与活动横梁间的导向间隙;通 图 5 组合式活动横梁四平面导向系统 过调整组合式活动横梁的拉杆预紧力,使其产生微小的适 应性变形,在立柱变形后仍能与立柱导板保持贴合;低接触应力的平面导向长度比传统四柱水压机增加 了 17%-28%,消除了圆形张力柱点接触应力和偏磨损的导向现象;通过铰接式摇杆的自适应性转动,减 小了主柱塞对活动横梁的刚性约束和对油缸导套密封处的水平力作用,延长了密封和导向寿命;通过在 线实时监测装置监控活动横梁运行水平度,获得了较高的运行精度。 3)双柱式结构对锻造工艺的适宜性 双柱式锻造液压机系列产品对于锻造工艺的适宜性主要体现在高效、节能、锻件尺寸控制、控制锻 造以及较宽的工艺应用范围。 (1)高效、节能、“零废功”的泵容积调速直接传动系统 开发了一种更为适合于锻造工艺要求的由单台电机驱动定-变量泵组、35MPa 高压、1500 L/min 大流 量、经济型的泵直接传动系统,泵的投资少、故障率较低、使用寿命较长。基于泵组连续可调的容积调 速和无级变量输出特性,以节能方式改变锻造速度,在任意常锻工况下,实现零溢流、零节流条件下压 机速度的连续可调和平稳、无阶跃的加压、换向和回程控制;系统功率消耗与锻件变形能成比例,无固 有合理损耗以外的废功消耗,能以最大镦粗力在泵零溢流状态下连续加压,与传统水泵-蓄势器传动系统 相比,总效率提高 50%,降低功率损耗 30%以上。 (2)大惯量载荷、高位置精度的快速锻造电液伺服闭环控制系统 采用大通径二通逻辑插装阀集成控制技术,DN160 通径高频响比例插装阀与 HNC 智能数控装置, 以及两套绝对值编码器对活动横梁的行程进行实时检测,开发了压力和位置双闭环控制系统,以及由主 缸快锻阀与回程缸常压蓄势器构成的快速锻造系统。实现了 77-94 次/min 快速锻造频次,锻造厚度尺寸 的自动测量和补偿,使锻件精整精度达到±1mm 的近终成形。提高效率 2 倍,减少了火次,降低了能耗, 提高了锻件尺寸精度和材料利用率。 (3)变形速率控制锻造 基于上述连续可调的速度控制技术,无论是手动操作,还是按设定的程序自动操作,都可实现对高 质量要求的特殊金属锻件进行变形速率的控制锻造,当形变温度较高时,增大形变速率,抑制动态回复 的进行,在较低的形变温度下,减小形变速率,使有足够的时间完成动态再结晶形核。实践证明,所锻 造的大型轧辊锻件产品的内部组织和成品率明显优于在水压机上锻造的产品。 (4)工艺应用范围 锻造工艺决定着所采用的工装模具与液压机的力能参数和空间尺寸。自由锻造各种工序所用上、下 砧具单一、通用性强,上砧座或镦粗板在活动横梁垫板上的承压范围不变。因此,双柱式锻造液压机的 活动横梁宽度尺寸可小于四柱式结构,几乎与双柱及上横梁相同。 双柱式机架在斜置方向上的立柱内侧净空距远大于四柱式压机,从而扩大了其工艺应用范围。 125MN 双柱式锻造液压机在移动工作台方向两个立柱内侧净空距为 6000mm,但在斜置方向上为 7400mm。机架斜置后,开阔了操作视域,可在斜置方向进出和锻造更大直径的封头、管板和环类锻件。 不过,当采用锻造行车翻料机或套筒夹持钢锭尾部进行特大钢锭压钳把工序时,为避免由于翻料机 的吊梁影响钢锭的可接近性,应在工艺设计时采用特殊吊具加以改善。 结论 双柱式锻造液压机发展成为当今自由锻造液压机中的一个主流机型,适应了市场需求,是技术进步 的创新成果。其结构的优异力学行为和对于各种锻造工况的适宜性,受到人们的青睐。以创新技术取代 传统技术的变革在自由锻造领域中同样是不可免的。 作者:郭玉玺,太原重工股份有限公司,教授级高工;研究方向:金属塑性加工工艺与设备 联系方式:太原市万柏林区玉河街 53 号,邮编 030024,手机电 13934621729;E-mail: gyuxi@sohu.com

332


Double-Column Forging Hydraulic Press and Behavioral Analysis on Mechanics of Its Structure (Chinese & English version, Paper) Guo Yuxi (Taiyuan Heavy Industry Co., Ltd., China) Abstract:This paper briefly introduces the structure characteristics and the main technical parameters of the complete equipment for 125MN open die (high speed) forging hydraulic press and 1800kN/4000kN-m rail bound forging manipulator newly developed by Taiyuan Heavy Industry Co., Ltd. The developing trend of the open die forging hydraulic press was discussed through practicalapplication from double-column-oblique-placement pre-stressed frame, and the suitability of double-column frame to forging technology analyzed from the research results behaviors of mechanic of this structure. 1

125MN Double-Column Forging Hydraulic Press

Since the year of 2006 it has been the time after time that the world record for the forging hydraulic press with maximum tonnage was broken by China. Its main body structure and type of drive have been renovated again and again.The complete technical equipment for 125MN open die (high speed) forging hydraulic press and 1800kN/4000kN-m rail-bound forging manipulator developed by Taiyuan Heavy Industry Co., Ltd. succeededrecently. It has become the ninth open die forging hydraulic press with over 10,000t level, which was put into operation in China, also the first double-column high-speed forging hydraulic press with maximum tonnage developed by China with its initiative. See Fig 1 and Arrangement Plan 2.

Fig. 1 The Complete Equipment for 125MN Open Die (high speed) Forging Hydraulic Press and 1800kN/4000kN-m Rail-Bound Forging Manipulator

Fig. 2 The Arrangement Plan of The Complete Equipment for 125MN Open Die (high speed) Forging Hydraulic Press The main body features of this hydraulic press are given below: Chinese character“日”shape doublecolumn-oblique-placement multi-tie-rod pre-stressed frame, type of connection between the main cylinder ram and combined moving cross head being of double-ball hinged rocker structure, and type of guide of the moving cross head being of plane guide with adjustable clearance around cross sections of the columns. Except 1800kN manipulatorthe complete equipment consists of anvil cross shifter, anvil change mechanism, top anvil quick changer and 2000kN ingot rotating & lifting table, etc. 333


The hydraulic pump station is of a volume-type speed-regulation direct drive system constituted by 14 fixed and variable pump groups with rate flow 1500 l/min respectively. The control system is of doubleloop control with pressure and position, and high-speed forging system constituted by the quick forging valve of the main cylinder and the normal pressure accumulator of the return cylinder. Such system may meet the requirements of program variations such as different forging force classifications, different forging speeds and high-speed finish energy-saving forging, etc of the main cylinder. For the technical parameters, see Table 1 below: Table 1 Item Forging force classification Upsetting force

Unit MN MN

Figure 38、76、114 125

Maximum stroke of moving cross head Opening height

mm mm

3800 7500

net clearance distance between columns Dimension of moving worktable (LxW) Working speed Finish forging frequency Clamping weight of manipulator Clamping torque Max. rotating diameter of tongs Max. lift stroke of tongs Height of machine above ground, approx. Overall dimension of machine, approx.

mm mm mm/s Times/min. kN kN-m mm mm m m (LxW)

6000 10000×4000 87-160 60 1800 4000 φ4340 3700 19 64×39

Remarks Maximum work pressure of liquid 31.5MPa Maximum work pressure of liquid 34.5MPa Between worktable surface and backup plate Oblique opening reaches 7400mm Minimum upsetting speed 43.5mm/s

Opening of tongs chopsφ2600mm Lowest position at center of tongs 1700mm Including manipulator and pump station

The equipment manufacture needs manufacture of equipment’s equipment. The successful development of the complete 125MN open die (high-speed) forging press not only makes THI realize development and supply of seriated complete technical equipment of 25MN, 35MN, 45MN, 63MN, 80M, 125MN and 200MN open die (high-speed) hydraulic presses, but also makes, through construction of projects of important and heavy technical equipments and localization of heavy castings and forgings, THI form its production capability with maximum ingot 450t, maximum single casting 600t and maximum single forging weight 260t, providing solid technical equipment support for industrialization of this series products and development of high-end heavy equipment, furthermore, serving the various key fields of the national economy in still larger scope. At present the open-die (high-speed) hydraulic press has already developed into a main model of machine, therefore the trade standard of the state, i.e. “Double-Column-Oblique-Placement Open-Die Forging Hydraulic Presswith Direct Drive of Oil Pump” has entered into the stage for reporting to authority for approval. Undoubtedly, it will become the first standard for the forging press product in China. The appearance, development and important influence in its trade of the double-column opendie forging hydraulic press has proved once again that the need is the mother of invention and the innovation is perpetual the topic of the technological development. 2

Why Has the Frame with Double-Column Structure Become the Main Model of Machine?

During over one-hundred-year’s history of the traditional water hydraulic press of the three-head fourround-column non-pre-stressed frame has existed forever. Even for the final thirty years of the last century, ten super-heavy open-die forging hydraulic press with over 10,000t level were built, but the leading position of the traditional structure has been not shaken yet. But, there is no denying the fact that the structural diversity and the technological progress quietly take place: one 80/100MN press with double-column structure put into operation by FCFC in 1971, the other 90/110MN press with doublecolumn multi-tie-rod pre-stressed frame put into operation by Creusot Forge in 1976. The pre-stressed structure and the oil-pump direct drive system started to be applied to the double-column and fourcolumn hydraulic press. In fact, the double-column forging hydraulic press appeared in the middle of sixties of last century, with the frame including combinative type and monolithic type, pre-stressed and non-pre-stressed ones, see Table 2. The majority of the presses are of those with bottom drive frame, having advantages such as press’s low gravity, good stability, small top vibration, minimizing fire risk because of oil medium leakage. Although a lot of unfavorable factors existed, such as bigger mass of moving portion, higher consumption of return power, underground press body and oil cylinder and control system, deep foundation and higher cost, and uneasy observation and maintenance, but it was still the main type for the medium and small forging hydraulic presses for a period of time.

334


Table 2 Pre-stressed combination frame Top drive Wider application

bottom drive Wider application

Non-pre-stressed combination frame Top drive Bottom drive Application Application available available

Non-pre-stressed monolithic frame Top drive Mainly cylinder drive

Bottom drive Wide application for small size

At later seventies the high-speed forging hydraulic presses with structures of top drive frame having double-column single-tie-rod pre-stressed structure, and double-column monolithic frame with top cylinder drive came out one after another. These structures became interested developed and applied targets successfully one after another at home and abroad. At one side of the main entrance of Nakamura,Japan there is marked advertisement standing aloft one retired brightly painted forging hammer symbolizing the end of the hammer times and clearly displaying the field the company targets. Starting from the eighties of last century, this company has consecutively installed four sets of 5MN, 8MN, 10MN and 16MN bottom-drive forging hydraulic presses. After entry into this century this company has again put two sets of 40MN and 80MN forging hydraulic presses with top drive and double-column pre-stressed structure respectively into operation. All of them are of oil-pump direct drive system. In the same forging bay of another factory,Japan, while the people watch one-man-operation 10MN double-column forging hydraulic press and manipulator with interest, with which one linkage was forged with one heat, the boss pointing at one 20MN water hydraulic press produced at fifties of last century and enormously was proud of expressing to let it continuously serve for fifty years. Adaptability is good; here the best annotation is given. In China, the most medium and small sized double â&#x20AC;&#x201C;column hydraulic presses are running in the special steel plants and in the enterprises mainly producing forged parts of shafting. Remarkable achievements have been obtained for the hydraulic presses independently developed by the enterprises in China, with situation from completing relying on importation to coexistence between domestic manufacture and importation until the domestic manufacture occupying the leading position. At that time the largest presses were of two 30MN double-column bottom-drive forging hydraulic presses co-produced with the foreign firms. But all these may not give rise to formation sufficiently on challenge against traditional four-column structure frame. This is more or less due to peopleâ&#x20AC;&#x2122;s different knowledge to the double-column structure from different angle. Some people said: The power consumption of the bottom drive frame is high, it is improper to adopt 50MN or above hydraulic press; other people said: The weight of the double-column one is heavier than that of the four-column one, it is improper to adopt 80MN or above hydraulic press; there are still people said: The double-column structure is only suitable to forged parts of shafting; even there are some people who doubt about reliability of 1-2 10000t-level double-column hydraulic presses only having history of over 30 years; etc. Therefore, during structural mode selection of newly made hydraulic press, without exception,people have to yield to carefulness from reform, giving innovation position to tradition after comparison. But everything is always changing, but not depending on subjective wish of the people.After entry into the twenty first century the demand of the high-quality heavy forgings in the different fields has increased remarkably. With the forging sector in China enters into one flourishing period, therefore another new high tide of development of heavy forging hydraulic press has already reappeared. In 2003, the 45MN double-column high-speed hydraulic press and 430kN/900kN-m manipulator imported by a steel plant were put into operation, with its higher mechanization, automation and advancement being accepted by people within the shortest period of time, arousing enthusiasm of a lot of forging enterprises, machinery plants and steel plants in China for building heavy double-column forging hydraulic presses. For last six years the main body structures and type of drive for newly built seven forging hydraulic presses with 10,000t level in China have changed fundamentally: First, all the traditional structures have been replaced by the pre-stressed frame; Second, among which five sets are of oil-pump direct drive system and only two sets of them of water pump- accumulator type of drive, taking the trend of replacing it; Third, three sets among them are of double-column frame challenge against four-column frame ones, consisting of 100MN, 125MN and 185MN respectively; Fourth, the forging hydraulic press with bottom-drive double-column structure has trend of big-size development, e.g. 45MN and 80/100MN. If counting the double-column forging hydraulic presses with capacity from 25MN to 80MN, newly added sets have been over 30, including 80MN double-column high-speed forging hydraulic press independently developed by THI for the first time in China, with series extending to 125MN, 63MN, 45MN,35MN and 25MN products.

335


In 2008 IFM (International Forging Meeting) was held in Spain. At this meeting such information was transferred among the participants: Even if one press with 90/110MN built in 1976 and the other press with 75MN run continuously for 24 hours daily, Creusot Forge could not still meet the supply and demand for heavy nuclear power forgings with 40% international market share and petrochemical forgings with 28% market share. At same year one 150MN double-column bottom-drive forging hydraulic press was put into operation in South Korea. Why has the double-column frame become a new idol? This is because except market demand and people’s direct feeling it good behavior of mechanics and adaptability of technology shall be the main reason for wide application of this structure. The application practices and the successful cases of the press frames, no matter it is super-large type or medium and small sized ones, or top drive or bottom drive, are far beyond the various people’s cognitions to the double-column structure. It has clearly replied to the question whether the double-column structure can be used reliably for a long time and further annotated the adaptability of technology of the double-column structure. 3 Analysis on Behavior of Mechanics and Adaptability of Technology of Double-Column Structure The behavior of mechanics of the structure is expressed as failure resistance of structure. If the prestressed structure applied to the forging hydraulic press improves the integrality and anti-fatigue performance of the press frame and it is only change of type of traditional structure, then, the doublecolumn pre-stressed structure has, except the integrality and anti-fatigue performance, high rigidity, high stability and strong capability for anti-bias load, with such advantages not available for other structures. It is a change with essence. The series double-column forging hydraulic presses developed by THI have abandoned the traditional four-column water hydraulic press structure; overcome many traditionally and currently available technical deficiencies unsuitable to the forging operating conditions, solved universally existing problems for frame vibration, frequent breakage of tie rods, and higher maintenance cost. Its good behavior of mechanics and adaptability of technology has embodies achievement of such reform and provided fast, highly efficient, precision and controlled forging with a work carrier with accurate, stable and big adaptable range and wide vision of operation. 1)Double-Column Multi-Tie-Rod Pre-Stressed Frame with High Rigidity As shown in Fig. 1, for the double-column forging hydraulic press, one type of hollow rectangular column with maximum sectional moment of inertia and one low-pressure special screw tie rodhave been developedHere, the concept on pretention of variable tension of one type of multi-tie- rods and one accurate test method on passive wireless pretension have been put forward. Through increase of pretension force of the tie rod, optimization of quantity and distribution of tie rods, and maximized oblique arrangement in variousdirections within permissible range of bias load (see Fig. 3), the top and bottom cross heads and vertical columns are made be formed a solid integral, therefore the monolithic rigidity, anti-bias-load capability of the press frame and the fatigue life of the tie rods have been improved, the stability of the hydraulic press has increased, and the reliability of the product has been ensured. The analytical result of full-contact FEM proved that the permissible area of bias load zone is 3.7-fold areas of the traditional four-column water hydraulic press, 1.9-fold areas of single-tie-rod pre-stressed press and over 1.7-fold areas of other double-column multi-tie-rod pre-stressed presses. Under the equal eccentric distance the cross swing displacement is less than 50% by comparison with the cross head of the four-column single-tie-rod pre-stressed press and the longitudinal swing displacement less than 20%. Compared with four-column single-tie-rod pre-stressed frame, the multi-tie-rods with small diameters have advantages of uniform forging structures and heat treatment properties, with arrangement kept far away from the neutral axis, and various tie-rods having balanced and coincident stresses, deviation less than 3%. It greatly reduces pulse stress magnitude of the tie rods, with only 15% maximum workload stress and compared with the tie rods of the water hydraulic press, its loading capacity is improved by 45%. The thread loading distribution of the special thread tie rods with low pressure is uniform, with reduction of stress of dedendum by 45%, pretension factor being allowed to increase, and reaching 1.56 -fold workload. See Fig. 4. The phenomenon of high stress centralizes at radium of the dedendum of 45°saw-tooth threads for the water hydraulic press is eliminated, e.g. for material of high-strength tie rod, its yield strength 700MPa, Max. Work stress 234MPa and safety factor 3. The safety factor of stress of special thread location is 2.4, if continuing to use standard 45°saw-tooth thread, the safety factor is only 1.3.

336


特殊螺纹

锯齿形螺纹

Fig. 3 Comparison of Bias Load Range between Double Columns and Four Columns

Fig.4 Analysis on FEM Stresses between Two Types of Threads

2)Self-Adapting Loading System of Tender Flexibility and High Guide Accuracy around the Columns The forging hydraulic press with double-column structure has combined moving cross head with a special super-long guide structure and micro flexibility around cross section of columns, see Fig. 5. It has a self-adapting loading system with double concave balls, hinged-type, and short-round-bar rocker. In case the press is loaded, the deformation of faces of the columns of the aforesaid high-rigid frame reduced greatly, in other words, the clearance between columns andthe moving head reduces effectively.

guide press guide cross

Fig. 5 Four-Plane Guide Systemfor Combined Through adjustment of pre-stressing force of the tie Moving Cross Head rods of the combined moving cross head it makes it generate small adapting deformation. After deformation of the columns it may still fay with the guide plates of the columns. Compared with the traditional water hydraulic press, the guide length of the plane with low contact stress increase by 17%-28%, eliminating phenomena of spot contact stress of the round shape tie rods and bias wear-out guide. Through self-adapting rotation of the hinged rocker the rigid restraint of the main ram against the moving cross head and the effect of horizontal force on guide-sleeve sealing position of oil cylinder reduce, extending the service lives of the sealing and the guide as well. Through monitor of running flatness of the moving cross head by the online real-time monitor the higher running accuracy is obtained. 3)Adaptability of Double-Column Structure to Forging Process The adaptability of the double-column forging hydraulic press series products to the forging process mainly embodies high efficiency, energy saving, control over forging dimension, control over forging, and wider range of application of process. (1) Pump-Volume Speed-Regulation Direct Drive System with High Efficiency, Energy Saving and “Zero Waste Work” One type of 35MPa pressureand 1500L/min flow and economized pump direct drive system with fixed – variable pump groups driven by single motor respectively, which is more suitable to the forging process, has been developed, having advantages of less investment, low fault rate and longer service life. Basing on the features of pump group, i.e. continuously adjustable volume speed regulation and stepless variable output, the forging speed is changed in the way of energy saving. Under any normal forging condition with zero overflows and zero throttles the speed of the press is continuously adjustable and stable, with pressurization, changeover and return control without steps. The power consumption of the system is proportional to energy of deformation of a forged part, without waste work consumption beyond intrinsic reasonable loss, being continuously pressurized at zero overflow state and the maximum upsetting force. Compared with the drive system of water pumpaccumulator its total efficiency is improved by 50%, and its power loss reduces over 30%.

337


(2) Hydroelectric Servo Closed Loop Control System of High-Speed Forging with Big Inertia load and High Position Accuracy The double-loop control system on pressure and position, and the high-speed forging system constituted by the high-speed forging valve of the main cylinder and the normal pressure accumulator of the return cylinder have been developed by adopting the following technologies: big-diameter twoway logical cartridge valve integrated technique, DN160 diameter high-response proportional cartridge valve, HNC intelligent CNC controller and two sets of absolute encoders carrying out real-time detection to the stroke of the moving cross head. High-speed forging frequency of 77-94 times/min is realized. With the help of automatic measurement and compensation of forging thickness dimensions the finish accuracy of a forged part reachesÂą1mm ultimate formation. The efficiency increases by two times, number of heat reduces, energy consumption lowers, and forging dimension accuracy and utilization rate of material are improved. (3) Forging with Control of Deformation Rate Basing on the above continuously adjustable speed control technique, no matter it is manual operation or automatic operation as per the program set, the control forging of deformation rate over special metallic forging with high quality requirement may be realized. If the deformation temperature is higher, the deformation rate increases, restraining dynamic recovery. Under the lower deformation temperature the deformation rate reduces, with sufficient time to complete formed core of dynamic recrystalization. Practice proves that the internal structures and the final product rate of the heavy roll product forged are remarkably superior to the products forged with water hydraulic press. (4) Range of Process Application The forging process decides tooling and die adopted, and load energy parameters and space dimensions of the hydraulic press. The top and bottom anvils of various operating sequences of the open die forging have the advantages of singularity, strong universal service, loading range on the backup plate of the moving cross head of the top anvil or upsetting plate remaining unchanged, therefore the width of the moving cross head of the double-column forging hydraulic press may be smaller than that of four-column structure, almost being same as that of the double column and the top cross head. The inside net clearance of the columns of the double-column frame in the obliquely placed direction is much greater than that of the four-column press, therefore its range of process application is expanded. The inside clearance of two columns of the 125MN double-column forging hydraulic press in the direction of the moving worktable is 6000mm, but in the obliquely placed direction 7400mm. After the frame is obliquely placed, the vision of operation is enlarged, in the obliquely placed direction the boiler end covers with still bigger diameters, pipe plates and rings may be in and out and forged. But in case a stock turnover machine of forging crane or a bushing for clamping the tail of a ingot is adopted for carrying out the operating sequence for pressing tongs handle of a super-large ingot, for avoiding accessibility of ingot influenced by the lifting bar of the stock turnover machine, a special lifting rig may be adopted for making such improvement during process design. Conclusion The double-column forging hydraulic press has been developed into one main model of machine among the current open-die forging hydraulic presses. It has adapted to the market demand, and is a renovation achievement of technological progress. The excellent behavior of mechanics of its structure and the adaptability of various forging working statuses are warmly accepted by people. The reform is unavoidable that the traditional technology is replaced by renovation technology in the field of open die forging. Author: Guo Yuxin, Professor-level Senior Engineer, Taiyuan Heavy Industry Co., Ltd. Research Target: Process and Equipment for Metallic Plastic Processing Contact: No. 53, Yuhe Street, Wanbailin District, Taiyuan City, P.R. China Postcode 030024 Mobile 13934621729 E-mail: gyuxi@sohu.com

338


一种高效愈合大型钢锭轴线缩孔疏松的锻造方法 (中英文版,论文) 徐斌,孙明月,李殿中 (沈阳材料科学国家(联合)实验室,中国科学院金属研究所,中国) 摘要:由于金属的凝固收缩,大型钢锭内部不可避免地产生缩孔、疏松、气孔等孔洞型缺陷,必须 通过有效的锻造工艺将这些孔洞型缺陷去除,以获得优质的大型锻件。本文对镦粗过程中孔洞的变化情 况进行了模拟,发现由于轴线疏松的孔洞形状和分布特点,镦粗过程对大型钢锭轴线疏松的愈合效果是 非常有限的。对传统 WHF 法的孔洞压实效果进行评估发现,错砧使钢锭心部总应变有限。基于以上研究 成果提出了宽砧径向压实工艺。由于钢锭的中心疏松沿轴向分布,沿径向的变形将对其闭合有良好的效 果。此工艺可以使应变集中于钢锭心部区域,满足孔洞高径比的最佳条件,有效愈合钢锭的轴线疏松。 关键词:缺陷愈合,宽砧径向压实工艺,WRF 法 随着我国经济快速稳定的发展,能源电力、冶金机械等各行业需要越来越多高质量大型锻件。大型 锻件的基础是大型钢锭,然而由于金属的凝固收缩,大型钢锭内部不可避免地产生缩孔、疏松、气孔等 孔洞型缺陷,必须通过有效的锻造工艺将这些孔洞型缺陷去除,以获得优质的大型锻件。图 1 是 100t 钢 锭解剖结果[1],通过解剖结果可以发现,在钢锭中心存在非常严重的缩孔疏松缺陷。在锻造过程中如果 不能使其完全愈合将导致严重后果。 孔洞型缺陷的愈合过程包含 2 个阶段:孔洞闭合和闭合界面的焊合[1-3]。在锻造过程中,钢锭心部 通常为高温并有较大应力,这非常有利于闭合界面的焊合。因此孔洞在何种条件下可以完全闭合对于消 除孔洞型缺陷有非常重要的意义。 通常锻造过程中包含镦粗和拔长过程,通常使用两镦两拔以提高锻件心部质量。人们提出 WHF、 FM 和 JTS 等锻造方法以提高锻件心部应变。针对这些锻造方法应该采用的砧宽比、砧形、错砧方法以 及压下量等都进行了系统的研究以优化自由锻工艺,有效愈合轴线疏松。[4-7] 图 1 100t 核电转子用钢锭内部缺陷的实际解剖照片

(a)脱模状态的钢锭 (b)剖面上低倍检测(c)钢锭轴线上的缩孔缺陷 (d)典型的微孔洞和裂纹 1. 镦粗过程中轴线疏松变形情况模拟 如图 1 所示,将 100t 真实钢锭中的孔洞形状取出建立一个轴对称模型以模拟镦粗过程中真实孔洞的 变形情况。如图 2 所示,模拟的钢锭尺寸为 Φ2230mm×2370mm,在孔洞周围进行网格细化以更准确的 模拟孔洞的变形情况和孔洞周围的应力应变分布。此模型中模拟了 V1、V2、V3 这 3 个孔洞的变形情况, 此模型包含约 20000 个单元。坯料温度为 1200 ºC,模具温度为 20 ºC,模具与坯料之间的热交换系数为 1100W/(m2K),摩擦系数为 0.3,上模压下速度为 4mm/s。钢锭材料为 6Cr2MnMoV,在模拟中使用实 验测得的热物性参数。使用 DEFORM-2D 软件进行孔洞变形情况的模拟。 由于钢锭的高径比为 1.06,镦粗过程中压下率应小于 35%以使镦粗后的坯料高径比为 0.5 以便于进 行拔长。图 3 为在压下率为 25%、30%和 35%的情况下孔洞形状和等效应变场分布情况。在压下率为 35% 的情况下,如图 3 (c)所示,V3 将完全闭合,V2 几乎闭合而 V1 完全没有闭合,这是由于三个孔洞的形状 不同。为了描述孔洞形状对其闭合难易程度的影响,提出了孔洞高径比的概念。将沿压下方向孔洞的轴 长定义为高 (不一定为长轴长),将垂直于压下方向的轴长定义为径,孔洞的高径比越大,孔洞闭合所需

339


的压下率越大。在这 3 个孔洞中,V1 的高径比远大于另两个孔洞,通过镦粗过程将很难使类似于 V1 的 孔洞完全闭合。 在钢锭中存在轴线疏松的条件下,如图 1(c)所示,有大量孔洞沿钢锭的轴线分布,某些孔洞的高径 比可能远大于 V1,因此镦粗过程难以使此类孔洞完全闭合。然而在拔长过程中,由于变形方向的改变使 孔洞的高径比减小,因此对轴线疏松的愈合主要依靠拔长过程。 图 3 显示在镦粗过程中应变集中于孔洞尖端并形成 V 形。在两个尖端之间的区域,尖端对其起到了 “保护”作用使其应变较小。孔洞的存在完全改变了局部的应变分布。图中 3 个孔洞的 V 形应变分布相 互交叉,这影响了其闭合过程。根据模拟结果,在只有一个孔洞的情况下,一个形状类似 V3 的孔洞将在 25%的压下率下完全闭合。然而 V1 和 V2 的使 V3 更加难以闭合。在钢锭中轴线疏松通常存在大量连续 分布的孔洞,通过镦粗难以使其完全闭合。对于大量沿一定方向分布的孔洞,沿此方向的锻造过程难以 使其闭合。

V1 V2

V3 (a) (b) (c) 图 3. 在压下量为(a) 25%, (b) 30%, (c) 35%的 情况下孔洞形状和等效应变分布 图 2. 真实孔洞有限元模型

2. 传统 WHF 法的孔洞压实效果评估 WHF 法(宽砧强压法)是在锻造过程中一种常用的拔长方法。传统上认为,由于使用宽砧进行拔长, 使得应变可以有效传导到心部,改变心部的应力、应变状态,非常有利于钢锭心部孔洞的愈合。为了评 估这种锻造方法对于中心疏松的压实效果,对图 1 所示的存在中心疏松的真实钢锭在 WHF 法拔长过程中 的情况进行了模拟。

图 4 孔洞简化模型

(a)

(b)

(a)

(b)

图 5 WHF 法拔长过程模拟 (a) 应变分布 (b)锻后孔洞外形

图 6 错半砧后拔长过程模拟 (a) 应变分布 (b)锻后孔洞外形

340


钢锭在锻造前外形为圆柱体,原始尺寸为Φ2230mm×2370mm(去除冒口),高径比为 1.063,材质 为 6Cr2MnMoV,钢锭重约 100 吨,坯料加热温度为 1200℃,拔长所用上下平砧的砧宽均为 1200mm, 使用 WHF 法对钢锭进行一个道次的拔长。如图 4 所示,根据钢锭解剖结果,在钢锭中心偏向冒口端中心 疏松存在的位置制造一尺寸、形状与实际孔洞相类似的简化模型。此孔洞模型呈圆柱体状,尺寸为Φ 12.14mm×90mm,在圆柱体棱的部位有半径为 5mm 的圆角。 如图 5(a)所示,在使用 WHF 法进行拔长的过程中,每次压下后要将上砧抬起向右移动进行下一砧的 下压,这种操作称为错砧。在两次下压的之间的区域存在一个接砧区域,在接砧区域的应变非常小,这 非常不利于此区域内孔洞的闭合。在一个道次的压下完成后,沿轴线方向的应变分布非常不均匀。在此 模拟中,孔洞恰好位于接砧区域,如图 9(b)所示,孔洞几乎没有变形。只有在下一道次的下压过程中错 半站,才能够使轴线方向的应变均匀分布,但上一道次的应变集中区域在此道次中将成为接砧区域,这 就使得钢锭心部的总应变是非常有限的。 为了考察在应变集中区域孔洞的变形情况,在其它条件不变的情况下,将上下模错半砧后重新进行 模拟,如图 6(a)所示。在此情况下,孔洞恰好位于应变集中区域,但由图 6(b)可见由于应变不够,孔洞 无法完全闭合。而在下一道次的拔长过程中,孔洞将处于接砧区域,无法产生变形。因此,WHF 法无法 使钢锭心部的孔洞完全闭合,其对于中心疏松的压实效果是非常有限的。虽然其对钢锭心部压实的效果 要远好于使用窄砧进行拔长,但其在心部产生的应变仍然不足以使孔洞完全闭合。 3. 宽砧径向压实法(WRF 法)的提出 为了解决传统工艺的问题,加大钢锭心部应变以压实孔洞型缺陷,提出了宽砧径向压实法(WRF 法)。此工艺使用上下平板,沿钢锭直径方向进行下压。这种工艺可以使应变集中于钢锭心部区域,弥 补了传统拔长方法的缺点。由于钢锭的中心疏松沿轴线分布,与传统的镦粗过程相比,宽砧径向压实的 过程中由于压下方向的改变,孔洞的高径比远小于镦粗过程,此方法可以满足孔洞高径比的最佳条件, 弥补了传统镦粗工艺中的不足。如图 7(a)所示,对宽砧径向压实法对孔洞的闭合效果进行了模拟。此方 法使钢锭沿轴线方向应变较大,如图 7(b)所示,在 20%的压下率下即可以使孔洞完全闭合。 对于大型钢锭,为了减轻其中心疏松,通常其高径比较小。在钢锭高径比小于 1.2 的情况下,可以直 接使用宽砧径向压实法代替第一次镦粗,即在锻前加热后直接进行宽砧径向压实。如果钢锭的高径比大 于 1.2,可以先进行预镦粗,将其镦粗至钢锭高径比小于 1.2,再进行宽砧径向压实。在此之后可以使用 传统的拔长工艺进行拔长,到达预定尺寸后再进行下一次的镦粗拔长过程。由于宽砧径向压实的压下量 (小于 25%)小于镦粗(50%左右),因此不能使用此方法完全代替镦粗过程,在钢锭中存在的除中心疏松以 外的各种方向性不明显的孔洞型缺陷仍然需要依靠镦粗过程将其锻合。在第二次镦粗拔长过程中,仍然 要使用传统的镦粗工艺。宽砧径向压实工艺所需的压下量小于镦粗过程,经模拟证实,其所需压机压力 小于镦粗过程,因此使用已有压机就可以实现此工艺,不需要大量的投入进行技术改造,工艺简便易行。

(b) (a)

图 7 宽砧径向压实工艺 (a) 应变分布 (b)锻后孔洞外形

图 7 宽砧径向压实工艺

(a) 应变分布 (b)锻后孔洞外形

4. 结论 (1)通过对真实孔洞在镦粗过程中的变形模拟发现由于轴线疏松的孔洞形状和分布特点,镦粗过程对大型 钢锭轴线疏松的愈合效果是非常有限的。 (2)对传统 WHF 法的孔洞压实效果进行评估发现,由于错砧使心部总应变有限,无法完全愈合钢锭的轴 线疏松 (3)提出了宽砧径向压实工艺, 此工艺可以使应变集中于钢锭心部区域, 满足孔洞高径比的最佳条件, 有效愈 合钢锭的中心疏松.

341


参考文献 [1] 李世健, 孙明月, 刘宏伟, 李殿中: 25Cr2Ni4MoV 钢锻造过程孔洞缺陷愈合规律研究, 金属学报, 47 (2011) 946-953. [2] C.Y.Park, D.Y.Yang: A study of void crushing in large forgins I: Bonding mechanism and estimation model for bonding efficiency, Journal of Materials Processing Technology 57 (1996) 129-140. [3] C.Y.Park, D.Y.Yang: A study of void crushing in large forigings II. Estimation of bonding efficiency by finite-element analysis, Journal of Materials Processing Technology 72 (1997) 32-41. [4] M.S. Chun, C.J. Van Tyne, Y.H. Moon: FEM analysis of void closure behaviour during open die forging of rectangular billets, Steel Research International, 77 (2006), 116-121. [5] S.P. Dudra, Y.T. Im, Analysis of void closure in open-die forging, International Journal of Machine Tools and Manufacture, 30 (1990), 65-75 [6] P.H.Kin, M.S.Chun,J.J.Yi, Y.H.Moon: Pass schedule algorithms for hot open die forging, Journal of Materials Processing Technology 130-131 (2002) 516-523. [7] Y.D.Kim, J.R.Cho, W.B.Bae: Efficient forging process to improve the closing effect of the inner void on an ultra-large ingot, Journal of Materials Processing Technology 211 (2011) 1005-1013. 作者:徐斌,孙明月,李殿中 沈阳材料科学国家(联合)实验室,中国科学院金属研究所,辽宁沈阳 110016, mysun@imr.ac.cn, +8624-23971973

342


A Forging Method Which Can Heal Porosities More Effectively (Chinese & English version, Paper) Bin Xu, Mingyue Sun, Dianzhong Li (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, China) Abstract: Due to solidification shrinkage during casting process, there are void defects like porosity, shrinks and gas cavity. The void defects must be healed during the following hot forging to get sound forging components. The simulation result shows that because of the void shape and distribution, it is hard to close shrinkage cavities using only upsetting processing. The simulation of traditional WHF method shows that die shifting will make the strain along the centerline limited. So the WRF(wide-anvil radial forging) method is proposed to close the porosities lies along the centerline of the ingot more effectively. WRF method can concentrate the strain on the center of the ingot heal shrinkage cavities effectively. Keywords: Void close behavior, Wide-anvil Radial Forging, WRF method There has been an increasing need of large forged components in naval, energy, machinery and other industries in the recent years. As the forged components become larger, heavy cast ingots are general used. However, the solidification process of large ingots cost such a long time, that it brings many problems, like shrinkage cavities in the center, porosities in the V-segregation zone and coarse cast structure. Fig. 1 shows the sectioning results of a 100t ingot [1]. There are severe shrinkage cavities in the center of the ingot, which must be healed during subsequent hot forging process, otherwise they may lead to catastrophic failure during service. The elimination of internal voids during forging process generally includes two stages: void closing and

Figure 1.Sectioning results of a 100t ingot for nuclear low pressure rotor (a) the demoulded ingot (b) the macro examination on the cross section (c) shrinkage cavity on the axle of ingot (d) typical micro void and crack in the area of shrinkage cavity

surface bonding [1-3]. During the forging process, the internal of the ingot endures quite high temperature and stress, which makes surface bonding relatively easy to achieve. So whether the voids can be closed during forging is of principle important for eliminating shrinkage cavities and porosities. Usually, large ingot forging includes upsetting and cogging process, and both are done two times to increase the internal quality of the forged component. Many cogging methods, like WHF, FM or JTS have been used to increase the strain in the center of the ingot. Many parameters, like die width ratio, die shape, shifting method, pressing depth, etc. are widely investigated to optimize open-die forging and close the void effectively [4-7]. 1. Voidclose behavior during upsetting

343


In order to see the deformation of a real void in the ingot during upsetting, a 1/2 axisymmetric model is made. The shape of the ingot and the voids is got from the sectioning results of the 100t ingot shown in Fig. 1. As Fig. 2 shows, the modelling size of the ingot is Φ2230mm×2370mm and the area around the void is meshed to be finer than other areas to get an accurate prediction of the void deformation and parameters like stress and strain. Three voids are made in the model, and they are named V1, V2 and V3. The model includes about 20000 elements. The billet temperature is 1200ºC; the die temperature is 20ºC; the heat transfer coefficient between the billet and the die is 1100W/(m2K); the friction coefficient is 0.3 and the punch velocity is 4mm/s. The material of the billet is 6Cr2MnMoV, and all the material thermal- physical properties are got from experiments. DEFORM-2D is used to run the simulation. As the height-diameter ratio of the ingot is 1.06, the reduction ratio of upsetting should be no more than 35% to make height-diameter ratio of the ingot 0.5 before cogging. Fig. 3 shows the void shapes and effective strain distributions when the reduction ratios are 25%, 30% and 35%. When the

V1 V2

V3

(a) (b) (c) Figure 3. Void shape and effective strain distribution at (a) 25%, (b) 30%, (c) 35% reduction ratio Figure 2. Axisymmetric FEM model of real voids for void closure simulation

reduction ratio reaches 35%, as shown in Fig. 3 (c), V3 is completely closed, while V2 is almost closed and V1 is not closed, that is mainly because the shapes of the three voids are different. Height-diameter ratio of void is defined to describe this difference. Height of void is defined as the axial length along the pressing direction (not necessarily be the long axis), while diameter of void is defined as the axis perpendicular to the height. It can be concluded from the simulated results that, the bigger heightdiameter ratio of void is, the harder it is for the void to close. Of the three voids, height-diameter ratio of V1 is much bigger than the other two, which makes it hardest to close. Based on our simulation, it is almost impossible to close a void like V1 during the upsetting process. If an ingot has shrinkage cavities, as Fig. 1 (c) shows, many voids will normally lie along the central axis of the ingot. Some voids may even have bigger height-diameter ratio than V1, which makes them impossible to close during upsetting. However, during cogging process, the height-diameter ratios of these voids are much smaller as the pressing direction changed. Therefore, the closure of these voids mainly depends on cogging process. Fig. 3 shows that the strain concentrates on the tips of the voids and forms a “V” shape in the billet. Between the tips, some areas are “protected” by the tips and have quite low strain. That is to say, the existence of voids changes the local strain distribution completely. As the “V” shape strain distribution of the three voids cross each other, the void closure behaviors are also changed. Based on our simulation, when there is only one void in the ingot, a void like V3 will close at the reduction ratio of about 25%. However, the existence of V1 and V2 make V3 harder to close. In the real ingot, it is normal for the voids of shrinkage cavities lie along the central axis and near each other. That makes them even harder to be closed during upsetting. For multiple voids lying along a certain direction, it is hard to close them if forging is along the same direction. The distribution characteristics of voids in shrinkage cavities make them even harder to close during upsetting. 2. Void close behavior during cogging

344


WHF method is a widely-used cogging method. Using wide anvil can make the strain and stress in the center of the ingot bigger, which will help the voids to heal. In order to evaluate the effectiveness of this method, the real shape of the voids and the ingot is used to simulate the void behavior during cogging process using WHF method. The modeling size of the ingot is Φ2230mm×2370mm; height-diameter ratio of the ingot is 1.063; the material is 6Cr2MnMoV; the weight of the ingot is 100t; the temperature of the ingot is 1200℃; the width of the anvil is 1200mm. WHF method is used to cog the ingot one pass. As Fig. 4 shows, based on the sectioning result of the 100t ingot, a simplified model of the void is made. The shape of the void is a Φ12.14mm×90mmcylinder, with a 5mm round corner on the edge of the cylinder. As Fig. 5(a) shows, when using WHF method to cog the ingot, after each press the anvil should be lifted and moved right, which is called die shifting. There is a strain-free zone between the two presses. In this zone, as the strain is limited, it is very hard for the void to close. After one pass, the strain distribution along the centerline of the ingot is heterogeneous. In this simulation, the void is in the strainfree zone, as Fig. 9(b) shows, the shape of the void does not change much. During the next pass, the die will shift half of its width, making the strain distribution along the centerline more uniform. However, the zone with high strain during the first pass will become the strain-free zone in this pass, which makes the total strain along the centerline of the ingot limited. In order to simulate the shape change of the void in the strain-concentrated zone, the die is shifted half of its width, while other parameters remain the same, as Fig. 6(a) shows. From Fig. 6(b), the strain in the strain-concentrated zone is still not big enough to close the void effectively. In the next pass, the void will be in the strain-free zone, which means its shape will not change much. So the WHF method can not close the void in the center of the ingot, even if it is much more effective than using a narrow anvil.

Fig. 4 the simplified model of the void

(a)

(a)

(b)

(b)

Fig. 5 the simulation of cogging using WHF method Fig.6 the simulation of cogging with die shifting (a) strain distribution (b)void shape

half of its width

(a) strain distribution (b)void shape 3. Wide-anvil Radial Forging(WRF method) In order to close the void in the ingot more effectively, Wide-anvil Radial Forging(WRF method) is proposed. This method use two flat dies as upper and lower anvil, and the pressing direction is along

345


the radius. This method can concentrate the strain in the center of the ingot, which can close the voids more effectively. The voids in the central porosities lies along the axis of the ingot, so pressing along the radius direction can make the height-diameter of the void much smaller than the upsetting process, making the void much easier to close. As Fig 7(a) shows, the WRF method is simulated to judge its effectiveness on closing the voids. This method can make the strain along the center line of the ingot bigger. As Fig 7(b) shows, the void can be closed when the pressing ratio is 20%. The height-diameter ratio of the ingot is usually small to alleviate the problem of porosities. When the height-diameter ratio of the ingot is less than 1.2, WRF method can be used to replace the first upsetting. If the height-diameter ratio of the ingot is bigger than 1.2, a pre-upsetting should be used to make the height-diameter ratio of the ingot less than 1.2 and then WRF method can be used. After that, traditional cogging can be used to cog the ingot, and then the second upsetting and cogging process should be carried out. Since the pressing ratio of WRF method (25%) is much smaller than upsetting (50%), this method can not replace upsetting totally, because there are other void which may depend on the upsetting to close them. Upsetting should be used in the second upsetting and cogging process. Based on the simulation, the pressing force of WRF method is smaller than upsetting, so this method can be achieved using the existing equipment, which will make the method relatively easy to be performed.

(b)

(a)

Fig.7 wide-anvil radial forging (WRF method)

(a) strain distribution (b)void shape

4. Conclusion (1) The simulation result of the close behavior of the real voids in the ingot shows that because of the void shape and distribution, it is hard to close shrinkage cavities only using upsetting processing. (2) The simulation of traditional WHF method shows that die shifting will make the strain along the centerline limited, making it unable to heal the shrinkage cavities of the ingot. (3) The WRF(wide-anvil radial forging) method is proposed to close the shrinkage cavities lies along the centerline of the ingot more effectively. WRF method can concentrate the strain on the center of the ingot and heal shrinkage cavities effectively. References [1] S.J.Li, M.Y.Sun, H.W.Liu, D.Z.Li: Study on void healing behavior during forging process for 25Cr2Ni4MoV steel, Acta Metallurgica Sinica, 47 (2011) 946-953. [2] C.Y.Park, D.Y.Yang: A study of void crushing in large forgins I: Bonding mechanism and estimation model for bonding efficiency, Journal of Materials Processing Technology 57 (1996) 129-140. [3] C.Y.Park, D.Y.Yang: A study of void crushing in large forigings II. Estimation of bonding efficiency by finite-element analysis, Journal of Materials Processing Technology 72 (1997) 32-41. [4] M.S. Chun, C.J. Van Tyne, Y.H. Moon: FEM analysis of void closure behaviour during open die forging of rectangular billets, Steel Research International, 77 (2006), 116-121. [5] S.P. Dudra, Y.T. Im, Analysis of void closure in open-die forging, International Journal of Machine Tools and Manufacture, 30 (1990), 65-75 [6] P.H.Kin, M.S.Chun,J.J.Yi, Y.H.Moon: Pass schedule algorithms for hot open die forging, Journal of Materials Processing Technology 130-131 (2002) 516-523. [7] Y.D.Kim, J.R.Cho, W.B.Bae: Efficient forging process to improve the closing effect of the inner void on an ultra-large ingot, Journal of Materials Processing Technology 211 (2011) 1005-1013.

346


电渣重熔技术生产大型锻件用钢锭的最新发展 (英文版,论文) Latest Development in Electroslag Remelting Technologies for the Production of Heavy Forging Ingots (English version only, Paper) M. Kubin, A. Scheriau, M. Knabl, B. Ofner;M. Ramprecht and H. Holzgruber (INTECO special melting technologies GmbH, AUSTRIA,奥地利)

Abstract: Recently, INTECO special melting technologies has been assigned with the design and delivery of various large sized ESR furnaces up to 250 tons. Since that time some of these projected ESR plants were erected and commissioned. The present paper deals with these design and engineering challenges for large sized ESR plants. Results are given regarding the electrical, mechanical as well as operational parameters due to practical relevant data and will be compared with the previously calculated and predicted ones. A special focus lies on a wellcontrolled electrode change operation which is a precondition when producing big ESR ingots. Furthermore, the main melt station and its high current line of INTECO´s large ESR furnaces is designed to enable the application of the CCM® – Technology (current conductive mold) which is further explained. Ultimately, the results show that the big ESR ingots, which have been produced so far, have a good surface appearance and a well controlled chemical composition.

ESR plants, for instance the mould and furnace engineering enabling a well controlled electrode change technology in short collar mould as well as in static mould operation. Also attention must be paid to the handling of big loads and an accurate movement and positioning of electrodes. The most important aspects which have to be considered in the design of large sized ESR furnace can be summarized as follows:  Single electrodes / multiple electrodes  Big loads which have to be handled  Accurate movement and positioning of large electrodes  High current levels  Design of short collar and static moulds  Accuracy of measurements to allow automation  Electrode change technology in static mould ESR operation Mechanical Equipment of large sized ESR plants A lot of aspects must be considered regarding the design of components for a large sized ESR plant. The major attention in this paper in the mechanical design and manufacturing is paid to the following large sized components which will be explained in detail:  Short Collar Moulds  Static Moulds  Electrode Stub-welding Unit

Keywords: electroslag remelting, ESR, heavy forging ingots, freeboard measurement, electrode stub welding, electrode change technology, melt trend of big ESR ingots, surface appearance of big ESR ingots, CCM®-Technology Introduction The electroslag remelting (ESR) process is nowa-days widely used for the production of heavy forging ingots. Especially the advantages of remelted products for end use in the power generation industry, chemical industry or oil and gas industry have gained increasing importance. The reason for this instance is the better material quality, the higher yield as well as a better forgeability of ESR ingots as opposed to a conventional cast ingot. Hence, over the last years a huge demand of heavy forging ESR ingots has evolved up to an ingot weight of 250 tons. This development in ESR ingot dimensions poses a challenge for the plant engineering companies regarding the design of such large

All of the large sized ESR plants are equipped with the latest technologies, e.g. protective gas hood for a well controlled atmosphere or coaxiality of the high current line to prevent an undesirable stirring of the liquid slag and metal bath and to keep the electrical losses low. Short Collar Moulds Large short collar moulds (see Figure 1) require a modern and robust design for enabling a fully automatic remelting process. Therefore, the mould is equipped with a cooling ring which is the adaptor for the protective gas hood as well as a slag braking device which will act as a blockage for any liquids which most unlikely run out during

347


hot topping of the ingot. Furthermore, the mould is equipped with a slag bath level sensor as well as load cells for definition of an optimal and accurate withdrawal action.

the process automation and entire quality of ESR ingots.

Figure 2: Trend of the radar freeboard measurement at a 1900mm dia. short collar mould ESR plant.

Figure 1: Inner diameter 1980mm-short collar mould equipped with a cooling ring and a slag braking device for the production of a 145t ESR ingot. For a precise measurement of the liquid slag bath level INTECO special melting technologies has recently developed a radar slag bath level sensor, which already has reached industrial maturity. This equipment consists of a radar sensor, all necessary stainless steel parts for installation into the cooling ring as well as all necessary electrical equipment for implementation in the plant control system. The entire unit can be installed into the cooling ring of an already existing short collar mould with slight modifications. The previous slag bath level determination method is based on calculations of the freeboard with assumed parameters, which results in some disadvantages in process control. With a radar bath level control system it is possible to have continuous information of the actual slag bath level. This provides a more precise process control, e.g. automatic start and control of the ingot withdrawal mechanism and the operation at a preset slag bath level. Figure 2and Figure 3 show the radar freeboard measurement of a 1900mm dia. short collar mould ESR plant indicating the actual freeboard (blue line) as well as the actual electrode carriage position (violet line) and actual baseplate position (green line) at the beginning of the remelting process. It can be seen that after the slag bath reaches a predefined level the baseplate retraction starts and the freeboard stays at a constant position. Furthermore, in Figure 3 it can be seen that as soon as the radar signal reaches a certain value the retraction of the base plate starts. These precise measurements and thus the steady-going base plate retraction have a positive impact on

Figure 3: Radar freeboard measurement of the beginning of the baseplate retraction. Static Moulds Large static crucibles (see Figure 4) are most challenging in the manufacturing process of the copper inlet tube. Special manufacturing processes have been developed enabling the production of inlet tubes of an inner diameter of 2700mm and more. The copper welding process of a wall thickness of up to 80mm and copper tube weights of 35t had to be handled.

Figure 4: Diameter 2000mm and 5,85m long static crucible for the production of a 120t ESR ingot. In order to enable a save and long term reliable static crucible operation for the production of ESR ingots up to 250tons, which results in design loads of over 330tons, the design of all components have been optimized by using the

348


Finite Elements Analysis (FEA) as can be seen in Figure 5. The FEA was used for the stress-, deformation- and stability calculation as well as thermal calculation, which are not further explained in the scope of this paper.

Figure 7: Electrode stub welding unit equipped with two welding robots for a semiautomatic welding process. Due to the usage of big sized and heavy electrodes up to 65 tons in weight and 1800mm in diameter, an important precondition for the production of heavy forging ingots via the ESR process is a safe and reliable welding seam between stub, consumable part and electrode. For the electrode stub-welding procedure of stubs to stub-consumable part as well as consumable part to electrode, a semi-automatic robot stub-welding unit (see Figure 7) has been developed. The main features of this unit are:  Heavy duty rigid design  High positioning accuracy  Easy loading and unloading of different electrode dimensions in diameter and length  Perfect welding connection between stub and electrode

Figure 5: Stress calculation of an inner diameter 2700mm static crucible designed for a 250t ingot. The result of this calculation and design work is the successful fabrication of a large sized static crucible capable to produce 250ton ESR ingots, as can be seen in Figure 6.

This guarantees a first class and reliable as well as reproducible welding seam of up to a = 25mm seam thickness. A lot of effort was put in the development of the best welding seams. Figure 8 shows a weld-ment after the welding process. Figure 9 shows some examples of test welds which were carried out for testing proper welding procedures. For steel grades which are very difficult to weld, especially high carbon steels, a buffer layer is foreseen before the actual welding seam is done. The cutting accuracy of large stubs and electrodes is fairly large. This results in a gap between electrode and stub surface, which needs to be compensated. A gap of up to 20mm can be automatically compensated with this newly de-veloped welding process. All these aspects ensure a perfectly align electrode-stub connection for the remelting process.

Figure 6: Large sized static crucible in the back ground of a 250ton ESR ingot. Electrode Stub-welding Unit

349


One of the uncertainty factors when designing new large scale ESR-furnaces was the fact that the models, which exist so far, for precalculating the electrical operating points of the furnaces (i.e. voltage, current and power) were developed at smaller furnaces and it had to be proved that the derived formulas are also valid for larger furnaces. Figure 10shows a typical trend in electroslag remelting operation of voltage, current and power for an ESR-melt at a static-crucible furnace. Point 1 indicates the maximum values at the beginning of melting (slag melting phase). Its values are mainly determined by the starting curve and can be varied within certain limits. Point 2 shows the values at the end of the slag melting phase, where the necessary power for the specified meltrate has been reached and point 3 gives the minimum values at the end of the melt before the start of hot-topping.

Figure 8: Welding seam of a 1800mm dia. ESR-electrode.

Figure 10: Typical single electrode ESR melting trend showing current (red), voltage (blue) and power (green). The measurements showed that in general the measured valued (especially of the current, which mainly influences the design of the furnace) were a little bit smaller than the calculated ones, so that the design of the power supply and the current path is on the safe side, as can be seen in Figure 11. The following figures (see Figure 11) show some examples of measured vs. calculated values for a large sized ESR furnace with different slag compositions and slag bath height. The different points in the single figures indicate the different phase of the remelting process. As already mentioned above, the calculated values for the current are a little bit higher than the measured ones. The calculated values for the power are in good correlation with the measured ones. The higher values of the measured voltage compared to the previous calculated ones, can be explained due to the type of the used power supplies and thus the real conditions during remelting, which

Figure 9: Examples of different welding seams with the usage of buffer layers and/or gap compensation layers. (a) fillet weld, (b) fillet weld with a buffer layer (c) fillet weld with gap compensation layer and buffer layer. Electrical dimensioning regarding big ESR plants

350


cannot be taken precisely into account in the calculations.

Figure 11: Comparison of calculated and measured electrical parameters. Production of Heavy Forging Ingots A lot of big forging ingots have been produced so far during the commissioning phase of various large sized ESR plants. In this section some of the obtained results are shown. Heavy forging ingots produced in a large sizes static mold ESR plant The largest ESR plant which has been supplied by INTECO is capable of producing ingots with a weight of 250 tons and an ingot diameter of 2600mm in static mold operation with electrode change technology. Figure 12 shows the melt trend of a 2600mm dia. ESR ingot of a low alloyed steel grade usually used for large vessels and rings. The blue line indicates the melting voltage, the red line the melting current and the green line the melting power. This ESR ingot has a weight of approximately 180 ton. The melt trend indicates a very stable remelting operation over the whole ingot length which is very important due to the fact that the remelting operation last over several days. Furthermore it can be seen that this ingot was produced with three electrodes. The electrode change is a situation with high risk for quality and therefore also for productivity. Therefore it is a must to control several parameters during the change to prevent extensive heat loss and controller or plant malfunctions which cause a deeply immersed electrode.

Figure 12: Multiple electrode melt trend of a 2600mm dia. ESR ingot produced in static mold operation with electrode change. The blue line indicates the melting voltage, the red line the melting current and the green line the melting power. Beside the physical interchange of the electrode also the pre-change-phase and the post-changephase need to be controlled in an optimized way. The highly automatic and precisely adjusted electrode change operation ensures a very short interruption in the remelting operation as can be seen in Figure 13. The electrode change duration is in the range of 3 - 5 minutes. The whole ingot length shows a very good surface appearance and is smooth even there where the electrode changes took place.

Figure 13: Melt trend of an electrode change in static mold operation. The electrode change time is approximately five minutes. Figure 14 shows a heavy forging ESR ingot produced in static mold operation. The weight of this ingot is 250 tons with a diameter of 2600mm.

351


Figure 14: Heavy forging ESR ingot with a weight of 250 tons and a diameter of 2600mm. The surface is smooth over the whole ingot length, due to a very stable remelting process. Heavy forging ingots produced in a large sizes short collar mold ESR plant In Figure 15 a typical melt trend of a short collar mold ESR plant is shown on the example of a 1900mm dia ESR ingot with a weight of approx. 60 ton. The steel grade of this ESR ingot is a 12% chromium steel which is commonly used in energy industry for big rotors and shafts.

Figure 15: Multiple electrode melt trend of a 1900mm dia. ESR ingot produced in short collar mold operation with electrode change. The blue line indicates the melting voltage, the red line the melting current and the green line the melting power. Figure 16 indicates the phase of the electrode change with a duration of the power interruption of approximately three minutes. Also this ingot shows a very smooth surface and no distinctive grooves at the position where the electrode change took place.

352

Figure 16: Melt trend of an electrode change in short collar mold operation. The electrode change time is about three minutes. The Current Conductive Mold – Technology The production of large diameter ESR ingots, especially of segregation prone alloys, claims for the development of new remelting technologies due to the inability of the standard ESR process to reduce the melting rate in conjunction with a hot and liquid slag [1]. For the verification of the expected advantages relating to the CCM®Technology with respect to internal and surface quality, plant trials were carried out at the special steel plant at Breitenfeld. In doing so, 500 mm dia. electrodes were remelted in a conventional short collar mold and a current conductive mold (CCM®) for the production of 750 mm dia. ESR ingots. With the application of the current conductive mold the pool profile is shallow due to the possibility to lower the melting rate without any negative influence on the surface formation [2]. Figure 17 shows a comparison of typical pool profile formation in standard ESR and CCM® process. The inspection of the surface of the remelted ingots shows, that a higher melting rate in the standard ESR process leads to an improved surface quality. With the application of the current conductive mold a good surface quality could be obtained even in the case of very low melting rates. The different achievable surface quality can be seen in Figure 18. A lot of large sized short collar mold ESR plants, which have already been built by INTECO, can be equipped with a current conductive mold at a later stage, due to the included split power supply system.


into the mechanical design and electrical dimensioning as well as the automation control system of large sized ESR plants. Also a special focus was the design of an electrode stub welding unit which ensures highly reliable welding seams for a safe handling of big sized electrodes. To sum up, the results of this paper have shown that with todayâ&#x20AC;&#x2122;s state of the art big ESR plants supplied by INTECO special melting technologies ingots can be produced which meets the requirements of the industry regarding surface as well as internal quality. Nowadays a lot of investigation work is currently done in the further development of new remelting technologies for the production of large sized ESR ingots. A special focus lies here on the enhance-ments of the CCMÂŽ-Technology and the development of large hollow ESR plants. References Figure 17: Comparison of typical pool profile formation in the standard ESR process and the CCM process.

[1] Holzgruber, H.; Holzgruber, W.: New ESR con-cepts for improved control of solidification; Proceedings of the 2002 International Symposium on Electroslag Remelting Technologies, Chicago, Illinois (2002), P. 1-15. [2] Holzgruber H.; Holzgruber, W.; et al.: Investigation of the Implication of the Current Conductive Mold Technology with Respect to the Internal and Surface Quality of Electroslag Remelted Ingots; Proceedings of the Liquid Metal Processing and Casting, (2011), P. 57-64. M. Kubin, A. Scheriau, M. Knabl, B. Ofner M. Ramprecht and H. Holzgruber INTECO special melting technologies GmbH., Wienerstrasse 25 8600 Bruck/Mur, AUSTRIA Contact data: M. Kubin, INTECO special melting technologies, Wienerstrasse 25 A-8600 Bruck/Mur, Phone: +433862 53110 136, Fax: +433862 53 8 44, michael.kubin@inteco.at

Figure 18: Comparison of the different achievable surface quality in the standard ESR process and the CCM process. Summary, Conclusion and Outlook The electroslag remelting technology has been applied successfully for various applications for more than 50 years because of its flexibility in regard to fill ratio, slag composition, etc. which has enabled the development of a variety of plant concepts such as static crucible, single electrode plants as well as short collar mold plants with either moveable mold or retractable base plate design. Over the past years a need for heavy forging ingots produced with the ESR process has evolved especially for the end use in the power generation industry. Thus, a lot of effort was put

353


先进的检测系统——用机械化 UT 检测代替手工检测 (中英文版,论文) Klaus Leupoldt;Heinz-Josef Otte (Cegelec Deutschland GmbH,德国) 在能源工业和锻造行业的应用 对于锻件供货商供应的锻件,像汽轮机转子和涡轮盘,阿尔斯通、通用电气等汽轮机生产商以及越 来越多的其它公司在未来将只接受被机械化检测系统检测的锻件。原因是这些能源工业的公司需要从转 子和汽轮机零件的最基本检测开始,对他们产品有一个终身保障。锻件供货商如果想在未来的市场上有 一席之地,必须要对这些新系统进行投资。 Cegelec 的检测产品受到阿尔斯通的推荐以及西门子和通用电气的接受,像针对转子的 TURO-MAN 系统和针对涡轮盘和其它回转型对称零件的 SIRO-MAN 系统。 机械化无损检测服务正逐步展现其前景。需求主要来自于公用事业和他们的保险公司。汽轮机应该 在安全条件下尽可能长的工作。由于不存在没有缺陷的技术系统,对已知的缺陷需要定期的检测其增长 情况。针对这个目的,我们最近对 TURO-MAN I 系统进行了更新和升级。现在它被永久放置在一个 40 英尺的集装箱里,可以被运到发电厂或服务站。 我们的客户依赖于机械化检测的优点 我们的机械手通常能够与大多数无损检测工艺或系统匹配,在这里,我们把焦点放在最受欢迎和普 遍使用的一种——UT。 同手动 UT 相比,机械化 UT 具有很多优点,下面是最重要的几点: 位置和振幅的可重复性 计算机里的文档(自动创建显示列表) 耦合条件的证据和对检测区域的覆盖 存贮的数据和数据文件中 UT 的设置 随时检索数据 这些都有助于减少人为因素的影响,提高检测的可靠性。 UT 检测从手动到机械化的转变 使用手动 UT 检测仪,在锻件表面按着探针移动时,需要同时监控着设备的屏幕,通常屏幕上会显示 一个 A-检测区。每一个超出界限(A 区的红线,图 1)的信号都必须记录下在圆周和轴向上检测出的振 幅和长度。

图1 A-检测区 除了可能的缺陷回波,耦合波(底面回波)、检测区域的覆盖程度、检测速度也必须要注意。即使 检测的只是一个圆形样件,像一个转子或一个汽轮机涡轮盘,也很难想象这些信号背后是什么。 现在当我们从手工检测转换到机械化检测,我们给 A 扫描中检测的样件建立一个坐标。一个非常简 单的坐标建立就像 B 扫描,A 扫描的彩色编码被分配了一个坐标,如图 2。

354


图2

B-扫描 and A-扫描

如果把 A 扫描旋转 90 度,如图 3,可能更容易明白。

图3 B-扫描 and A-扫描(旋转 90 度) A 扫描中显示的是 B 扫描中蓝色线的振幅,可以通过设置的颜色来识别,即左手边的颜色条。 再下一步是 C 扫描,如图 4,这是一个所检测样件的俯视图,样件表面每个最大振幅超过极限(A 扫 描)的点都显示出来。每个点的振幅也同样被设置成颜色识别即颜色条。

图4

C、B、A 扫描 355


为了便于记录显示情况,C 扫描中在显示旁边有一个指针,相关的显示参数会自动进入到一个显示 列表中,如图 5。

图5 C、B、A 扫描和显示列表 在列表中,一些计算值也同样能够显示出来,例如所显示的真实深度、位于表面哪里,轴向的长度 和圆周的方位也能确定。为了确定所显示的地方位于样件的什么部位,如图 6,通过一个迹象极视图能够 清楚的显示。

图6 迹象极视图 销售给锻件生产商的机械化 UT 检测仪主要是针对汽轮机和发电机转子的 TURO-MAN 型以及针对涡 轮盘或其他回转对称型零件的 SIRO-MAN 型,如图 7。

图7

TURO – 和 SIRO – MAN

356


被检测的零件通过滚筒可以旋转。探针通过气压系统附着在零件表面,在纵向和径向方向有导轨, 以配合耦合表面的直径。整个系统通过一个轴向的轨道系统移动。图 8 显示的是独有的 SIRO – MAN 型, 可以直接检测涡轮盘的所有表面,而不需要反转涡轮盘。

图8 SIRO – MAN 型可以直接检测涡轮盘的所有表面 水和油都可以用作耦合介质,通常采用闭合回路。 根据客户的要求,可以采用传统的 UT 或相控阵技术。 以下是到目前为止所销售的检测仪的参数: TURO – MAN: 直径 200 mm – 3500 mm 重量 1 to – 400 长度 up to 20 m SIRO – MAN:

直径 200 mm – 3500 mm 重量 1 to – 100 高度 up to 4000 mm 以上产品的机械手系统都是根据客户需求设计的。如需其他参数的产品,可以同我们联系定制。 轨道车辆领域的应用 高速列车的火车轴发生故障或损坏会严重危及乘车人的生命安全或者导致很大的损失。为了减少这 种事件发生的可能性,我们研发了一种“穿梭”系统用于对各种列车空心轴的检测,如图 9。第一套系统 是特别为高铁“ICE”研发的。Cegelec NDS 是德国铁路公司这种检测系统的主要供应商并为此感到自 豪。 目前已有 100 套“穿梭”系统发货给客户,不仅仅在德国,而且有捷克、俄罗斯、韩国、瑞士以及 西门子在奥地利格拉茨的生产工厂。 在检测方面,由于多年前科隆站的事故,对存在多个壁厚过渡复杂形状车轴需要很高频率的检测, 这些都使无损检测机械化变得至关重要。

图9

穿梭系统示意图和检测结果显示

357


现在销售的穿梭系统可以检测的直径范围从 30mm 到 90mm,操作时最多可采用 10 根探针并行探测 轴向和圆周的缺陷。穿梭系统的特点是检测速度很快,大约 10 分钟检测一根,包括在线评估。图 9 右手 边显示的是一根轴的检测结果。 德国铁路公司的正常程序是在每个班次结束后必须对每根轴进行预检。检测结束后,结果只在本班 次有效。 现阶段穿梭系统有两个不同的设计—移动式和固定式。客户主要根据工厂的空间情况选择,如图 10。 两种设计都能满足客户对探测和定位精度的需求。

图 10

穿梭系统,移动式和固定式

结论 几乎所有的主要能源机生产商都需要机械化 UT 系统。对其供应商来讲,如果想拥有市场,这方面是 强制性的。 越来越多的轨道车辆企业采用机械化 UT 确保其火车安全和持续地运行。由于零件形状复杂,并需要 高频次检测,需要尽量多的 UT 通道,高速检测是关键。 机械化 UT 的主要优势在于: 计算机存档 检测过程记录(检测区域的覆盖,耦合情况) 随时对数据进行检索评估 这些优点可帮助减少人为因素的影响,使检测更为可靠。 UT 机械化系统能够应用于几乎所有尺寸和重量的零件。 对于本系统的操作,需要良好的培训以及积极主动的工作态度。 操作工人的培训也属于我们的产品供货范围。 机械化 UT 不仅仅是一台可以减少测量时间降低产品成本的测量设备,它更是一个能够显著提高产品 质量的工具。 如有问题请垂询 无损检测销售部(Business Unit NDS)经理 Heinz-Josef Otte 电话: +49 911 9943 102 / 手机: +49 151 12506 400 / Email: heinz-josef.otte@cegelec.com 无损检测事业及服务部(Service and NDT department)经理 Klaus Leupoldt 电话: +49 911 9943 131 / 手机: +49 151 12506 399 / Email: klaus.leupoldt@cegelec.com

358


Advanced Inspection Systems â&#x20AC;&#x201C;Replacementof Manualby Mechanizd UT Inspection â&#x20AC;&#x201C; (Chinese & English version, Paper) Klaus Leupoldt, Heinz-Josef Otte, (Cegelec Deutschland GmbH, Germany) Applications for the Energy and Forging Industry Turbine manufacturers like ALSTOM, General Electric and Siemens as well as other companies in increasing numbers will in the future accept from their suppliers only forgings, like turbine rotors and disks, if they are inspected by mechanized inspection systems. Reason for this is that the companies in the energy business want to have a lifetime documentation of their products, starting with base line inspections of rotor and turbine components. These suppliers have to invest in new systems, when they want to participate in future business. ALSTOM recommends and Siemens and General Electric accept Cegelec systems, like TURO-MAN for rotors and SIRO-MAN for disks and any rotation symmetrical parts. Also in the service business mechanized NDT is getting more and more into the foreground. Requirements are coming mainly from utilities and their insurance companies. Turbines shall be operated as long as possible under safe conditions. Since no technical system exists without defects, known defects have to be monitored on a regular base for growth. For this purpose we have recently renewed and updated our own TURO-MAN I system. It is now permanently stored in a 40 ft container and can be shipped to power stations or service stations. Our customers count on the benefits of mechanized inspections Our manipulators can generally be equipped with most of the NDT techniques or systems, but here a focus is placed on UT, the most popular and common one. There are many advantages of mechanized against manual UT. The most important features are as follows: -

Reproducibility in terms of position and amplitude PC based documentation (automated creation of indication lists) Evidence of coupling conditions and coverage of inspection area Storage of data and UT settings in data files Retrieval of data at any time

This all helps to reduce the influence of the human factor, making inspections more reliable. Transition from manual to mechanized UT inspections A manual UT inspector, while pushing a UT probe on the surface, has to monitor the screen of his UT instrument, where normally an A-scan is displayed. Each signal exceeding a threshold, e.g. the red line in the A-Scan, Fig. 1, has to be recorded in amplitude and lengths in circumferential and axial direction have to be determined. Besides possible defect echoes, coupling (backwall echo), coverage of inspection area, scanning speed aso have to be controlled. Even if there is only a round specimen, like a rotor or a turbine disk to be inspected, it is hard to imagine, what is behind these signals.

359


Fig. 1 A-scan When we now switch from manual to mechanized inspection, we have an allocation of the A-Scan to the coordinates of the specimen to be inspected. A very simple allocation is the B-scan, where the colour coded A-scans are allocated to the coordinates, s. Fig. 2.

Fig. 2 B-scan and A-scan This can be better understood, when the A-scan is rotated by 90째, s. Fig. 3.

Fig. 3 B-scan and A-scan (rotated by 90째) The A-scan represents the amplitudes along the blue line in the B-scan; the allocation of amplitudes to the colours is realized via the colour scale at the left hand side. In a next step now a C-Scan can be provided, s. Fig. 4. This is a top view on the part to be inspected, where to each point on the surface the maximum amplitude out of the gate (A-scan) is displayed. The allocation between amplitude and colour is again realized via the colour scale.

360


Fig. 4 C- , B- and A-scan To ease recording of indications, in the C-scan a cursor can be placed around an indication and the relevant indication parameters are transferred to an indication list, s. Fig. 5

Fig. 5 C- , B- and A-scan and indication list Inside this list also calculated values can be displayed, like the true depth of an indication, the position at the surface and also the length can be determined in axial and circumferential direction. In order to get an idea, where the indications are located in the specimen a polar view can be shown, s. Fig. 6.

Fig. 6 Polar view

361


Most systems for mechanized UT inspections sold to forgeries are mainly of type TURO-MAN for turbine and generator rotors and SIRO-MAN for turbine disks or any rotation symmetrical parts, s. Fig. 7

Fig. 7 TURO – and SIRO – MAN By means of rollers the part to be inspected is set into rotation. The probe system is attached to the surface by a pneumatic system, guided in vertical and radial direction to fit to the diameter of the coupling surface. The whole unit is moved on a rail system in axial direction. Unique for the SIRO – MAN is that all surfaces can be inspected without the necessity to turn the disk, s. Fig. 8.

Fig. 8 Inspection of all surfaces with SIRO – MAN As coupling medium water or oil can be used, normally applied in a closed circuit. Conventional UT or Phased Array technique can be applied according to the requirements of the customers. Systems delivered up to now are covering following dimensions: TURO – MAN:

diameter weight length

– –

200 mm 1 to

3500 mm 400 to up to 20 m

SIRO – MAN:

diameter 200 mm – 3500 mm weight 1 to – 100 to height up to 4000 mm Manipulators for these dimensions were designed according to customers´needs. Other dimensions are available on request. Applications for the Railway Industry A malfunction or failure of an axle of a high speed train could endanger the life of people and /or could cause high material damages. To reduce the likelihood of these events, we have developed a system “SHUTTLE” for the inspection of the hollow axles of all types of trains, s. Fig. 9. A first development was especially dedicated to the high speed train “ICE”. Cegelec NDS is very proud to be the main supplier of the Deutsche Bahn, the German railway operator, for this type of inspection systems.

362


In the mean time nearly 100 systems of type “SHUTTLE” have been delivered to customers not only in Germany, but also to Czech Republic, Russia, South Korea, Switzerland and to the manufacturing plant of Siemens in Graz in Austria. In the service business, the complex shape of the axles with many wall thickness transitions and a high frequency of inspections, due to an accident in Cologne main station some years ago, make mechanized NDT essential.

Fig. 9 SHUTTLE, schematic diagram and display of inspection results SHUTTLEs have now been delivered for diameters from 30 mm to 90 mm and for operation of up to 10 probes in parallel to detect axial and circumferential flaws. Specific for our SHUTTLEs is a very high inspection speed of about 10 min per axle incl. online evaluation. The results at the right hand side of Fig. 9 show the inspection of a test axle. A common procedure of the Deutsche Bahn is that test axles have to be scanned prior to each and after the end of each shift. Inspection results gained during the shifts are valid only, when all defects of the test axles are detected during these scans. In the moment two different SHUTTLE designs – telescopic and rigid - are available. Customers make their choice mainly due to the space available in the workshops, s. Fig. 10. With both designs the requirements in terms of detectability and positional accuracy can be fulfilled.

Fig. 10 SHUTTLE, telescopic and rigid design

363


Conclusion Mechanized UT is required by nearly all major energy machine producers. It is mandatory to apply for their suppliers, if they want to stay in business. Railway operating companies, in increasing number, apply mechanized UT to allow safe and uninterrupted operation of their trains. Due to the high frequency of inspections in combination with complex geometry and therefore a high number of required UT channels, high inspection speed is the key. Main advantages of mechanized UT are PC based documentation evidence of inspection performance (coverage of inspection area, coupling conditions) retrieval of data evaluation at any time This all helps to reduce the influence of the human factor, making inspections more reliable. Mechanized UT systems can be adapted to nearly all dimensions and weights. To operate the described systems, it needs well trained and motivated personnel. Training of personnel is also part of our scope of supply. Mechanized UT is not primarily a measure to reduce inspection time and production costs; it is a tool to significantly improve the quality of the products.

For any questions or inquiries please contact Heinz-Josef Otte, Manager Business Unit NDS fone: +49 911 9943 102 / mobile: +49 151 12506 400 / email: heinz-josef.otte@cegelec.com Klaus Leupoldt, Manager of Service and NDT department fone: +49 911 9943 131 / mobile: +49 151 12506 399 / email: klaus.leupoldt@cegelec.com

364


西门子 X20Cr13 材料的特殊要求 (中英文版,论文) 阳东海,吴跃江,蒋喆 (西门子(中国)有限公司上海分公司,中国) 摘要:西门子 X20Cr13 钢材,主要用于制造汽轮机以及燃气轮机的压气机末几级叶片。虽然其化学成分 和国标汽轮机叶片用钢 2Cr13 材料相近,但由于气轮机叶片应用的特殊要求,其交货状态,生产工艺, 力学性能,检验要求,都远高于后者。其各项特殊要求,对于叶片的使用性能,理论上有更深层次的考 虑。 关键词:X20Cr13,2Cr13,叶片,材料,工艺,性能,检验 作者:阳东海, 1970 年生,1998 年于北京科技大学获工学博士学位。现从事锻件供应商质量管理工作 0, 前言 汽轮机叶片需长期在极苛刻的条件下承受高温、高压、巨大的离心力、蒸汽力、蒸汽激振力、腐蚀 和振动以及湿蒸汽区水滴冲蚀的共同作用。因此叶片材料,对常温和高温瞬时力学性能,以及持久、蠕 变、疲劳与耐腐蚀等长期性能有很高的要求。 西门子 X20Cr13,是碳含量在 0.20%左右,铬含量在 13%左右的马氏体型不锈钢,主要用于制造汽 轮机和燃气轮机的压气机末几级叶片,其标准被中国几家大型汽轮机主机厂直接沿用至今。但国内供货 钢厂和汽轮机主机厂对该材料某些性能要求一直存在疑惑,甚至有商务人员提出用化学成分相近的国标 2Cr13 或欧标 X20Cr13 材料来替代西门子的 X20Cr13。 本文将西门子 X20Cr13 钢材的采购技术规范和国标 2Cr13 材料的相关标准 GB/T 8732-2004(汽轮 机叶片用钢)进行了对比和分析,解读了其材料特殊要求的目的。 而 GB/T 1220-2007(不锈钢棒)以及欧标 X20Cr13 的标准 DIN EN 10088-3(不锈钢,第 3 部分: 通用耐腐蚀钢半成品、棒材、条钢、线材、型钢及银亮材交货技术条件)作为通用技术规范,其要求相 对宽松。本文也列出相应内容以供参考,但不作评论。 1, 化学成分的差异 表一: 4 个不同标准的化学成分 标准/规范

化学成分

材料牌号

C Si Mn P S Ni Cr Mo Cu N 西门子采购 X20Cr13 0.17-0.22 0.1-0.60.3-0.8 <0.03 <0.020.3-0.8 12.5-14 技术规范 GB/T 87322Cr13 0.16-0.24 <0.6 <0.6 <0.03<0.025 <0.6012.00-14.00 <0.3 ( ) 2004 1 GB/T 122020Cr13 0.16~0.25 <1.00 <1.00<0.040<0.030(<0.60)12.00-14.00 ( ) 2007 2 /2Cr13*) DIN EN 10088-3, X20Cr130.16~0.25 ≤1.00 ≤1.50≤0.040≤0.030 - 12.00-14.00 ( ) 2005 3 注: *)老版本牌号 2Cr13,新版本牌号 20Cr13

其它

-

 虽然 4 个标准的化学成分相近,但实际上西门子 X20Cr13 各元素的上下限范围更窄,对冶炼工艺和 原材料的要求也更高。  GB/T 8732-2004 限制铜的含量,是为了避免高温表面裂纹,因为国内原料废钢中铜含量普遍偏高; 国内习惯上只从化学成分一维视角来区分钢材,其实是一种不成熟的认知。即使是主要化学成分完全相 同的钢材,由于内在质量和性能要求上的差异,还应该在多维视角下划分为不同的材料; 2, 生产工艺要求和交货状态 365


标准/规范 西门子采购技术规范 GB/T 8732-2004 GB/T 1220-2007 DIN EN 10088-3, 2005

表 2:4 个不同标准的冶炼工艺要求 材料牌号 冶炼工艺要求 应使用脱气(比如真空处理)的钢。使用其它炼钢工艺 X20Cr13 应事先和采购方达成协议。采用模铸钢锭生产。 电弧炉冶炼,电渣重熔。满足标准要求,并经买卖双方 2Cr13 同意的其它冶炼方法,可以采用。 20Cr13 /2Cr13 除非合同另外要求,通常采用初炼炉加炉外精炼工艺。 除非询价和合同另外规定,满足本标准要求的冶炼及生 X20Cr13 产工艺由生产方决定;

 GB/T 8732-2004 之所以采用电渣重熔工艺,是考虑到了国内各个钢厂冶炼浇铸装备的局限性,以降 低叶片用钢中的非金属夹杂物,提高改善材料的均匀性。  因为冶炼浇铸工艺的不同,国标汽轮机叶片用钢 2Cr13 材料的气体含量和均匀性控制较难达到西门 子 X20Cr13 的实物质量水平。 表 3:4 个不同标准的交货热处理工艺要求 标准/规范 材料牌号 交货热处理工艺要求 按 EN10088-3,表 A.2 中 QT800(950~1050 oC 淬火,油/空 ( ) 西门子采购技术 冷,600~700 oC 回火)热处理*) 3 ;不允许成捆热处理; X20Cr13 规范 采用足够的回火时间和慢的冷却速度以实现回火后残余应力最小; 如果热处理后需要矫直,应采用合适的去应力退火工艺; 退火 (800~900 oC,慢冷)或高温回火(700~770 oC,快冷)状态 交货; GB/T 8732-2004 2Cr13 经买卖双方协商并在合同中注明,调质(950~1020 oC 淬火,空/油 冷+660~770 oC 高温回火,油/水/空冷)状态交货可以接受; 钢棒可以以热处理或非热处理状态交货; GB/T 1220-2007 20Cr13 /2Cr13 如果合同中未注明,以非热处理状态交货; 热处理:退火(800~900 oC,慢冷;或 750 oC 快冷) 三种热处理工艺: DIN EN 100881,+A(745~825oC,退火,空冷); X20Cr13 3,2005 2,+QT700(950~1050 oC 淬火,油/空冷,650-750 oC 回火); 3,+QT800(950~1050 oC 淬火,油/空冷,600-700 oC 回火); 注: *)实际内控范围更严  显然,国标汽轮机叶片用钢 2Cr13 在交货热处理状态上和西门子 X20Cr13 也不同。  西门子 X20Cr13 材料,在欧美一般以调质状态的锻造方钢交货,在叶片工厂只需经过数控机床加 工成叶片即为成品。目前国内钢厂极少能直接提供调质状态的锻造方钢,基本都是以圆棒退火态交货, 因此在中国的叶片制造工厂,大多数情况下是按西门子 X20Cr13 材料标准买退火圆棒,经模锻成毛坯或 经二次锻造(改锻)成方钢后,再调质,最后机加工成型,和欧美进口的西门子 X20Cr13 调质状态的锻 造方钢相比,总的成本并无优势,而且最终性能还不稳定,质量责任难以追溯,导致国内原材料制造的 这类叶片在全球范围内缺乏竞争优势或优势不明显。  西门子 X20Cr13 西门子采购技术规范关于残余应力的要求,主要是因为残余应力对于叶片的静载 强度、高低周疲劳强度、断裂强度、蠕变强度、耐高温腐蚀性能,以及挠曲变形都有一定的影响。这一 要求,同样用途的国标 GB/T 8732-2004 中没有相应的考虑。 3, 机械性能比较 标准/规范 西门子采购技术规范 GB/T 8732-2004 GB/T 1220-2007 DIN EN 10088-3,2005

表 4:取样位置 材料牌号 X20Cr13 2Cr13 20Cr13 /2Cr13 X20Cr13

366

取样位置 按图 1,纵向取样 按国标 GB/T-2975 取样 按国标 GB/T-2975 取样 按图 3,纵向取样


图 1:X20Cr13 取样位置(左:横截面积≤200cm2;右:横截面积>200cm2;Z:拉伸试样,K:冲击试 样,M:金相试样)

(4)

图 2:国标 GB/T-2975 中钢棒取样位置(左:切取拉伸样坯位置;右:切取冲击样坯位置)

(3)

图 3:DINEN10088-3 中钢棒取样位置(上:切取拉伸样坯位置;下:切取冲击样坯位置)

367


表 5:不同标准力学性能比较 0.2% 延伸率 抗拉 面缩 屈服 冲击功 硬度 (L0=5d 标准/规 强度 率 材料牌号 测试条件 ) 强度 范 N/mm N/m % % J HBW 2 m2 在所有热处理工艺结束 (包括可能的去应力退 西门子 火)后测试; 800X20Cr13 采购技 ≥600 ≥15 ≥50 ≥20 *) ≤280 950 在每个母炉号的每个热处 术规范 理批次最软和最硬钢棒上 取样测试; 950~1020oC 淬火(空/油 冷) ;660~770oC 回火(油/ GB/T 207~2 ≥ 87322Cr13 水/空冷) ≥490 ≥16 ≥50 ≥27 41 665 2004 任意两支钢材的两个试 样; 920~980oC 淬火(油冷); GB/T 660~770oC 回火(快速冷 20Cr13 ≥ 1220≥440 ≥20 ≥50 ≥63 ≥192 2Cr13 640 却); 2007 不同根钢棒的两个试样; +QT700(950~1050 oC 淬 火,油/空冷,650-750 oC 回 火); 700≥500 ≥13 ≥25 850 拉伸每 25 吨取 1 个样;冲 击不强制,取三个试样的 DIN EN 10088平均值 X20Cr13 3, +QT800(950~1050 oC 淬 2005 火,油/空冷,600-700 oC 回 火); 800≥600 ≥12 ≥20 950 拉伸每 25 吨取 1 个样;冲 击不强制,取三个试样的 平均值 注: *) 按 EN 10021 标准 3 个试样/至少 2 个试样的平均值,最小值不低于 14J 表 6:性能均匀性要求 标准 材料牌号 性能均匀性要求 如果钢棒横截面积>200cm2,中心和侧面的力学性能都要测(图 1,右),确保整个横截面的力学性能都能达到要求; 西门子采购技术 X20Cr13 除了韧性指标,整个钢棒横截面上性能差异不宜超过 7.5%。 规范 硬度最大允许差异不超过 35HBW。 认证阶段,纵向和横向取样的拉伸、冲击值差异不超过 10%。 GB/T 8732-2004 2Cr13 无要求 GB/T 1220-2007 20Cr13 /2Cr13 无要求 DIN EN 10088无要求 X20Cr13 3,2005 表 7:FATT 及晶间断裂百分比 标准/规范 材料牌号 FATT 及晶间断裂百分比 认证阶段,按 ASTM A370 测定 FATT(韧脆转变温度),最好小于 西门子采购技术 30 oC,测试试样数量不少于 10 个; X20Cr13 规范 室温测试的试样必须检测晶间断裂百分比(IGF),其值应不大于 10%; GB/T 8732-2004 2Cr13 无要求

368


GB/T 1220-2007 20Cr13 /2Cr13 无要求 DIN EN 10088无要求 X20Cr13 3,2005  据此可见,西门子 X20Cr13 和国标汽轮机叶片用钢 2Cr13,在取样位置、测试条件,以及测试要求 等方面都有明显的差异,直接测得的力学性能值只能用作参考,不可对等比较;  西门子 X20Cr13 对性能均匀性,以及 FATT、IGF(晶间断裂百分比)提出了附加认证要求(仅在材 料工艺认证阶段,量产不做测试要求)。但 GB/T 8732-2004 中的 2Cr13,没有相应的要求,其对质量的 追求显然不在同一层次; 以上要求的目的:  材料组织不均匀,会导致使持久强度和持久塑性下降,也会因为局部的塑性变形产生裂纹,导致疲 劳失效。  FATT,是材料的塑性指标,也是与断裂韧性 KIC 相关的重要参数。影响材料 FATT 的因素很多,如化 学成分、微量元素含量、冶炼工艺、锻造工艺、热处理工艺等。材料的冶金缺陷如偏析、非金属夹杂、 有害元素含量、裂纹、白点等明显地提高 FATT。同种材料 FATT 数值的高低,综合反映出材料的冶金质 量。  IGF 的要求,则考虑到了叶片材料的蠕变性能。蠕变脆性断裂时无明显的塑性变形,且呈晶间型断 裂特征。 4, 冶金质量检验 表 8:冶金质量检验取样要求 标准/规范 材料牌号 冶金质量检验取样要求 最小检测面积 320mm2(图 1,M 样块); 西门子采购技术 X20Cr13 清洁度检验必须在每个母炉号每个热处理批次的一根钢棒的中心 规范 做。热处理前后的状态都可以。 夹杂物含量测量,平行于钢材纵轴,位于钢材外表面到中心的中 ( ) 间位置,抛光面积应约为 200mm2 (20mm×10mm) 5 ; δ 铁素体,试样检验面平行于钢材(或钢坯)轴线之纵截面,其 GB/T 8732-2004 2Cr13 一边必须与钢材(或钢坯)轴线重合,面积约 300mm2 ( ) (20mm×15mm) 6 ; 任意两支钢材 夹杂物含量测量,平行于钢材纵轴,位于钢材外表面到中心的中 ( ) 间位置,抛光面积应约为 200mm2 (20mm×10mm) 5 ; GB/T 1220-2007 20Cr13 /2Cr13 不同根钢棒两个试样; 无 δ 铁素体检验要求; DIN EN 10088无要求 X20Cr13 3,2005 从表 8 可以看出:  西门子 X20Cr13 规定的冶金质量最小检测面积,大于 GB/T 8732-2004 中的 2 Cr13 夹杂物含量和 δ 铁素体检验面积;  西门子 X20Cr13 规定每个母炉号每个热处理批次都要求做冶金质量检验,而同样用作叶片的 GB/T 8732-2004 中的 2 Cr13,只要求任意两支钢材取样即可,对汽机/燃机材料的追溯性要求认识不足; 表 9:非金属夹杂物 标准/规范 材料牌号 非金属夹杂物 夹杂物含量按 ASTM E45/方法 A 检测; 细系:A、B、C 类≤2,D 类≤2.5; 粗系:A、B、C、D 类≤1.5; 西门子采购技术 X20Cr13 球状夹杂物(D 类)最大数量和尺寸:IR(D)≤10; 规范 IR(D)对应于 160mm2 的检验面积; 由不同尺寸范围的球状夹杂物及其导致的孔洞数量计算得出; 大于一定尺寸的球状夹杂物及孔洞不允许存在; 按 GB/T10561-2005/ISO4967:1988(E)检验 电渣钢 A、B、C、D 类的细系和粗系均不得超过 2.0 级; GB/T 8732-2004 2Cr13 各类非金属夹杂物细系和粗系最重级别之和不超过 5.5 级; 电炉钢非金属夹杂物的细系和粗系允许不超过 2.5 级;

369


GB/T 1220-2007 20Cr13 /2Cr13 根据需方要求,并经供需双方协议,可增加非金属夹杂物检验; DIN EN 10088无要求 X20Cr13 3,2005 由表 9 可见:  西门子 X20Cr13 对粗系夹杂的要求,比同样用作叶片的 GB/T8732-2004 中的 2Cr13 高;  西门子 X20Cr13 强调对球状夹杂物(D 类)及其导致的孔洞的控制,而对应的 GB/T 8732-2004 尚 无此意识; 对夹杂物和孔洞的高要求,是为了控制叶片的疲劳失效,以及在高温工作条件下的蠕变效应。  因为夹杂物是应力集中源,会导致夹杂物与基体界面之间过早地产生疲劳裂纹;  而高温下韧性材料的破坏通常认为是孔洞绕夹杂或第二相粒子形成、长大和聚合的结果。 表 10:δ 铁素体含量 标准/规范 材料牌号 δ 铁素体含量 δ 铁素体:<5%; 按和 ASTM E45 方法 A,100:1 的“最差视场法”相一致的方式 西门子采购技术 检测,试样朝向:纵向; X20Cr13 规范 δ 铁素体的分布和尺寸,应在机加工好的表面上,经磁粉检测无 显示; 经采购方同意后,其他测试方法(比如 AMS2315)也可以采用; δ 铁素体最严重视场不超过 5%; 取样方法按 GB/T 13305-1991(奥氏体不锈钢中 α-相面积含量金 相检测法); GB/T 8732-2004 2Cr13 显微镜放大倍数为 250 倍,实际视场直径为 0.32mm; 采用网格法,投影法或图像仪法进行检查,并以图像仪法为仲裁 法; GB/T 1220-2007 20Cr13 /2Cr13 无要求 DIN EN 10088无要求 X20Cr13 3,2005 δ-铁素体的存在是造成马氏体耐热钢冲击韧性低的主要原因.  δ 铁素体检验,对于马氏体型不锈钢,国标中还没有对应的检验标准,2Cr13 在 GB/T8732-2004 中 采用的是奥氏体不锈钢中 α-相面积含量金相检测法 GB/T13305-1991。  在机加工表面上,经磁粉检测无显示,此要求比 GB/T8732-2004 中列出的方法更严格。 表 11:晶粒度 标准/规范 材料牌号 晶粒度 晶粒度必须在所有热处理结束以后最软和最硬的钢棒上测量; 西门子采购技术 X20Cr13 按 ASTME112 或 ISO 643 检测,平均晶粒度必须不大于 4 级; 规范 与平均晶粒度大于 2 级的偏差不能接受; 任意两支钢材,2 个试样; GB/T 8732-2004 2Cr13 平均晶粒度不粗于 4 级,并且不含有 1 级或更粗的晶粒; 根据需方要求,并经供需双方协议,可增加晶粒度检验; GB/T 1220-2007 20Cr13 /2Cr13 任一钢棒,1 个试样; DIN EN 10088无要求 X20Cr13 3,2005 关于晶粒度测量:  西门子 X20Cr13 对于取样钢棒的定义范围比国标汽轮机叶片用钢 2Cr13 更加严格;  西门子 X20Cr13 对晶粒度测量再次强调材料的均匀性。如果 2 个试样的晶粒度分别为 4 级和 7 级, 按国标汽轮机叶片用钢 2Cr13 的晶粒度检验要求是完全合格的,而按西门子 X20Cr13 的晶粒度检验要求 则可判该批材料不合格。 究其原因:  晶粒细小,是为了确保叶片的强度和韧性;  晶粒均匀,则是考虑到了叶片的疲劳强度和持久性能:  从要求高的持久强度出发,希望晶粒略为粗大一些。因为晶粒变粗说明晶界总长度减少,对以沿晶 界粘性滑动而产生变形或破坏形式的持久或蠕变性能来说,晶粒粗化意味着这一类性能提高。但考虑到 疲劳性能又希望晶粒细一点,所以对这类耐热材料一般取适中晶粒为宜。

370


 在耐热钢及合金中晶粒不均匀会在大小晶粒交界处出现应力集中,裂纹易于在此产生,显著降低其 高温性能。 表 12:目测及超声波检验 标准/规范 材料牌号 目测及超声波检验 在所有热处理结束以后,应进行以下无损检测: 1, 目测所有钢棒(表面缺陷); 西门子采购技术 X20Cr13 2, 按内控标准对所有钢棒超声波检验 规范 要求 100%全检,缺陷超过规定限度会记录并扣留有缺陷的 钢棒; GB/T 8732-2004 2Cr13 有目测表面检验(逐支),无超声波检验要求; 有目测表面检验(逐支),超声波检验按 GB/T 7736 抽检两支 GB/T 1220-2007 20Cr13 /2Cr13 钢棒; 在询价和订货时可协商,可接受的最大允许缺陷深度,以及超 DIN EN 10088X20Cr13 过允许缺陷深度的钢材所占交货重量的百分比;在询价和订货 3,2005 时可协商,超声波检验按 EN 10308; 可以看出:  西门子 X20Cr13 原材料超声波 100%全检,源于对叶片这个汽轮机和燃气轮机关键部件的技术和质 量要求的考虑。而国标汽轮机叶片用钢 2Cr13 原材料无超声波要求显然比较粗放(国内的现状是,主机 厂在买回叶片产品之后,再次做 100%的超声波检验)。 此项检验的目的:  表面的应力集中部位,以及表面下难以看到的缺陷部位,会由于局部塑性变形而产生裂纹,是疲 劳失效的起因。 5, 结语  西门子 X20Cr13,虽然其化学成分和国标汽轮机叶片用钢 2Cr13 材料相近,其交货状态,生产工 艺,力学性能,检验要求,都远高于后者;国标汽轮机叶片 2Cr13 相对于西门子 X20Cr13 的价格优势, 是基于不同的质量工艺要求而言,不可直接类比。  西门子 X20Cr13 材料各项特殊要求,相对于同样用作叶片的 GB/T 8732-2004 中的 2Cr13,对叶 片的使用性能和原材料质量控制的关系考虑得更加深入。  西门子 X20Cr13 对于材料组织和性能均匀性的特殊要求,值得国内钢铁行业和标准制定者关注、 思考与借鉴。  西门子 X20Cr13 的采购技术规范,充分考虑了上游组织(钢厂)和下游组织(后续加工与应用) 在生产工艺和检验工艺上的协调性,以及应用状态对其技术和质量的要求。体现了先进企业从单个组织 和产品竞争到产业链竞争的变化,及其对于供应商纵向知识整合的要求。 参考文献 [1]中华人民共和国国家标准,GB/T 8732-2004,汽轮机叶片用钢,2004 年 1 月 19 日发布 [2]中华人民共和国国家标准,GB/T 1220-2007,不锈钢棒,2007 年 5 月 14 日发布 [3]DEUTSCHE NORM, DIN EN 10088-3, Stainless Steel (Part3:Technical delivery conditions for semi-finished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purposes), September 2005 [4]中华人民共和国国家标准,GB/T 2975-1998,钢及钢产品力学性能试验取样位置及试样制备, 1998 年 10 月 16 日发布 [5]中华人民共和国国家标准,GB/T 10561-2005,钢中非金属夹杂物含量的测定标准评级图显微检验 法,2005 年 5 月 13 日发布 [6]中华人民共和国国家标准,GB/T 13305-1991,奥氏体不锈钢中 α-相面积含量金相测定法,1991 年 12 月 13 日发布

371


Special Requirements of Siemens X20Cr13 (Chinese & English version, Paper) Yang Dong Hai, Wu Yue Jiang, Jiang Zhe (Siemens Limited China-Shanghai Branch, China) Abstract:Siemens X20Cr13 steel material is mainly used for manufacturing last several stages of blade and vane in steam turbine andgas turbine compressor. Due to the special application requirements of blades and vanes in steam/gas turbine, the delivery status, production processes, mechanical properties and inspection items of Siemens X20Cr13 are all higher than those of 2Cr13 in GB/T 8732-2004, although their chemical compositions are quite close. Its special material requirements can be traced back to the application properties of blades and vanes in theory. Key words:X20Cr13, 2Cr13, blades and vanes,Material, Production Processes, Mechanical Properties, Inspection Items Author: Yang Dong Hai, born in 1970,got Ph.D from University of Science and Technology Beijing in 1998, Supplier quality manager for forging parts. 0, Introduction Blades and vanes of steam turbinework under extremely rigorous condition to bear the combined influence of high temperature, high pressure, tremendous centrifugal force, steam brushing, steam excitation force, corrosion, vibration, and the water drop ablation in wet steam zone. So the material for blades and vanes put forward high requirement on the mechanical properties in room and high temperatures, and the long term service performances such as endurance, creep, fatigue, and corrosion resistance etc.. Siemens X20Cr13 is a kind of martensite stainless steel with C content in around 0.20% and Cr content in around 13%. It is mainly used for manufacturing last several stages of blade and vane in steam turbine andgas turbine compressor. Its specification was directly followed by several large-sized steam turbine assembly plants in China until now. But domestic steel supply mills and steam turbine assembly plants had doubts in some property requirements of this material for a long time. Some commercial staff even suggested replacing Siemens X20Cr13 material by 2Cr13 in GB standards or by X20Cr13 in EN standards. This paper compared and analyzed the technical delivery specification of Siemens X20Cr13 with 2Cr13 in GB/T 8732-2004(Steel of blade for steam turbine), explained the purposes of Siemens X20Cr13 material special requirements. While 2Cr13 in GB/T 1220-2007(Stainless steel bar) and X20Cr13 in DIN EN 10088-3(Stainless Steel, Part3: Technical delivery conditions for semi-finished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purposes) are materials in general definition. Their quality requirements are more flexible. We listed their corresponding content only for reference but not for comment. 1, Chemical Composition Difference Table 1: Chemical composition in 4 different standards Standard/Sp ecification Siemens Technical Delivery Specification GB/T 8732(1) 2004 GB/T 1220(2) 2007 DIN EN 10088-3, (3) 2005

Steel Grade

X20Cr13

2Cr13 20Cr13 /2Cr13*) X20Cr13

Chemical Composition C

Si

Mn

P

S

Ni

Cr

0.170.22

0.10.6

0.30.8

< 0.03

<0.02

0.30.8

12.5-14

<0.6

<0.6

<1.00

< 1.00

< 0.03 < 0.04

< 0.025 < 0.030

< 0.60 < 0.60

12.0014.00 12.0014.00

≤1.00

≤ 1.50

≤ 0.04

≤0.030

-

12.0014.00

0.160.24 0.16~ 0.25 0.16~ 0.25

Note: *) Old version steel grade 2Cr13, new version steel grade 20Cr13

372

Mo

Cu

N

Others

-

< 0.3

-

-

-


 Although the chemical composition of 4 standard/specifications are quite close to each others but in fact the upper and lower limit spans of Siemens X20Cr13 elements are stricter. So its requirements to steel melting process and melting raw material quality are also higher than those of the other 3 standards.  GB/T 8732-2004 restricts the copper content to avoid the surface crack after high temperature deformation as there is usually higher Cu content in domestic scrap steels.  X20Cr13 in EN standard is mainly focused on anti-corrosion property so its requirement about chemical composition is the lowest. In China people are accustomed to classify steels only in chemical composition one aspect. In fact this is an immature cognizing. Even steels with main chemical compositions are the same should also be classified as different materials in multiple aspects according to their differences in intrinsic quality and property requirements. 2, Production Processes and Delivery Status Requirements Table 2:Steel melting process requirement in 4 different standards Standard/Specification

Steel Grade

Steel melting process requirement Degassed steel, e.g. vacuum treated steel shall be used. Siemens Technical The use of any other steel treatment shall be agreed upon X20Cr13 Delivery Specification in advance with the purchaser in each individual case. Ingot castings shall be used for manufacturing these bars. Melted by EAF+ ESR. Other melting processes can be GB/T 8732-2004 2Cr13 adopted if they can meet this standard requirement and be agreed by both buyer and seller sides. 20Cr13 Generally primary melting furnace+ secondary refining GB/T 1220-2007 /2Cr13 should be used except be required in contract. Unless otherwise agreed at the time of enquiry and order, DIN EN 10088-3, the smelting and manufacturing processes for steels X20Cr13 2005 conforming to this document shall be at the discretion of the manufacturer.  GB/T 8732-2004 adopted the ESR process because standard compilors realized the limitation of steel melting and casting equipments in domestic steel factories. The purpose is to reduce the nonmetal inclusion in steel for blades and vanes and to improve the material homogeneity.  Because of the process differences in steel melting and casting the gas content and homogeneity control of 2Cr13 in GB standards are difficult to reach the actual material quality level of Siemens X20Cr13.  X20Cr13 in EN standard is the most flexible one to production process requirement. Table 3: Delivery heat treatment requirement in 4 different standards Standard/Specification

Steel Grade

Siemens Technical Delivery Specification

X20Cr13

GB/T 8732-2004

2Cr13

GB/T 1220-2007

20Cr13 /2Cr13

Delivery heat treatment requirement Heat treatment per EN 10088-3, QT 800; Table A.2 (Quenched in 950~1050 oC, oil/air cooling, tempered in 600~700 oC)*)(3) ; Heat treatment of bundled items is not permissible. Adopt enough tempering time and slow cooling rate to achieve the minimum residual stress after tempering; If it is necessary to straighten bars after the heat treatment, proper stress relief annealing process should be adopted. Delivery in annealed(800~900 oC, slow cooling) or high temperature tempered(700~770 oC, fast cooling) status; Delivery in quality heat treatment(Quenched in 950~1020 o C, air/oil cooling+ high temperature tempered in 660~770 o C, oil/water/air cooling) can be accepted if agreed by both buyer side and seller side and noted in contract; Steel bars can be delivered in status with or without heat treatment; If there is no clear description in contract it should be delivered in status without heat treatment; Heat treatment: Annealed(800~900 oC, slow cooling; or 750 oC, fast cooling)

373


Three heat treatment processes: 1, +A(745~825oC,annealed, air cooling); DIN EN 10088-3, 2, +QT700(quenched in 950~1050 oC, oil/air cooling, X20Cr13 2005 tempered in 650-750 oC); 3, +QT800(quenched in 950~1050 oC, oil/air cooling, tempered in 600-700 oC); Note: *) The actual temperature is controlled in a more strict range internally  It is obviously that X20Cr13 in EN standard and 2Cr13 in GB standards are different with Siemens X20Cr13 in delivery heat treatment status.  Siemens X20Cr13 rectangular steel bar is delivered in forged and quality heat treated status generally in Europe and America. Blade and vane final products can be gotten only after CNC manufacturing. But in China few of steel mills can directly produce forged and quality heat treated rectangular bar. So in most cases China blade and vane manufacturers have to order annealed round bar in Siemens X20Cr13 specification. Quality heat treated again after close die forging it to semiproduct or secondary forging it to rectangular bar. Then machine it to the final products. Compared with the products made from imported Siemens X20Cr13 rectangular bar in forged and quality heat treated status, the total cost of blades and vanes made from domestic round steel bar in annealed status does not have any advantage. Furthermore the final products properties are not stable and quality responsibilities are difficult to be traced back. It caused the competitive advantage of these kinds of blade and vane made by domestic raw material is negligible in global range.  The requirement to residual stress in Siemens X20Cr13 technical delivery specification is mainly because residual stress has certain influences to static loading strength, high and low cycle fatigue strength, fracture strength, creep strength, anti-corrosion property in high temperature, and deflection deformation. But there is no corresponding consideration about residual stress in GB/T 8732-2004, even the GB standard was also used for blade and vane application. 3, Mechanical Properties Comparison

Fig.1: X20Cr13 Specimen Extraction Location (Left: cross section area ≤200cm2; Right: cross section area ≤200cm2 ; Z : Tensile specimen, K: Charpy impact specimen, M: Microscope specimen) Table 4:Specimen Extraction Location Standard/Specification Steel Grade Siemens Technical Delivery X20Cr13 Specification GB/T 8732-2004 2Cr13 GB/T 1220-2007 20Cr13 /2Cr13 DIN EN 10088-3, 2005 X20Cr13

374

Specimen Extraction Location Per fig.1, specimen extracted longitudinally specimen extracted in GB/T-2975 specimen extracted in GB/T-2975 Per fig.3, specimen extracted longitudinally


Fig.2: Specimen Extraction Location in GB/T-2975 (Left: tensile specimen; Right: Charpy impact ( ) specimen) 4

Fig.3: Specimen Extraction Location in DIN EN10088-3(Upper: tensile specimen; Lower: Charpy impact ( ) specimen) 3 Table 5:Mechanical properties comparing in 3 different standards Standard/ Specification

Steel Grade

Test status

б0.2 N/mm

Siemens Technical Delivery Specification

X20Cr13

GB/T 8732-2004

2Cr13

The mechanical properties shall be determined after all heat treatment steps are finished (including a possible stress relief annealing). They shall be determined on the hardest and softest per melt and heat treatment batch (=test unit). Quenched in o Q950~1020 C (air/oil cooling); Tempered in o 660~770 C(oil/water/

бb 2

N/mm

2

Elongati on(L0=5 d) %

Area Reduct ion %

Impact energy

Hardne ss

J

HBW

≥600

800950

≥15

≥50

≥20 *)

≤280

≥490

≥665

≥16

≥50

≥27

207~24 1

375


GB/T 1220-2007

DIN EN 10088-3, 2005

20Cr13 2Cr13

X20Cr13

air cooling) Two specimens from any two steel bars Quenched in o 920~980 C(oil cooling); Tempered o in 660~770 C(fast cooling); Two specimens from different steel bars +QT700 (quenched o in 950~1050 C, oil/air cooling , tempered in 650-750 o C); Tensile test at room temperature, 1 sample per 25t; maximum of 2 per test unit; Impact test is optional. The average obtained from three pieces is considered to be the test result. +QT800(quenched in o 950~1050 C, oil/air cooling, tempered in o 600-700 C); Tensile test at room temperature, 1 sample per 25t; maximum of 2 per test unit; Impact test is optional. The average obtained from three pieces is considered to be the test result.

≥440

≥640

≥20

≥50

≥63

≥192

≥500

700850

≥13

-

≥25

-

≥600

800950

≥12

-

≥20

-

Note: *) Average of 3 specimens and minimum value for two specimens per EN 10021, where the lowest value shall be at least 14J. Table 6:Properties uniformity requirement Standard/Specification

Steel Grade

Siemens Technical Delivery Specification

X20Cr13

GB/T 8732-2004 GB/T 1220-2007 DIN EN 10088-3, 2005

2Cr13 20Cr13 /2Cr13 X20Cr13

Properties uniformity requirement 2 If the cross section are >200cm then the mechanical properties must be determined both in the centre of the bar and at the side of the bar(Fig.1,right).It shall be ensured that the required mechanical properties are achieved throughout the entire bar cross section. With the exception of toughness, the difference in properties across the bar cross section shall not exceed 7.5%。 The greatest permissible difference in hardness shall not exceed 35 HBW. During qualification period the mechanical properties in transverse direction shall not differ from the values in longitudinal direction by more than10%。 No requirement No requirement No requirement

Table 7:FATT and IGF percentage requirement Standard/Specification

Steel Grade

Siemens Technical Delivery Specification

X20Cr13

GB/T 8732-2004

2Cr13

Properties uniformity requirement During qualification period FATT(Fracture Appearance Transition Temperature) should be determined according to ASTM A370, a o FATT<30 C is aimed at; testing scope no less than 10 specimens. The specimens that were tested at room temperature must be examined for the fraction of intergranular fracture. The fraction of intergranular fracture shall not exceed 10%; No requirement

376


GB/T 1220-2007 DIN EN 10088-3, 2005

20Cr13 /2Cr13 X20Cr13

No requirement No requirement

 We can see there are obvious differences in specimen extraction locations, test conditions and test requirements between Siemens X20Cr13 and the corresponding 2Cr13 for steam turbine blade in GB standard. The mechanical properties directly got in these two standards can only be used for reference but not for comparing.  Siemens X20Cr13 asks for additional qualification requirements about the properties uniformity, the FATT and the IGF (required only during the qualification period, not required to mass production). But there are no corresponding requirements to 2Cr13 in GB/T 8732-2004. It is obvious that their qualities targets are not in the same level. The purpose of requirements above:  The non homogeneity of material structure will reduce the creep rupture strength and endurance plasticity. Cracks will also be formed by local plastic deformation and then cause fatigue failure.  FATT is a material plasticity index and also an important parameter related with fracture toughness KIC.Influence factors of material FATT include chemical composition, trace elements content, steel melting process, forging process and heat treatment process, etc.. The metallurgical defects such as segregation, non-metallic inclusion, harmful elements content, fracture and white flake etc. will all increase the FATT value. The material FATT value comprehensively reflects the material metallurgical quality.  The requirement of IGF is in view of the creep properties of blade material. Creep brittle fracture will not show obvious plastic deformation and is characterized by intergranular fracture 4, Metallurgical Quality Inspection Table 8:Specimen Extraction requirement for metallurgical properties inspection Standard/Specification

Steel Grade

Siemens Technical Delivery Specification

X20Cr13

GB/T 8732-2004

2Cr13

GB/T 1220-2007

20Cr13 /2Cr13

DIN EN 10088-3, 2005

X20Cr13

Specimen Extraction requirement To determine metallurgical properties, a minimum area of 2 320mm (Fig.1, M specimen)must be examined; The examination of the cleanliness must be performed in the centre of one bar per melt and heat treatment. Inclusion content measurement: inspection side should be parallel to the longitudinal axis of steel bar, located in steel bar amid the 2 out surface and the core, polish area should be around 200mm (5) (20mm×10mm) ; δ ferrite measurement: inspection side should be parallel to the longitudinal axis of steel bar, one edge should be coincide with the 2 axis of steel bar (or steel billet). The area is around 300mm (6) (20mm×15mm) ; Two random steel bars. Inclusion content measurement: inspection side should be parallel to the longitudinal axis of steel bar, located in steel bar amid the 2 out surface and the core, polish area should be around 200mm (5) (20mm×10mm) ; Two specimens from different steel bars. No δ ferrite measurement requirement. No requirement

As showed in table 8:  The required minimum inspection area of metallurgical quality for Siemens X20Cr13 is bigger than the inspection areas of inclusion area and δ ferrite for 2Cr13 in GB/T 8732-2004;  Siemens X20Cr13 requires metallurgical quality inspection per melt and heat treatment. But the 2Cr13 in GB/T 8732-2004 used for the same application (blade/vane) only requires two random steel bars. The GB standard did not pay enough attention to the traceability of materials for blades and vanes.

377


Table 9:Non-metal inclusions Standard/Specification

Steel Grade

Siemens Technical Delivery Specification

X20Cr13

GB/T 8732-2004

2Cr13

GB/T 1220-2007

20Cr13 /2Cr13

DIN EN 10088-3, 2005

X20Cr13

Non-metal inclusions Inclusion content per ASTM E 45/Method A. Thin series inclusions::Type A, B, C max.2, Type D max. 2.5; Heavy series inclusions::Type A, B, C, D max.1.5; Maximum number and size of globular inclusion(Type D): IR(D)≤10; 2 IR(D) is converted to an area of 160mm . The size pertains not only to the globular inclusions themselves, but also the subsequent cavities, which can occur beside them. Inclusions and cavities which are bigger than certain size are not allowed. Inspected per GB/T10561-2005/ISO4967:1988(E) The thin and heavy series inclusion of A,B,C,D types in ESR steel all can not be bigger than 2.0; The sum of the highest level of thin series and the highest level of heavy series non-metallic inclusions can not be more than 5.5; The thin and heavy series inclusion in EAF steel can be accepted if they are not bigger than 2.5; Non-metallic inclusion inspection can be added if it is required by purchasing side and agreed by supplying side. No requirement

From table 9 we can find that:  The heavy series inclusion requirements of Siemens X20Cr13 are stricter than those of 2Cr13 in GB/T 8732-2004 used for the same application (blade/vane);  Siemens X20Cr13 emphasizes the restriction of globular inclusions (type D) and cavities caused by globular inclusion. But the 2Cr13 in GB/T 8732-2004 used for the same application (blade/vane) is not aware of these points. The high requirements to inclusion and cavities are aiming at reducing fatigue failure and creep effect in high temperature work condition of blades and vanes.  Inclusion is the stress concentrating point which will cause fatigue crack earlier at the interface between inclusion and matrix material.  While the failure of toughness material in high temperature is generally deemed as the result of cavities formed, developed and converged wrapping up inclusions or up the second phase particles. Table 10:δ Ferrite content Standard/Specification

Steel Grade

Siemens Technical Delivery Specification

X20Cr13

GB/T 8732-2004

2Cr13

GB/T 1220-2007 DIN EN 10088-3, 2005

20Cr13 /2Cr13 X20Cr13

δ Ferrite content δ ferrite content:<5%; Determined in a manner consistent with the evaluation technique described in ASTM E45 Method A, “Worst field method” at V=100:1, specimen orientation: longitudinal. The distribution and size of δ ferrite must not result in indication in magnetic particle testing of the ready-machined surface. Other test methods (e.g. AMS 2315) may be accepted after agreed by purchase side. δ ferrite content can not be more than 5% in worst field. Specimen extracted per GB/T 13305-1991(Austenitic stainless steels−Determination of area content of the α-phase−Micrographic method using standard diagrams); Multiply 250 times under microscope. The actual view field diameter is 0.32mm; Inspected in grid method, projection method, and image meter method. And arbitrated in image meter method. No requirement No requirement

The existence of δferrite is the main cause to lower impact toughness of martensite heat-resisting steel.  There is noδferrite inspection corresponding standard to martensite stainless steel in GB series.2Cr13 in GB/T8732-2004 adopted the GB/T13305-1991 standard which is defined to measure area content of the α-phase in austenitic stainless steels。  The distribution and size of δ ferrite must not result in indication in magnetic particle testing of the ready-machined surface. This requirement is stricter than the methods listed inGB/T8732-2004.

378


Table 11:Grain size Standard/Specification

Steel Grade

Siemens Technical Delivery Specification

X20Cr13

GB/T 8732-2004

2Cr13

GB/T 1220-2007

20Cr13 /2Cr13

DIN EN 10088-3, 2005

X20Cr13

Grain size The grain size must be measured at the softest and the hardest bar per test unit after all heat treatments are performed. Grain size 4 or finer per ASTM E112 or ISO 643. A deviation from the average grain size of more than 2 grain sizes is not permissible. Two specimens from two random steel bars. The average grain size can not be 4 or bigger. Grain size 1 or bigger can not be found in the check field. Grain size inspection can be added if it is required by purchase side and agreed by supply side. One specimen from a random steel bar. No requirement

About grain size measurement:  The scope definition of steel bars for specimen extraction of Siemens X20Cr13 is stricter than that of 2Cr13 in GB/T 8732-2004 used for the same application (blade/vane);  To grain size measurement Siemens X20Cr13 emphasized again the material uniformity. If two specimens found grain size in 4 and 7 it is fully qualified to the inspection requirement of 2Cr13 in GB/T 8732-2004 used for blades and vanes. But it is possible to be judged as not acceptable according to the requirement of Siemens X20Cr13. Look into the reasons:  Fine grain size to ensure the strength and toughness of blades and vanes;  Grain size uniformity requirement is for fatigue strength and endurance performance of blades and vanes.  For higher creep rupture strength it will be better that the grain size can be relatively larger. A coarse grain means the total grain boundary area reduces. It will increase the endurance or creep properties because these properties is characterized by deformation or failure caused by viscosity gliding along the grain boundary. But if we consider the fatigue properties a fine grain size will be more preferred. So generally the grain size should be moderate to this kind of heat-resisting material.  The uneven grain size in heat-resisting steel and alloy will cause stress concentration at the interface of coarse and fine grains. Cracks will be resulted in this area and reduce high temperature properties remarkably. Table 12:Visual inspection and UT Standard/Specification

Steel Grade

Siemens Technical Delivery Specification

X20Cr13

GB/T 8732-2004

2Cr13

GB/T 1220-2007

20Cr13 /2Cr13

DIN EN 10088-3, 2005

X20Cr13

Visual inspection and UT The following NDT inspections shall be performed after all heat treatments are performed: 1, Visual inspection of all bars 2, UT of all bars per internal specification Requirements: 100% of the volume shall be examined with the stipulated recording level. Defects above the recording limit shall be marked and it shall be ensured that these bars are not included in the lot delivered. Visual inspection to surface (piece to piece). No UT requirement. Visual inspection to surface (piece to piece). Randomly UT checked on 2 steel bars per GB/T 7736. To be agreed upon at the time of enquiry and order the permissible defect depth and the maximum % of delivered weight in excess of permissible defect depth; At the time of enquiry and order ultrasonic testing of steel bars may be agreed in accordance with EN 10308.

It can be seen from table above:  UT 100% inspection to Siemens X20Cr13 raw material is based on the technical and quality requirements of blades and vanes, which are key components of steam turbine and gas turbine. While 2Cr13 in GB/T 8732-2004 used for the same application (blade/vane) did not require UT inspection and it is obviously more careless(The present situation in China is the steam turbine assembling plants make 100% UT inspection after it bought blades and vanes from domestic suppliers). The purpose of this inspection:

379


 Cracks will be resulted from local deformation caused by the stress concentration on the surface or by the stress concentration at the defect points beneath surface which can not be seen by eye directly. They are the origins of fatigue failure. 5, Conclusion  The delivery status, production processes, mechanical properties and inspection requirements of Siemens X20Cr13 are all higher than those of 2Cr13 in GB/T 8732-2004, although their chemical composition are quite close. The price advantage of 2Cr13 in GB standard is only due to different quality requirements and it can not be compared with the price of Siemens X20Cr13 directly.  Compared with 2Cr13 in GB/T 8732-2004 used for the same application (blade/vane), all the special requirements of Siemens X20Cr13 have more thoroughly consideration to the relations of blade/vane application properties and raw material quality control.  The special requirements of the uniformity of material structures and mechanical properties of Siemens X20Cr13 deserve China steel industry and standard compilers to pay a close attention, to reflect, and to draw lessons from.  The technical delivery specification of Siemens X20Cr13 considered thoroughly the coordination of production and inspection processes, the technical and quality requirements in application status from the upper stream (steel mills) units to the lower reaches (latter machining and application) units. It represents the change that the single unit and single product competition had been shifted to industry chain competition in advanced enterprises. Their requirement to knowledge integration in supply chain is also self-evident. Reference [1]National Standard of the People’s Republic China, GB/T 8732-2004, Steel of blade for steam turbine, released in 2004-01-19 [2]National Standard of the People’s Republic China, GB/T 1220-2007, Stainless steel bars, released in 2007-05-14 [3]DEUTSCHE NORM, DIN EN 10088-3, Stainless Steel (Part3:Technical delivery conditions for semifinished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purposes), September 2005 [4] National Standard of the People’s Republic China, GB/T 2975-1998, Steel and steel products−Location and preparation of test pieces for mechanical testing, released in 1998-10-16 [5]National Standard of the People’s Republic China, GB/T 10561-2005, Steel−Determination of content of nonmetallic inclusions−Micrographic method using standard diagrams (ISO 4967:1998, IDT), released in 2005-05-13 [6]National Standard of the People’s Republic China, GB/T 13305-1991, Austenitic stainless steels−Determination of area content of the α-phase−Micrographic method using standard diagrams, released in 1991-12-13

380


新一代 100T 级全封闭式三相电渣熔铸炉 (中英文版,论文) 刘喜海,贾维国,冮俊峰 (东北大学大型电渣炉研发中心,中国) 摘要:本文介绍了目前我国大型电渣炉存在的产品质量问题与不同炉型的工艺结果比较。通过电渣 重熔工艺数值模拟结果,提出了采取保护气氛三相三电极炉型最新优化设计理念与技术方案。 关键词:全封闭电渣熔铸炉电渣凝固数值模拟保护气氛三相三电极电渣熔铸炉 随着我国核电工程对金属材料质量的要求日益严格,所需大型毛坯锻件重量在不断地增加的同时, 对金属材料提出了抗疲劳、耐高温、耐腐蚀、抗中子辐射等一系列苛刻的要求。上述对金属材料的质量 要求不是一般冶金工艺方法所能达到的。而只有通过大型电渣冶金工艺生产 100 吨级以上巨型钢锭,用 于锻造大型锻件才是合理的工艺路线。 为此,世界各国都在致力于采用电渣冶金工艺生产大型高质量的电渣锭。但是,目前我国电渣重熔 百吨级以上大型电渣锭的质量不容乐观(如:某重机厂生产的 12%Cr 等转子类电渣锭合格率不足 30%)。 很多单位满怀希望的投入巨资建造大型电渣炉设备后,往往因为设备的选型先天不足及电渣凝固工艺与 设备未能有效融合,很难生产出高端转子大型锻件和核电主管道用的电渣钢锭,给企业带来极大的经济 负担。 东北大学大型电渣炉研发中心(沈阳东大兴科冶金技术有限公司)作为国内电渣凝固理论与电渣熔 铸冶金工艺技术资深单位,一直致力于研究设计大型电渣炉装备和解决大型电渣钢锭产品质量问题的唯 一专业团队。经过多年的理论研究与实践探索认为,要想获得高端品质的大型电渣熔铸锭,在理论与工 艺技术方面必须要解决好以下关键问题: (1)、电渣金属熔池液态钢液凝固条件的最佳优化; (2)、超低[H]、[O]、[Al]含量的有效控制,建立[H]、[O]控制的数值模型; (3)、电渣重熔凝固过程中模拟仿真及重熔过程工艺参数的优化。 在对大型电渣炉电渣重熔凝固理论研究中,对不同炉型结构的单电极、三电极、六电极炉型的温度 场、流场、凝固结晶质量的判断、保护气体流量、流速等,进行了多次数值模拟,建立了控制模型。 提出在设计大型电渣炉型时,应该考虑到以下几个方面: 1)、改善凝固条件,创建条件优良的超静态的凝固中心; 2)、超低氢控制用的全封闭惰性气体保护气氛、全闭环水系统及防结露设计; 3)、大电流短网的合理走向、高精度恒熔速控制。 目前,国内外电渣炉往往按照电渣重熔理念进行设计,过分强调低功耗、高熔速和高生产效率等指 标,这种理念容易导致电渣熔铸熔速过快,电渣锭凝固过程不合理从而造成产品性能差,合格率偏低等 质量问题。我公司开发的凝固型电渣炉其设计按照凝固工艺要求为前提,其设备配置重点在于保证钢水 快速冷却凝固,保证电渣锭凝固组织的致密性和均匀性,保证熔炼中非金属夹杂物的顺利上浮和吸附。 基于上述诸方面的设计理念,东北大学大型电渣炉研发中心,结合最近完成並顺利通过国家验收的 国家科技重大专项《120 吨级大型电渣重熔炉设备》(课题编号:2009ZX04006-32)和《大型钢锭电渣 重熔技术》(课题编号:2009ZX04014-61)两项课题研究,在总结成功经验与不足之处后,推出“新一 代 100 吨级全封闭式三相电渣熔铸炉”的最新优化设计。 1、百吨级各种电渣炉型对产品质量的影响及操作工艺性比较见表 1

381


表 1 百吨级各种电渣炉型对产品质量的影响 炉型

金属熔池的 温度场分布

金属熔池的 凝固条件

对电网平衡 的破坏程度

气密保护 难易程度

短网阻抗大小及炉 子运行的经济指标

对周围铁磁原 件发热影响

熔铸的电渣锭质量 情况

一般 一般 完全平衡 较难 好 影响很小 个别热点附近易出 加热区域远离金属熔池, 有热点和冷 不破坏电网 难以实现 整体短网的阻抗较 对金属熔池影 现偏析和夹杂物的 形成中心冷区温度场分布 区,加热区域 平衡 气密保护 小,运行经济指标良 响特别小 聚集,气体含量偏 不均匀 远离熔池 熔炼 好 高 一般 一般 很严重 容易 特别好 无影响 熔速较快,铸态组 单相同轴导电 渣池上下部贯通的柱状加 加热区域接触 严重破坏电 容易实现 整体短网的阻抗最小 对金属熔池影 织,有时出现疏松 气氛保护电渣 热区,加热区域接触金属 金属熔池 网平衡 气密保护 (双炉头移动式)炉 响特别小 和夹杂物的聚集等 炉 熔池,温度场分布集中, 熔炼 子运行经济指标优 缺陷 但对熔池加热 一般 较好 不平衡 较难 好 影响很小 中心区域易出现偏 双极串联电渣 渣池上部一点加热区,加 有热点,加热 破坏电网平 较难实现 整体短网的阻抗较小 对金属熔池影 析和夹杂物的聚 炉 热区域远离金属熔池,温 区域也远离金 衡 气密保护 小,运行经济指较优 响特别小 集,气体含量偏高 度场不均匀 属熔池 熔炼 特别好 特别好 完全平衡 容易 较好 无影响 特别好 三电极三相气 渣池上部环形加热区,加 没有热点和冷 不破坏电网 容易实现 整体短网的阻抗最小 对金属熔池影 铸态组织好,没有 氛保护电渣炉 热区域远离金属熔池,温 区,高温区域 平衡 气密保护 运行经济指标最优 响特别小 偏析,没有夹杂物 度场分布均匀 远离熔池 熔炼 聚集,气体含量低 2、目前大型电渣炉存在的问题 针对现有百吨级电渣炉研究与分析,发现现有电渣炉存在如下问题:(1)三相双极串联 6 支电极布置形式电渣炉存在换电极慢;(2)无法实现密闭保护 气氛;(3)熔渣成分前后变化大;(4)温度场分布不合理等无法克服的致命弱点。 3、大型电渣炉存在问题的解决措施 针对上述问题的解决措施:(1)改善凝固条件,创建条件优良的超静态的凝固中心;(2)良好的保护气氛及合理的脱氧工艺保证熔渣成分稳定,控制电 渣锭整体成分均匀的有效措施;(3)通过气密性保护气氛及优化工艺实现低[H]、[O]控制;(4)电渣凝固过程数值模拟与仿真和合理的恒熔速控制可以消除 缩孔、疏松等缺陷,生产无缺陷的电渣锭。 4、无缺陷百吨级电渣锭凝固所需电渣炉结构的必备条件 通过以上对国内外百吨级大型电渣锭质量情况及计算机模拟仿真的结果进行分析,120 吨大型电渣炉必须具备以下条件: (1)三相供电 3 支电极熔炼方式。高温区热源远离金属熔池(相对于单相电渣炉比较),温度场分布适合金属熔池自下而上结晶方向; (2)密闭性气氛保护。精炼凝固过程实现与空气的有效隔离,确保易氧化元素不烧损,不增[H]、[O]。 (3)快速更换电极(数控技术应用); (4)稳定的恒熔速控制。稳定的龙门式框架结构,确保称重系统精度 0.2%; 六电极三相电 渣炉

382


(5)闭环冷却水系统、高速水套结晶器及底水箱。水冷强度可控,调节范围大,提供可靠的钢锭凝 固条件; (6)防结露技术应用。防止结晶器底水箱结露,是控[H]手段之一; (7)智能化专家控制系统; (8)优化短网设计。克服散乱磁场,强磁场对熔池没有扰动的作用。 5、新一代 120 吨三相保护气氛电渣炉的先进性与可靠性设计  三相供电 3 支电极熔炼工艺方式:和其它方法比较凝固条件最好,会形成均匀而浅平的金属熔池、 短网最优、无冷区的温度场实现均匀性控制。在国内已有的百吨级三相电渣炉基础上设计,具备成功的 基础。  三相变压器供电:10000kVA 容量,电网平衡度 100%,程序控制 50 档有载电动调压,相电压每 档级差 1V,高的功率因数(0.92 以上)降低无功损耗,降低功率因数补偿的投资额度,可实现计算机恒 熔速的工艺控制,三相平衡,对电网无冲击。此供电方式百吨级三相电渣炉已采用,属成熟技术。  气密性保护气氛设计:采用长春电炉成套设备有限公司精炼炉保护罩设计技术,使电渣熔铸凝固 过程完全处于密闭的惰性气氛保护环境中,减少元素烧损和实现夹杂含量少、实现超低氢的控制,实现 [H]、[O]含量不增加的电渣熔铸。  直供式最优化的短网设计:采用三相电极空间对称布线、同轴布线或双极串联布线,都是理想的 短网布线结构;特别是三相空间布线,短网各相紧密靠近,使电抗降到最低,空间漏磁最小,而且大电 流导体是在金属熔池的上方,远离金属熔池,电流不流经金属熔池,而是流向其它电极,大电流磁场远 离熔池,对液态金属凝固影响最小,而且发热的区域只在渣池的上段,使热源远离了金属凝固前沿,渣 温高,金属熔池温度低,创造了非常好的精炼和凝固条件。避免产生偏析。在设计方面,吸收长春电炉 成套设备有限公司 LF 的短网模式,结构更可靠,性能更优。  数控交换电极技术:双炉头移动式快速交换电极方法,平稳启停、快速运动和精准的位置控制, 交换电极时间精确、可控、在 2 分钟之内完成,确保电渣锭凝固过程不产生夹渣和冷层。  稳定龙门框架式结构的电子称重系统:采用龙门框架式结构的炉头比悬臂梁式横臂结构的称重有 更高的精度和稳定性,保证称量重量仅仅包括导电杆和自耗电极的重量,且数值精确而稳定;确保 0.02%FS,系统精度 0.2%;  东北大学软件开发,电渣专家控制系统,自动实现按钢种和锭型的全智能恒定电极插入深度、恒 熔速、恒熔池形状的控制。  高速水套结晶器、闭环冷却水系统及防结露技术:为百吨级大型电渣锭冷却提供可靠保证,改善 凝固组织。避免大气潮湿出现冷凝水所导致熔炼中增氢及减少结晶器、水冷部件的维修量。消化国外闭 环水设计方式,目前,国内在 30 吨以下气氛保护电渣炉已经使用,此种水循环系统对于国内专业水系统 设计施工单位属于小型设备,轻松能够实现。 电渣凝固过程模拟与仿真:供方研究电渣凝固过程模拟仿真技术已有 10 多年的时间,曾为三峡产品 等提供可靠的模拟优化工艺参数,此项技术在百吨级电渣锭的工艺参数优化方面进行使用,对电渣工艺 的制定有极其重要的指导意义 6、不同炉型电渣重熔工艺模拟结果 6.1 单电极炉型模拟 单电极熔炼时,渣池上下部贯通的柱状加热区,加热区域接触金属熔池,温度场分布集中,对熔池 加热,熔速较快:小截面电渣锭铸态组织较好;大截面电渣锭熔铸时,易出现疏松和夹杂物的聚集等缺 陷。单电极适用于较小直径电渣锭的生产。 6.2、六电极炉型模拟 对三相双极串联 6 电极 120 吨电渣炉凝固过程模拟仿真发现,此种炉型的热场分布存在冷区,不利 于夹杂物的上浮。同时,此种方式炉型电极交换时间过长,对产品的连续凝固过程造成影响。另外,无 法实现密闭型保护气氛更是致命的弱点。 6.3、三电极炉型模拟结果 对三相 3 电极 120 吨电渣炉凝固过程模拟仿真发现,此种炉型在渣池上部环形加热区,热场分布均 匀,没有热点和冷区,高温区域远离熔池分布有利于金属定向凝固及夹杂物的上浮。 此方案工艺调节范围宽,易于生产出合格产品。

383


A New Generation of 100TTotally-enclosed ThreePhaseElectroslag CastingFurnace (Chinese & English version, Paper) XihaiLiu,WeiguoJia,JunfengJiang (NEU Large-Scale Electroslag Furnace R&D Center, China) Abstract:The production quality problems of China'slarge-scaleelectroslag furnace and the results of comparing the processesbetween differentfurnaces are introduced. By the numerical simulation results of electroslag remeltingprocess,the latest optimizeddesign conceptsandtechnical solutions of three phase-three totally-enclosed electrodesfurnace are proposed and implemented. Key words:totally-enclosed electroslag casting furnace,electroslagsolidification, numerical simulation, three phase-threeelectrodes electroslagcasting furnace, By increasingly stringent requirementsonthequalityofmetalmaterials in China's nuclear powerproject, theweight of the largeroughforgings that is used in nuclear powerproject is constantly increasing. Meanwhile, to metalmaterials, the anti-fatigue, high temperature resistance, corrosion resistance, antineutronradiation anda series of rigorous requirements have been proposed. However, the abovementionedmetalmaterialquality requirementscan not be achievedthroughthegeneralprocess metallurgymethod. Such a process route thatmore than 100t giantingots are produce only through the large-scaleelectroslag metallurgyprocess to forge the large forgingis reasonable. Therefore,countries all over the worldarecommitted to using the electroslag metallurgyprocessto producelarge-scalehigh-qualityESR ingots.However,thequalityofthelarge100tESR ingotinChinais not optimistic(Forexample: the passing rate of 12%Crrotorelectroslagingotsproduced by a certainheavy machinery was lessthan30% ) . Afterinvesting heavily inthe construction of largeelectroslag furnaceequipment, many enterprisesfound thatadvancedlargerotorforgingsandNuclearPowermain channelelectroslagingots were difficult to produce, generally speaking, due to the deficient selection of equipment,and ineffective integration between the electroslagsolidificationprocess and the equipment, which broughtthe greateconomic burdento the enterprise. NEU Large-Scale Electroslag Furnace R&D Center ( Shenyang Dongda Xingke Metallurgical Technology Co. Ltd ) asa repurable enterprise specizlizing in electroslagsolidificationtheory andelectroslag castingmetallurgicaltechnologys has been working onthedesignoflarge-scaleelectroslag furnaceequipment. It is alsotheonlyprofessional teamto solveproduct quality issues of largescaleelectroslagingots.After years oftheoretical studyand practical exploration, it can be concluded that in order to produce high-qualitylargeelectroslag castingingots , the followingkey issues must be solvedinthetheoryandtechnology: (1)The bestoptimizationoftheconditions of electroslagMetal Molten Poolof liquid steelsolidifition. (2)The effective controloftheUltra-low[H], [O] and [Al]content, and the establishment ofthe[H] and [O]control of thenumerical model; ( 3 ) The simulation in remeltingsolidificationprocessand the technologyparametersoptimization in remelting process. In the study of electroslag remelting and solidificationtheories on Largeelectroslag furnace,anumberofnumericalsimulation on the temperature field, flowfield, thejudgmentof solidificationcrystal quality, the protective gasflow and velocityetc. of single-electrode,three-electrode and six-electrodefurnaces with differentstructure were were conduct, and then the control model was established. The following aspectsshouldbe taken into considerationinthedesignoflarge-scaleelectroslagfurnace: 1 ) To improve the solidification conditions, create the ultra-staticsolidificationcenter with excellent conditions; 2) Totally-enclosedinert gas protection atmosphere used by Ultra-lowhydrogencontrol, full closedloopwater system andanti-condensationdesign; 3)Reasonabledirectionofthe large currentshort net,high-precisionconstantmelting speed control. At present,electroslag furnaces athomeandabroad are oftendesigned in accordance with the electro slag remelting concept that excessively emphasis the indicators of low power, highmelting speedand highproductionefficiency, which can easily cause that the high speed of electroslag castingmelting and the unreasonable ESR ingot solidification process. Thus, some quality problems such as poorproduct performance and low pass ratewere prodeuced.The solidification electroslag furnacedeveloped by our company is designed on the premise of solidification process requirements. The device configuration focuses on guaranteeing the rapid cooling and solidification of molten steel, guaranteeing the good

384


densification and uniformity of ESR ingot solidification structure and ensuring the smooth floating and adsorption of non-metallic inclusions in the smelting. Based on the above-mentioned design concept,NEU Large-Scale Electroslag Furnace R&D Center combined the achievements of the major National Science and Technology Projects that were completedandpassed thenationalacceptance recently: “120-ton super-large electroslag furnace” ( No. : 2009ZX04006-32 ) and “Largeingotelectroslag remelting technology” ( No. : 2009ZX04014-61 ) . After summing upthesuccessful experience and the inadequacies,thelatest optimizeddesignof a new generation of100T totally-enclosed three phaseelectroslag castingfurnace was proposed. 1. The comparison of the impactsof all kinds of the100-tonelectroslagfurnaces on product quality and operation process. Please refer to Table 1. Table 1 The impacts of all kinds of 100-ton electroslag furnaces on product quality furnace

Six electrodes three phase electroslag furnace

Single the same axis conductive atmosphere protection electroslag furnace

Bipolar series electroslag furnace

Three-electrode three phase protective atmosphere electroslag furnace

The temperature distribution of the Metal Molten Pool Normal Heating region away from the Metal Molten Pool and the uneven distribution of the cooling zone temperature field Normal cylindrical heating zone up and down through the slag poolHeating area contact with the metal molten pool, The temperature distribution concentrated, but the heating molten pool Normal above the slag pool exist the heating zone, heating zone away from the Metal Molten Pool, the uneven temperature field Best Ring heating zones Exist above the slag pool, Heating area away from the Metal Molten Pool, the temperature distribution uniform

The solidification conditions of the Metal Molten Pool Normal Existence of hot spots and cold areas, the heating area away from the weld pool Normal Heating area contact with the metal molten pool

Damage extent on the grid balance

difficulty degree of Airtight protection

Perfectly balanced Does not destroy the grid balance

More difficult Difficult to achieve airtight protection melting

Worst Serious damage balance

Easy Easy to achieve airtight protection melting

the

Better Hot spots, the heating region away from the Metal Molten Pool

Unbalanced Destruction balance

Best No hot spots and cold zone, the high temperature region away from the molten pool

Perfectly balanced Does destroy the grid balance

of

the

385

grid

grid

not

More difficult Difficult to achieve airtight protection melting Easy Easy to achieve airtight protection melting

Short net impedance size and furnace running economic indicators Good Smaller impedance of the overall short network and Good running economic indicators Best minimum impedance overall short network(Mobile dual-burner) good furnace running economic indicators Good Smaller impedance overall short of the network, better running economic indicators Better Minimum impedance of the overall short network and best running optimal economic indicators

Heat effects on the surrounding ferromagnetic original

Quality of cast ESR ingot

little effect Impact of Metal Molten Pool very little

prone to segregation and inclusions gathered near hot spots , High gas content

No effect Impact of Metal Molten Pool very little

Melting speed faster, the cast structure sometimes there are loose and the aggregation of inclusions and other defects

little effect very littleimpact of Metal Molten Pool

prone to segregation and inclusions in central region gathered , High gas content

No effect Impact of very small Metal Molten Pool

Best Best cast structure, no segregation, no inclusions gathered, low gas content


2. The problems of current large electroslag furnaces By the research and analysis of current 100-ton electroslag furnace, the following problems have beem found:(1)three phase series six bipolar electrodes electroslag furnace exists the problem of changing electrodes slowly ; (2)the airtight protection atmosphere can not be achieved;(3)Slag composition changes greatly;(4)some weaknesses that is hard to overcome, such asthe unreasonable temperature distribution. 3. The solutions to the problemsof large electroslag furnace Solutions to the above problems:(1)To improve the solidification conditions,create the ultrastaticsolidificationcenter with excellent conditions; ( 2 ) The better protection atmosphere and reasonable deoxidation process to ensure the stability of the slag composition,and effective measures of controlling the composition uniformity of the whole ESR ingot; ( 3 ) the gas-tight protection atmosphere and process optimization to achieve a low [H], [O] control ; (4)the numerical modeling and simulation of electroslag solidification process and reasonable constant melting speed control to eliminate defects such as shrinkage, porosity andproduce defect-free ESR ingot. 4. Prerequisites for the electroslag furnace structure of defect-free 100-ton electroslag ingot solidification By analysising the quality of 100-ton large-scale ESR ingots at home and abroad and the results of computer simulation,a 120-ton large-scale electroslag furnace must meet the following requirments: (1) Three phase power supply and three electrodes melting. High temperature zone heat is far away from the Metal Molten Pool (compared with the single-phase electroslag furnace), the temperature distribution is suitable for bottom-up crystal orientation of the Metal Molten Pool; (2) Airtight protective atmosphere.Refining solidification process can effectively isolate the air and ensure that the easily oxidized elements do not burn and [H] and [O] do not increase. (3) Quickly replacing electrodes(numerical control technology); (4) Stability constant melting speed control. Stable gantry type frame structure can ensure the weighing system precision of 0.2%; (5) Closed-loop cooling water system, high-speed water sets mold and bottom water tank. The controllablewater-cooled strength and wide adjustment range can provide reliable ingot solidification conditions; (6) The application of anti-condensation technology. Preventingthe condensation of the bottom water tank in crystallization is one of the measures to control [H]; (7) Intelligent expert control system; (8) Optimizeting the design of short net. To overcome the disturbances on the scattered magnetic field and strong magnetic field for the weld pool. 5. Advanced and reliable design of new generation 100tthree-phase totally-enclosed electroslag furnace  Three-phase power suppled 3 electrodes melting process mode:Comparedwith other methods, its solidified conditions is the best,forming a uniform and shallow metal molten pool, the best short network and no colding temperature field to realize the homogeneity control.Based on the design of the existing domestic 100t three-phase electroslag furnace, we have the foundation of success.  3-phase transformer for power supply:10000kVA capacity,grid balance 100%,program control 50 file-load power regulator,phase voltage differential 1V per file,high power factor to reduce reactive loss and to reduce the amount of investment for power factor compensation can achieveprocess control of the computer constant melting speed , three-phase balance and no shockingto the grid. This power supply mode has been used in 100t three-phase electroslag furnace, which belongs to a mature technology.  Gas-tight protective atmosphere design:Using techniques of Changchun Furnace Complete Equipment Co.Ltd. refining furnace protective shield design to make electroslag casting solidification process in an environment of closed protective inert atmosphere , the element burning and the inclusion content can be reduced, ultra-low hydrogen control can be achieved and the electroslag casting process without increasing [H] [O] content can be reliazed. 

Short network design of direct supply-type optimization:Three-phase electrodes symmetrical

386


wiring, coaxial wirin or bipolar serial wiring are the ideal short network wiring structure;Especially the three-phase space wiring,close proximity of each phase short net can gain the minimum reactance and space leakage magnetic. The high-current conductor is in the top of the Metal Molten Pool, away from the Metal Molten Pool. The current dose not flows through the Metal Molten Pool, but flows to the other electrodes. High-current magnetic field is away from the weld pool and has the minimal impact on the solidification of liquid metal. Heating region is in the topof slag pool. It makes the heat away from front of metal solidification. High slag temperature and low-metal bath temperature can supply a very good refining and solidification condition to avoid produce segregation. In terms of design,we have absorbed the short net model of the Changchun Furnace Complete Equipment Co., Ltd. in LF. Thus, the structure of our equipment is more reliable and has better performance.  numerical control exchange electrodes technology : Two-burner mobile rapid exchange electrodes method,smoothly starting and stopping, rapid movement and precise position control and accurate exchange electrodes time completed within two minutes can ensure that the ESR ingot solidification process does not produce the slag and the cold layer。  Stable gantry frame structure of the electronic weighing system: The gantry frame structure of the burners has higher accuracy and stability than the cantilever cross arm structure weighing. It ensures that the measured weight only includes the weight of conductive rod and the consumable electrode,numerical precision and stability, 0.02%FS and the system accuracy of 0.2%;  Electroslag expert control system developedby Northeastern University Software can automaticlyachievefull intelligent control of constant electrodes insertion depth, the constant melting speed and constant weld pool shape according to different kinds of steel and ingot type.  High-speed water jacket mold, closed-loop cooling water system and anti-condensation technology: Providing a reliable guarantee for the 100-ton ESR ingot cooling and improving the solidification structure. It can avoid the phenomenonof increasing hydrogen and reduce the maintenance of mold and the water-cooled components. Currently, the water circulation system has been used in the domestic protection atmosphere electroslag furnace below 30 tons .It is a small device for the professional water system design and construction unit and easy to achieve.。 The modeling and simulation of electroslag solidification process:We have studied the simulation technology of electroslag solidification process for 10 years. We have provided reliable process parameters of simulation and optimization for the Three Gorges products. This technology has been used in the process parameter optimization of 100t electroslag ingot. It has an extremely important guiding significance for the formulation of the electroslag process. 6. Simulation results of different furnace electroslag remelting processes 6.1 Single-electrode furnace simulation In the single-electrode melting, slag pool is cylindrical heating zone through the upper and lower parts, heating area contacts with the metal bath,temperature field is concentrated distribution,heating weld pool,melting speed faster;ESR ingot cast structure of the small cross-section is better;in the casting,the large cross-section ESR ingot,porosity and inclusions aggregation are easy to occur. Single-electrode is suitable for the production of the smaller diameter ESR ingot. 6.2Six electrodes furnace simulation According to the simulation of three-phase bipolar series six-electrode 120 tons electroslag furnace solidification process,it can be found that there is the cooling zone in the thermal field distribution of the furnace and it is not conducive to the inclusions floating. At the same time, the electrodes exchange time ofthe furnace is too long.It affects the continuous solidification process of product. In addition, it is a fatal weakness that closed protective atmosphere can not be achieved.. 6.3. Three-electrode furnace simulation results According to the simulation of three-phase three electrodes 120 tons electroslag furnace solidification process, there is a circular heating zone at the top of the slag pool. The thermal field distributes uniformly without hot spots and cold zone, and high-temperature region is away from the weld pool distribution, which is conducive to metal directional solidification and inclusions floating. The process of the solution has a wide adjustment range and is easy to produce qualified products.

387


大锻件扩氢计算理论与方法的研究 (中文版,论文) Studyon the Theory and Method of Dehydrogenization for Heavy Forgings (Chinese version only, Paper) 齐作玉,王庆伟,吴鹏 (上海重型机器厂有限公司,中国) Zuoyu Qi, Qingwei Wang, Peng Wu (Shanghai Heavy Machinery Plant Co. Ltd., China) 摘要:本文对大锻件扩氢计算理论和方法进行了研究,给出了扩氢计算方法和算法语言,不仅易于 让工艺人员更加便捷地理解和掌握扩氢理论依据和计算方法,还为大锻件生产企业编制新一代的扩氢计 算软件奠定了理论基础,对进一步提高大锻件的内部质量、最大程度地达到扩氢效果,最小程度地消耗 热处理能源有一定的参考价值。 关键词:大锻件扩氢理论计算方法软件 Abstract: In this paper, the theory and methods of dehydrogenization for heavy forgings is studied deeply and easily and the algorithmic language for dehydrogenization calculation is given. It not only helps process engineer to understand and master the theory and methods of dehydrogenization easily but also provides the basic theory, which is very important to improve the internal quality of heavy forgings, to realize the maximized dehydrogenization result, to reduce the energy consumption evidently for heat treatment. Keywords: Heavy Forging, Dehydrogenization Theory, Calculation Method, Software 1 目的意义 大型锻件通常是大型设备的重要部件,它的作用关键、地位特殊、造价昂贵、生产周期长、制造难 度高。一旦产生白点,如果还继续投入使用,就可能会在使用中出现机毁人亡的事故。因此,通常大锻 件的验收标准明确规定,一经发现白点,锻件必须报废。然而,大锻件一旦报废,工程进度被推迟,制 造厂和客户用户也都会遭受损失惨重。为此,防止大锻件产生白点是大锻件生产和质量控制的重要环节, 是防止事故、减少损失和满足用户需要的必要措施。 白点是变形钢材中的一种内部缺陷。在缺陷的剖面或断口上,呈圆形或椭圆形的银白色斑点,直径 由零点几毫米到数十毫米。白点的产生与钢中的氢的存在有关。研究表明,氢是影响白点形成的首要因 素。 先进的真空冶炼和真空浇注技术已经可以极大地减少钢中的氢含量。但是,随着大锻件的发展和经 验的积累,人们已经开始认识到,最低氢含量要求不是一个确定的数值,它与合金化程度、锻件尺寸、 锻件形状、冶金偏析程度、产品质量要求等有关。大锻件的最低氢含量要求也是随着随着大锻件的发展 而越来越高。另外,大钢锭的冶炼过程复杂,因素众多,出现异常的概率很大。对于任何一点异常,都 可能造成实际氢含量偏高,必须在后道工序采取必要的措施才能防止锻件因探伤超标而报废。 大锻件扩氢是防止大锻件产生白点的主要措施之一。但是,扩氢时间的长短对能源的消耗与扩氢的 效果至关重要。为此,我们有必要研究大锻件扩氢时间的确定方法。 目前,工厂的实际应用的扩氢时间确定方法主要分为三种,见表 1: 表 1 大锻件扩氢时间确定方法 序号 1

实际应用方法 工艺人员按照文献[1]方法手工分步计算

优点 可以学习理解理论依 据,提高技能

2

利用人机对话计算程序[2]计算

3

利用经验表格查表选择确定

(1) 方法简单 (2) 计算时间短 (3) 准确 (1)简便

缺点 (1) (2) (3) (1)

方法复杂 计算时间长 容易出错 程序老化

(1)误差大

以上三种方法中,还是第三种方法用的最普遍。但是,随着工业的发展进步,质量和节能要求的不 断提高,结果误差大、方法过于粗略的利用经验表格查表选择确定法必然要被淘汰。而将以上三种方法 结合起来进行研究,探索新的具有能不断完善和具有生命周期特性的扩氢计算方法则显得越来越有必要。

388


本文对大锻件扩氢计算理论和方法进行了研究,给出了扩氢计算方法和算法语言,不仅易于让工艺 人员更加便捷地理解和掌握扩氢理论依据和计算方法,还为大锻件生产企业编制新一代的扩氢计算软件 奠定了理论基础,对进一步提高大锻件的内部质量、最大程度地达到扩氢效果,最小程度地消耗热处理 能源有一定的参考价值。 2 理论基础和方法 2.1 扩氢理论基础 大锻件第一热处理的最主要目的之一是预防白点的出现。大型锻件去氢退火的物理基础是氢在钢中 的扩散机理。为了防止白点产生,必须造成氢在钢中溶解度小而扩散速度大的条件,既使锻件锻后尽快 地由奥氏体分解为铁素体和碳化物的混合物,并在后者稳定存在的最高温度(略低于 A1)下保温。这时 氢的溶解度较小,而扩散系数很大。因此,在这个温度下保温可造成氢以最大速度扩散。从而实现氢向 外扩散、在内部均匀化,达到不产生白点的目的。 2.2 计算理论基础 大型锻件扩氢计算方法的基础是描述传质过程的扩散方程与描述热传导过程的热流方程。由于传热 方程与扩散方程的数学表达式完全相同,因而完全可以借用在热传导中经常使用的各种计算方法和参数 图表[3]。 已知,厚件的传热计算是通过解准数方程来完成的。对于无限长圆柱体(可以取 l≥3d),在周围介 质温度恒定时,可以得出计算热传导过程的准数方程。将描述传热过程的各物理量换成扩氢过程的相应 物理量,即可得到计算圆柱锻件扩氢过程的准数方程:U=H/H0=Φ(Dτ/R2∙RP/Q∙r/R) (1) 式(1)中,U 为锻件中氢的浓度系数;H0 和 H 分别为热处理前后的氢含量; Dτ/R2 为达到浓度准数 U 所必须的时间准数(或傅氏准数),用 F0 表示,F0= Dτ/R2 (2) 式(2)中,D 为氢的扩散系数、τ为扩散时间(h),R 为圆柱形锻件的半径或等效半径(cm); RP/Q 为毕氏准数,用 Bi 表示,Bi= RP/Q (3) 式(3)中,P 为渗透性系数,Q 为透过性系数。 式(1)中,r/R 为位置准数,r 为计算位置的半径。 式(2)中的 F0 为锻件在锻造及热处理中总的扩氢时间准数,可以表示为:F0= F1+ F2 (4) 式(4)中,F1 为热处理扩氢时间准数:F1=∑Diτi/R2 (5) 式(5)中,Di 为热处理过程第 i 阶段氢的扩散系数,Di= k1Dαi,+k2Dγi (6) 式(6)中,Dαi, Dγi 可以查表 2 而得。 式(6)中,k1 和 k1 的确定原则:(a) 对于无过冷待料, k1= k2=0.5; (b)对于有过冷待料,等温及降温阶 段 k1=0,k2=1;(c)在重结晶过程中,低于等于 860℃,k1= k2=0.5;大于 860℃,每高出 20℃,k1=0.5, k2=1.1x0.5,即 k2 增 10%; (d) 其它所有升温保温时,k1=1,k2=0。 式(5)中,τi 为热处理过程第 i 阶段的扩散时间(h),R 为圆柱形锻件的半径或等效半径(cm)。 式(4)中,F2 为锻造扩氢时间准数;计算按下面的 2.3 实践研究中的 c)锻造扩氢时间准数。 U 与 Bi、F0、r/R 之间的关系可以通过查表 3 而得。 锻件经过冷和过冷等温使奥氏体充分转变为铁素体与碳化物的混合物后,加热到略低于 A1 温度并在 此温度下长时间保温。生产经验证明这是防止白点的热处理最基本的工序。本文称这段基本工序的时间 为扩氢等温保温控制时间,简称为扩氢时间,用τb 表示τb= Fb R2 / Db (7) 式(7)中,Fb 扩氢时间准数、R 为圆柱形锻件的半径或等效半径(cm)、Db 为扩氢温度下的扩散系数。 我们扩氢计算的主要目的就是为了合理确定这段扩氢等温保温控制时间。式(4)中的 F1 中既包含了这 段时间也包含了扩氢等温保温控制时间以外的热处理全过程时间。为了便于单独计算扩氢等温保温控制 时间,我们单独表示扩氢等温保温控制时间以外的热处理全过程时间的热处理扩氢时间准数 F3: F3=∑Diτi/R2 (8) 扩氢温度下的扩氢时间准数:Fb= F0- F2- F3 (9) 最后在按式(7)计算出扩氢时间。 2.3 实践研究 a) 毕氏准数:RP/Q=Bi=h∙R=R/2.5(cm -1) (10) b) 位置准数: 位置准数指的是白点易发生的位置,以距离心部按半径计算的位置,用 r/R 表示。实践研究表明,直 径<30cm 的锻件,位置准数为 r/R 零;大型锻件(直径>30cm),位置准数 r/R 应取为 0.5。 c) 锻造扩氢时间准数: F2 锻造扩氢时间准数,对于Φ30~Φ80cm 锻件,平均每一锻造火次的扩氢当量(Dτ)为=21.5 ; 对于Φ90~Φ150cm 锻件,平均每一锻造火次的扩氢当量(Dτ)为=25.73 F2=n(Dτ)/R2 (11) 389


对于大锻件,F2=25.73×n/R2 d) 原始含氢量: 有研究表明,钢锭不同区域的平均氢含量有一定的差异。为此,对于冒口端取样定氢,则应以减去 0.5~1.5ppm 后的剩余数值作为扩氢计算时的原始含氢量。实际取样定氢的在冶炼过程的阶段和条件也各 不相同。为此,原始氢含量的确定需要一定的经验积累和制订出统一规则。 e) 无白点极限氢含量 早期一般认为,钢中的氢含量低于 2~3cm3/100g 时,锻件没有白点敏感性,这个数值称为不产生白 点的极限氢含量。 后来发现不同钢种的白点敏感性不同。为此,实际大锻件生产企业把常用钢种按白点敏感性的低、 中、较高、最强分成四种。 随着大锻件的发展和经验的积累,人们已经开始认识到,极限氢含量不是一个确定的数值,它与合 金化程度、锻件尺寸、锻件形状、冶金偏析程度、产品质量要求等有关。据悉,某国外企业为了保证质 量把某类核电锻件的极限氢含量定为 0.8ppm (1ppm=1.125cm3/100g)。进一步的研究表明,白点敏感性 和白点的产生也与锻造工艺有关[4]。 表 2 氢在 α-Fe 及γ-Fe 中得扩散系数 2

温度 (℃) 1500 1400 1300 1200 1100 1000 900 800 700 690 660 650 645 630 620 610 600 500 400 300 200 100 50 20

扩散系数(cm /h) α-Fe 1.43 1.38 1.31 1.25 1.19 1.11 1.02 0.97 0.84 0.8295 0.798 0.7875 0.777 0.7665 0.756 0.745 0.735 0.612 0.497 0.360 0.240 0.008 0.004 0.001

γ-Fe 1.90 1.49 1.19 0.90 0.684 0.468 0.313 0.205 0.112 0.056 0.023 0.007 0.002 -

表 3 圆柱形锻件的 Bi、Fe、r/R 与 U 之间的关系 Bi 6 r/R

4 F0 0.0

0.5

0.0

10 0.5

0.0

0.5

0.99758 0.98335 0.89935 0.59981 0.37361 0.23430 0.14574 0.09064 0.03506 0.01356 0.00524 0.00203 0.00123

0.99176 0.93678 0.85918 0.70956 0.43926 0.27301 0.16977 0.10559 0.06567 0.02540 0.00982 0.00380 0.00147 0.00092

U 0.02 0.04 0.06 0.10 0.20 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.40 1.50

0.99931 0.99786 0.98970 0.93439 0.69869 0.49164 0.34242 0.23806 0.16547 0.07992 0.03860 0.01865 0.00900 0.00626

0.99266 0.96237 0.90998 0.79640 0.55632 0.38697 0.26898 0.18695 0.12993 0.06275 0.03031 0.01464 0.00707 0.00491

0.99886 0.98805 0.91635 0.65034 0.43206 0.28441 0.18696 0.12286 0.05306 0.02291 0.00900 0.00427 0.00281

0.99563 0.95236 0.88792 0.75542 0.49689 0.32655 0.21460 0.14103 0.09268 0.04003 0.01729 0.00747 0.00322 0.00212 Bi

390


15

30 r/R

F0 0.0

0.5

0.0

0.5 U

0.02 0.04 0.06 0.10 0.20 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.40 1.50

0.99810 0.98104 0.88723 0.57119 0.34668 0.20903 0.12654 0.07589 0.02754 0.01000 0.00363 0.00132 -

0.90943 0.92769 0.84133 0.68210 0.40740 0.24545 0.14788 0.08910 0.05368 -

0.99839 0.97798 0.87109 0.54186 0.31547 0.18369 0.10695 0.06227 0.02111 0.00716 0.00243 -

0.91186 0.82559 0.64907 0.37398 0.21751 0.12663 0.07373 0.04292 0.01455 -

3 扩氢算法语言 扩氢计算方法并不简单。可以说,即使在负责大锻件锻后热处理工艺的人群中,完全掌握该方法的 人并不多。工艺人员即使读懂了扩氢计算方法,也不一定会进行扩氢计算;即使现在读懂会算,过一段 又可能忘记,还得从头再来学习领会。为此,只有归纳出算法语言才能快速理解,才便于记忆。另一方 面,算法语言是计算准确的关键,也是应用计算机计算的关键。 扩氢计算的主要任务主要有两条 A. 根据实测氢含量和目标极限氢含量计算所需要的扩氢时间; B. 根据实测氢含量和实际或计划的扩氢时间核算与判定扩氢效果。 对于 B,只是 A 的反算。对于根据实测氢含量和目标极限氢含量计算所需要的扩氢时间,可以归纳 算法为: 已知:实测氢含量 H0;目标极限氢含量 H;锻件成形后的最大半径或当量半径(合理用于扩氢计算 的半径)R;锻造火次 n;热处理工艺温度和时间τi;前人研究出的不同温度阶段氢的扩散系数与组织状 态的关系(表格数据)Dαi, Dγi。 求:扩氢时间τb 解:τb= Fb R2 / Db (h) 1) 选择计算当量半径 R,对非轴类件,按经验或标准规定的公式进行计算; 2) 计算 Bi=R/2.5(cm -1) 3) 计算 U=H/H0 4) 根据 Bi 值 U 值和 Bi-U-F 表,查找出 Bi1,Bi2;再查找出 U11 U12, U21 U22; 5) 按线性插值法计算 U1= U11+(U21- U11)(Bi- Bi1)/( Bi2- Bi1) 6) 按线性插值法计算 U2= U12+(U22- U12)(Bi- Bi1)/( Bi2- Bi1) 7) 根据 Bi-U-F 表,查找到 F01,F02,按线性插值法计算 F0= F01+(F02- F01)(U-U1)/(U2-U1) 8) Di= k1Dαi,+k2Dγi 9) 锻造扩氢时间准数 F2=25.73×n/R2 10) 扩氢等温保温控制时间以外的热处理全过程时间的热处理扩氢时间准数 F3=∑Diτi/R2 11) Fb= F0- F2- F3 12) 查表扩氢温度下的扩散系数 Db= Dα 13) 扩氢时间τb= Fb R2 / Db 参考文献 [1] 康大韬叶国斌.大锻件材料及热处理. 第一版.北京:龙门书局,1998. [2] 齐作玉等. 电站转子锻件扩氢计算应用软件的研究. 大型铸锻件,1995,(2):26 -41. [3]东北重型机械学院等.大锻件热处理. 第一版.北京:机械工业出版社,1974.77-82. [4] 齐作玉. 管板中的“锻造白点”及其对策. 大型铸锻件,1993,4: 29-36.

391


大型锻件的裂纹与白点缺陷 (中英文版,论文) 郭会光,何文武,陈慧琴 (太原科技大学,中国) 摘要:简要介绍了大型锻件裂纹与白点缺陷的试验研究方法和分析判断原理。探讨了全面综合分析锻件 裂纹的成因。得出锻件裂纹生成不仅和锻造热力学条件(外因)有关,而且和锻件的组织结构、理化性 能(内因)相关联。针对锻造裂纹与白点缺陷的成因、预防、整治,叙述了目前不同的理论、观点。阐 明了防治原则与举措及研究缺陷的重要意义。 关键词:锻件;裂纹;白点 随着社会经济的发展、科学技术的进步、新装备、新机器、新材料、新工艺的广泛应用,锻造中的 新问题逐渐增多。其中锻件裂纹频发已经成为当前影响锻造生产发展和锻件质量提升的关键难题,也是 锻造行业研究议论的热点话题。 裂纹是十分常见的缺陷,按其发生在锻件上的位置不同,分为外裂和内裂两种。外裂可以直接观察, 它主要影响热加工过程。内裂需经过探伤或解剖分析判断,它对锻件使用性能有严重的危害。 1. 锻造裂纹的试验研究 1.1 热拉伸 高温拉伸能够测知在不同温度下的抗拉强度和断面收缩率的变化,并能提供零强温度(ZST)、零塑 温度(ZDT),还可对试件冷却断口的组织形态进行观察分析。因而是研究材料高温力学行为的重要方 法,是了解热塑性变化及热锻开裂有效手段。试验给出的零强温度(ZST)此时材料晶界被液膜覆盖,所 以抗拉强度为 0,而在零塑温度(ZDT)时材料晶界开始熔化,所以断面收缩率为 0。在热拉伸时还能研 究组织结构演变和再结晶机制对高温力学行为的影响。例如,采用热模拟试验机(如 Gleeble 系列)对 45 钢进行高温拉伸试验,(钢的化学成分为 C 0.46、Si 0.28、Mn 0.68、P 0.035、S 0.025、Ni 0.04、 Cr 0.046、Cu 0.16。试

图 1 碳钢热塑性及热强度变化  =0.004s-1 试件Φ10×130mm ZST=1375℃ ZDT=1340℃ 件为轧材,尺寸为¢10mm×130mm。试验条件为:最高加热温度为 1350℃,升温速度 10℃· s 1 ,保 温 60 S,以 0.004 s 1 的应变速率进行高温拉伸)。由图 1 可知,当 45 钢加热温度超过 1250℃后,晶界 开始熔化、断面收缩率迅速下降,在 1340℃时塑性为 0,(即零塑温度)。继续加热晶界被液膜覆盖, 约在 1375℃抗拉强度接近于零,(即零强温度)。所以在 1200℃以上为高温脆性区,而在 900℃~ 1200℃温度区间塑性良好,ψ>60%,组织状态为单相奥氏体,适宜锻造成形。当温度降低至 900℃以 后进入低温脆性区组织为双相状态(α+γ)塑性下降,容易形成裂纹破坏,因此在高温脆性区和低温脆 性区是裂纹敏感区,不太适宜锻造成形。 一般情况下,随着钢中合金元素增多、组织结构复杂、异相和夹杂物增加、塑性下降,适宜锻造的 温度范围变窄,锻造开裂的可能性增大。

392


1.2 热镦粗 1.2.1 应变诱导裂纹 为了更好地研究金属材料的可锻性与热裂纹敏感性, 通常进行热镦粗试验来模拟热锻过程。测定在不 同变形温度、应变速率和变形程度下的高温塑性变化状况。并将出现第 1 条裂纹的临界应变量作为该热 变形条件下的塑性极限和裂纹启开的判据。 试验借助热模拟试验机进行,试验方法称为应变诱导裂纹张开试验,如图 2 所示。 裂纹启开的临界应变量  c ,可用下式表示:

 c =㏑ D1 D0 

式中: D0 为试件原始直径; D1 为裂纹启开时镦粗部分试件直径。 显然,临界应变量越小,材料开裂敏感性越大,塑性越差[9]。

图 2 应变诱导裂纹试验示意图 1.2.2 恒温热压试验 在没有热/ 力模拟试验机的情况下, 曾对护环钢进行过如下的恒温热压试验, 并测试热裂纹产生的状况。 图 3a 和 3b 分别是将表面刻切圆槽与尖槽的试件和热压试件的保温措施。

图 3 850 ℃热压试验(a)对比试件(b)保温措施 热扭转和热弯曲 根据形成裂纹的力学分析[11], 在拉应力与剪应力作用下, 材料会产生正断裂与切断裂。扭转试验,试 件表面首先发生切断裂纹。常以产生裂纹前热试件承受的扭转次数来表示材料塑性优劣。 热弯曲试验,试件外侧首先受拉开裂,根据弯曲变形大小来判定材料塑性。 此外,在热加工时还要注意加热温度和加热时间对高温组织的影响,因为晶粒粗大不均匀,能促使 裂纹萌生与扩展。 2. 锻造裂纹的分析研究 2.1 形成裂纹的组织分析 对热锻裂纹进行组织分析和理化检验,有助于了解裂纹产生的内在原因,也是裂纹鉴别的重要依据。 裂纹产生的过程, 首先是在裂纹源处萌生微观裂纹, 然后扩展为宏观裂纹。微观裂纹的萌生是由于原材料 中存在的冶金和组织缺陷, 比如偏析、夹杂、粗晶、疏松、气孔、第二相析出等。因为这些区域往往强度 低、塑性差, 很容易开裂(像晶界渗 Cu、硫化物、氧化物、脆性低熔点物质聚集处极易发生脆性开裂)。 1.3

393


另如奥氏体、马氏体不锈钢中有铁素体相析出, 由于析出相与基体的力学性能和理化性能有差异, 因而在 热锻时首先开裂形成锻造裂纹。裂纹扩展多沿着阻力最小方向进行, 如晶界、相界以及带状组织夹杂物的 界面。尤其强度低、塑性差且具有应力集中的区域, 微观裂纹易扩展为宏观裂纹。

图 4 00Cr14Ni14Si4 钢锻造裂纹 (a) Macrostructure character (b) Microstructure near crack 图 4a 所示为经电炉+VOD 精炼的 00Cr14Ni14Si4 低碳不锈钢锭的宏观断裂裂纹。因其含有过量的 S 和 Al, 在经过 1050~1080℃加热后的锻造开坯过程中, 出现严重的横向裂纹。结合裂纹附近的金相特征 图 4b 可知, 裂纹缺陷的四周富集大量夹杂物。后经电子探针测定大多是 Al 2 O3 ,其间也有少量的 MnS, 在 某些视场下可观察到氧化物夹杂呈点链状分布。可见锻造裂纹的形成归因于钢中铝、硫以及由之形成的 氧化物和硫化物的含量过高, 在浇铸过程中容易形成枝晶偏析, 这些偏析的氧化物在热加工时弱化了晶界, 降低了钢的导热性和高温塑性, 从而在夹杂物偏析区出现了宏观上的裂纹。 研究表明:钢中锡、锑、砷、铜等有害元素越多, 热锻开裂倾向越严重;钢中 AlN 和 MnS 析出物多、 非金属夹杂物和有害气体多;钢锭中皮下气泡、结疤、裂纹、粗晶多,则在锻造时容易产生裂纹缺陷。 2.2 形成裂纹的热力学分析 形成裂纹的因素除内因外, 还有外部变形条件。材料宏观破坏的条件可表达为:

 cr  F  ij,  d ij,,T

式中:  cr 为拉断临界应力 (或剪断临界应力);  ij 为应力状态; d ij 为应变积累;  为应变速率;T 为 变形温度。 由上式可知, 能否产生裂纹, 除了内在原因外,还受热力学变形条件的影响, 应进行外因分析。例如弯 曲工件、外侧受拉裂开等。低塑性材料冲孔时, 孔口内裂, 外壁胀裂。矩形坯料在送进量较小进行拔长时, 坯料都会在外力及附加应力作用下引起锻造裂纹。 在加热、锻造和热处理过程中,温度应力、组织应力、变形损伤、残余应力都可能导致裂纹发生。但是, 是否产生裂纹还和锻坯的内在因素有关,即所谓外因通过内因才能导致开裂破坏。影响锻件裂纹的外因 和内因列于图 5,可见项目很多,而且相互影响,所以,裂纹分析是一项复杂的工作,必须全面、综合研 究,才能得出正确合理的判断。

图 5 影响裂纹的产生因素 394


3. 锻造裂纹的预防与消除 3.1 防止裂纹的原则 从以上关于锻造裂纹成因的分析可知, 控制裂纹发生应从内因和外因两方面入手, 其防治要点主要有 以下几点。 (1)材料化学成分应严格符合标准。对有害元素如 S、 P、[O]、[N]、Cu、Al、等,容易形成夹杂 物的元素及 Sn、Sb 等微量元素应加以控制。曾发生这样的案例: 1Cr18Ni9Ti 奥氏体不锈钢, 因为 Ti 元素 含量超标, 导致钢中铁素体增加而引发锻造裂纹[14]。 (2)要严格控制冶炼、浇注过程。这是提高钢质纯净度, 消除冶金缺陷、防止裂纹发生的重要环节。 实践证明, 钢中夹杂物多且呈团块状聚集, 晶粒粗大且晶界脆弱以及带有微裂纹和皮下气泡的坯料, 极易产 生裂纹破坏[15]。 (3)锻造成形时要保持有良好的应力状态,比如,将自由锻冲孔改为模内冲挤成形,改善应力状态, 从而可以防止裂纹的生成。 (4)严格控制变形温度。温度低,硬化严重,塑性降低;温度过高, 产生过热、过烧, 塑性也会下降, 都有可能产生裂纹。只有在软化再结晶充分进行的区间, 一般是单相组织时, 锻造开裂的可能性较小。 (5)变形速度对于低塑性材料有很大的影响,应根据具体材料选用合适的锻造设备, 以便防止锻裂。 例如 MB5 镁合金在锤上锻造时易裂, 而在压机上锻造则不裂, 其原因是镁合金再结晶过程缓慢,高速下变 形容易破裂。 3.2 修复内裂的原理和方法 超声波探伤表明,大锻件内部存在裂纹与类孔隙缺陷是造成废品的重要原因,其中多数是由于坯料 内部存在有疏松、夹杂物、粗晶和裂纹。锻造时由于局部的不均匀变形,在巨大的集中应力和剪应力作 用下,导致难以锻合、压实和生成变形损伤。因此,对原材料、冶铸、热锻进行综合控制,消除内裂产 生的根源和条件是提高锻件品质的积极措施。但是,对已经出现内裂缺陷的大锻件进行愈合修复,重新 启用防止报废也有重要的经济意义。 内裂修复的原理为:任何结构与成分不均质(包括微裂纹)的材料,在热力学许可条件下,都将趋于 均匀化。其本质是在扩散力(浓度、电场、应力场等梯度)作用下,金属原子定向、扩散迁移使内裂纹愈合 [16]~[18] 。 现在已研究应用了高温扩散处理、加压扩散处理、扩散与塑性变形相结合修复愈合等方法。已对大 型管板、大型模块中夹杂性裂纹修复方面取得了明显的成效,并在轧制钢材、管材内裂控制上取得明显 的效果。曾经对 5 件探伤报废的大锻件进行自修复方法处理, 经过高温处理再次探伤检验完全符合国家标 准,作为合格产品出厂[19]。如图 6 所示内裂修复的机理大致分为:裂纹相对面凸起融合;长裂纹分段球 化;然后收缩愈合等几个过程[20]。依据裂纹修复中组织成长、性能变化与生物伤口愈合相似的现象,提 出内裂类生修复机制,引起了业内人士的关注。

图 6 内裂愈合过程示意图 4 锻件中的白点缺陷 4.1 白点的性质与危害 锻件中的白点是一种极细的脆性裂纹,能带来高度的应力集中导致力学性能急剧下降。造成制件在 服役受力时引起突然断裂破坏,造成重大事故。 4.2 白点成因及预防

395


形成白点的理论很多,比较常见的有两种。 (一) 白点是由钢中氢和内应力(主要是组织应力)共同作用的结果。 因为由冶炼、浇注时带入的氢,在钢中非均匀分布、氢原子往往在位错附近歪扭晶格的微孔隙中聚 集,使钢的塑性严重降低,产生所谓的“氢脆”现象。而锻件在冷却过程中,由奥氏体转变为珠光体或 铁素体产生组织应力。假如,冷却速度较快氢来不及逸出将在微隙中聚集并生成很大的局部应力,加上 组织应力超过了金属材料的强度极限,于是便以微孔隙为核心形成白点裂纹。对于大锻件,因其内部缺 陷多、均匀性差、应力集中较多,还要注意低温脆性对白点生成的促进作用。 根据上述白点形成的原因,预防白点缺陷的主要措施为:将钢中氢含量降至无白点缺陷的极限含量 以下,同时尽量减少锻件中的内应力。比如,炼钢时严格烘烤炉料、保持干燥、清洁,严防氢气带入; 降低炉气中有害气体成分;冶炼中充分沸腾除气;对钢水进行二次精炼与真空除气,大幅度降低钢中氢 含量。其次对锻件进行扩氢与减小组织应力的热处理。比如,在 650℃左右长时间保温,一方面充分扩 散钢中氢气,另一方面使奥氏体均匀完全转变,减少组织应力。 (二)白点是一种内应力裂纹,是由内应力损伤引起的缺陷。 虽然,氢—组织应力的学说得到广大业内人士的认同,但是近期也有一些现象对此提出了质疑。例 如,模铸、电渣重铸及连铸同样的轴承钢。前者未见白点而连铸坯有白点;经过真空处理的轴承钢比未 经过真空处理的内部发裂更多;按常规工艺锻造的氢含量很低的冷轧工作辊,经过扩氢处理,锻件中依 然出现了白点。而改进了锻造方法,防止了应力损伤,反而没有产生白点。因此提出白点并非氢致裂纹, 而是一种内应力裂纹,是由多种应力(包括组织应力、热应力、锻压加工应力、残余应力)叠加引起的 应力裂纹,是一种内应力损伤。 根据这种观点,预防白点应该对铸锭缓冷以松弛应力,合理调控加热、锻造、热处理过程,防止应 力损伤。比如,扩散加热、均匀变形、改善应力状态减少应力损伤;锻后缓冷,扩散退火以消除不良内 应力的影响,防止白点的产生。 4.3 白点锻件的挽救 对已经产生白点的锻件进行挽救、修复具有一定的技术经济意义。目前应用的案例主要有:高温扩 散加热和塑性压缩并举的内裂修复方法;将白点大锻件改锻成小锻件使白点消除;以高温加热将出炉后 的坯料表面喷水急冷,然后差温锻压充分压实芯部,使白点分散焊合,所谓“差温锻造法”消除锻件白 点等。 总之,研究大型锻件裂纹,进行全面综合分析,找出缺陷成因和关键因素,采取相应的防治举措, 对提高锻件质量、提高技术经济效益、提高锻造生产水平具有十分重要的意义。 作者介绍: 郭会光,太原科技大学,教授,中国锻协首席锻造专家,长期从事大型锻造理论与新技术的研究。 何文武,太原科技大学,副教授、博士。 陈慧琴,太原科技大学,教授、博士导师。 参考文献 [1]蔡开科等.连续铸钢高温力学性能专辑[J].北京科技大学学报,1993.15 卷增刊(2) [2]He Wenwu, Liu Jiansheng, Guo Huiguang.Deformationpattern of the largegenerator’s retaining rings during hydraulic bulging strengthening[J]. Material Science Forum , 2008, 575-578: 606-611. [3]Ma Qingxian, Wang Zhicheng, Zhong Yuexian. The mechanism of faults originat- ing from inclusions in the plastic deformationprocesses of heavy forging [J] . Journal of MaterialsProcessing Technology, 2002, 123: 61- 66. [4]董岚枫,钟约先、马庆贤,等. 大型水轮机主轴锻造过程裂纹缺陷的预防[J]. 清华大学学报,2008, 48( 5): 765-768. [5]张海. 报废管板大锻件中的夹杂物形貌研究[ J ]. 材料科学与工艺, 2007, 15( 6) : 786-788. [6]李增国, 刘庚武. 阀体的锻造工艺改进[J]. 锻压技术, 2007, 32( 6) : 34- 36. [7]倪利勇, 王傲冰. 大型饼类锻件工艺研究综述[J]. 大型铸锻件, 2007, ( 6) : 44- 46. [8]王文学, 杨拉道, 刘赵卫, 等. 马氏体不锈钢的高温性能与铸坯表面质量的关系 [ J] . 钢铁, 2007, 42( 9) : 55- 57. [9]牛济泰. 材料和热加工领域的物理模拟技术[ M] . 北京国防工业出版社, 2007. [10]Guo Huiguang. Controlled hot forming and cooling of retaining rings of Mn18Cr18N steel [J] . Wang Z R. AdvancedTechnology of Plasticity 1993 [ C ] . Beijing: InternationalAcademic Publishers, 1993. [11]《锻件质量分析》编写组. 锻件质量分析[M]. 北京: 机械工业出版社, 1983.

396


[12]宋志刚, 陈斌, 郑文杰, 等. 00Cr22Ni5Mo3N 钢的热扭转性能[J]. 钢铁研究学报, 2008, 20( 5) : 37- 40. [13]柳学胜, 杨凡, 朱瑞金, 等. 00Cr14Ni14Si4 奥氏体不锈钢中微量铝硫与锻造裂纹 [J] . 理化检验: 物理分 册, 1997,33( 11) : 3- 8. [14]王贤敏. 1Cr18Ni9T i 不锈钢锻坯裂纹分析 [J] . 铸锻热处理实践, 1997, ( 1) : 39- 41. [15]牧正志. 钢在高温下的脆化特性与力学行为 [J] . 钢铁,1989, ( 1) : 7- 11. [16]李欣, 刘靖. 12Cr 超临界转子钢裂纹愈合研究 [J] . 材料开发与应用, 2009, 24( 1) : 50- 52. [17]韩静涛, 赵中里, 张永军. 大型锻件内裂纹的无塑性变形热修复技术研究 [J] . 大型铸锻件, 2006, ( 4) : 1- 3. [18]孙海燕. 大型锻件内部缺陷的修复研究 [J] . 大型铸锻件,2003, ( 3) : 6- 9 [19]韩静涛, 许树森, 陈钢, 等. 大型锻件的夹杂性裂纹与控制锻造工艺 [J] . 钢铁, 1997, 32( 3) : 35- 38. [20]韩静涛. 金属材料内裂愈合现象及其在塑性成形件内裂控制上的应用[J].燕山大学学报, 2002, 26 (增 刊) : 5- 9 [21]刘欢.35CrMo 钢重型工件的热处理工艺研究[J].化学工程与装备,2010.4. 92-93 [22]王冀恒等.35CrMo 钢亚温淬火强韧化组织与性能研究[J].材料热处理,2009.3. 144-146 [23]刘德富,刘大琦.关于钢中白点形成机理的探讨[J].大型铸锻件, 2008.5. 37-41 [24]付前进等.用差温锻造方法消除锻件白点[J].中国国际自由锻会议论文集,2010 年 5 月,53-56 [25]韩静涛等.大型锻件锻造裂纹控制与技术研究[J].中国国际自由锻会议论文集,2010 年 5 月,57-61

397


Cracks and Flake Cracks in Large Forgings (Chinese & English version, Paper) Huiguang Guo, Wenwu He, Huiqin Chen (Taiyuan University of Science and Technology, China) Abstract: Test methods, analysis and identification principles of cracks and flake cracks in large forgings have been introduced briefly in this paper. Through integrated analysis of crack sources in forgings, it is found that crack forming is related not only with thermo-mechanical parameters (external cause), but also with microstructures, physical and chemical properties (internal cause). According to crack sources, prevention, correction and removal in large forgings, several theories and viewpoints of the defect have been described, and the meaning of prevented measures and investigation of the defects has been presented also. Keywords: forgings; cracks; flake cracks Forgings quality becomes more important with developing social economy, progressing science technology and wide applications of new equipments, new machineries, new materials and new processes. Cracking of forgings is becoming the vital issue, which affects manufacturing and quality of forgings. It is also becoming the main research subjects in the forging industry. Cracks are kinds of common defects. According to the location of cracks, it can be classified as external cracks and internal cracks. External cracks can be observed and affect hot working processes. Internal cracks can be identified only by detection or examination by sectioning, which can impair service performances of forgings severely. 1. Tests for investigation of forging cracks 1.1 Hot tension Hot tension tests can give tensile strength and reduction of cross-sectional area of materials at different temperatures. Zero strength temperature (ZST) and zero ductile temperature (ZDT) can be obtained by hot tension tests. Fracto-graphy can be carried out at fracture of hot tensile samples. Therefore, hot tension is an important method to investigate hot deformation behavior of materials. It is also an effective way to obtain variation of hot plasticity and hot forging cracking of materials. At ZST, tensile strength is zero due to liquid grain-boundaries. And at ZDT, reduction of cross-sectional area is about zero because grain-boundaries have begun to melt. By hot tension, hot deformation behavior and microstructure evolution can be investigated. Here is an example of hot tension tests of 45 steel carried on Gleeble thermo-mechanical simulator. The chemical composition of the steel is as follows (W%): 0.46 C, 0.28 Si, 0.68 Mn, 0.035 P, 0.025 S, 0.04 Ni, 0.046 Cr, 0.16 Cu. The rolled samples with 10mm diameter and 130mm length are elongated at a constant strain rate of 0.004s-1. The maximum heating temperature is 1350℃. The heating rate is 10℃/s and the holding time is 60s. As shown in Fig.1, reduction of cross-sectional area begins to decrease when temperature reach to 1250℃, and become zero at 1340℃. When temperature increase continually, grainboundaries become to be liquid and strength becomes zero at 1375℃. Therefore, the steel has hightemperature brittleness when temperature is great than 1200℃. The steel has good plasticity when temperature is between 900~1200℃, and the reduction of crosssectional area in the temperature interval is greater than 60%, the microstructure is single-phase austenite and the steel is easy to deform. When temperature is less than 900℃, the steel with microstructure of + has lowtemperature brittleness, and it is difficult to be forged Fig.1 Variation of hot plasticity and and ease to crack. So when the steel has high- and lowstrength of 45 steel temperature brittleness, it is sensitive to crack and can

398


not be deformed. Generally, plasticity decreases when steels have more alloying agents, complex microstructures, outphases and inclusions. 1.2 Hot upsetting 1.2.1 Strain-induced cracking In order to investigate forge-ability and hot cracking sensitivity of metals accurately, hot upsetting tests need to be carried out to modeling hot forging processes and test variation of hightemperature plasticity at different temperatures, strain rates and reductions. The reduction of the first crack occurring can be act as the value of plastic limit and the criterion of cracking initiation.

Fig.2 Diagram of strain induced cracking As shown in Fig.2, the test method, named as strain-induced cracking test, is often carried out on thermo-mechanical simulator. The critical strain of crack initiation is expressed as follows.  c =㏑ D1 D0 

(1)

Where D0 is the initial diameter of samples; Dl is the diameter of upsetting part with the first crack initiation. The less the critical strain is, the higher the crack sensitivity of materials is, the lower the plasticity is. 1.2.2 Hot compression tests at constant temperatures Hot compression tests at constant temperatures of the retaining ring steel were carried out in our early investigation. And the circular-groove-crack tests (Fig.3a). and the V-groove-crack tests (Fig.3b) at constant temperatures have been carried out to test hot cracking as shown in Fig.3.

(a)

(b)

Fig.3 Hot compression at 850℃ (a) specimens (b) insulatinglayer 1.3 hot torsion and hot bending According to mechanics of crack forming, fractures with the fracture plane perpendicular to the crosssection of samples will occur under tensile stress condition, and fracture with 45o between the fracture plane and the cross-section of samples will occur under shear stress condition. Shear cracks often present at the sample surface in torsion tests. And the torsion frequency can indicate the plasticity of materials. Cracking occurs firstly at the outside surface of samples in bending tests. Therefore, the plasticity of materials can be identified based on bending deformation. In addition, the heating temperature and time should be considered carefully because coarse grains can promote crack initiation and propagation.. 2. Forging crack analysis

399


2.1 Microstructures of crack forming Microstructure analysis, physical and chemical inspection of hot cracking are beneficial to understand internal causes of crack forming, which are also the important basis of crack identification. The cracking processes include micro-crack forming at crack front and propagating to be macro-cracks. Micro-cracks often initiate at special microstructure areas with segregation spot, inclusions, coarse grains, porosity, gas porosity and the second-phase precipitation, where strength and plasticity are very low. These special microstructure areas also include cupric cemented grain-boundaries, sulfide, oxide, brittle lowmelting accumulation. Phase boundaries will be areas of hot crack forming because of different mechanical properties and physical and chemical properties between precipitations and matrixes, such as ferrite precipitation in austenite or martensite matrixes. Crack propagation proceeds at the direction of minimum resistance, such as grain-boundaries, phase-boundaries and interfaces between band structure and inclusion. Micro-cracks are easy to become macro-cracks in the areas with low strength and plasticity and stress concentration.

(a)

(b)

Fig.4 Forging cracks in 00Cr14Ni14Si4 steel (a) transversal macro-cracks (b) inclusions around the cracks As shown in Fig.4, they are transversal macro-cracks in the 00Cr14Ni14Si4 stainless steel smelt by electronic furnace and VOD. These cracks form when cogging at temperatures of 1050~1080℃ because of the steel with excessive S and Al. As shown microstructures in Fig.4b, it is seen that there are many inclusions around the cracks. These inclusions indentified as Al 2O3 and MnS by electron probe tests. Oxide inclusions present as dots and chains can be seen in some field of views. The reason of cracking in this example is that there are many oxides and sulfides due to excessive S and Al in the steel, which can induce segregation forming in the casting processes. These segregation oxides can impair grain-boundaries, conductivity and plasticity of the steel, so that macro-cracks form at the areas of segregation inclusions. It is found that the more the elements of tin, antimony, arsenic and copper are, the more the hot forging cracks are. The more the defects of AlN and MnS, nonferrous inclusions, harmful gases, bubbles under the surface, rolling skins, flaws and coarse grains are, the more the cracks during forging are. 2.2 thermodynamics of crack forming In addition to internal causes of crack forming, there are external causes for crack forming. Fracture occurs at conditions of the following equation.

 cr  F  ij,  d ij,,T

Where  cr is the critical stress of fracture;

(2)

 ij the stress state;  d ij

is accumulate strains;  is strain

rate; T is temperature in K. As shown in the equation (2), it is seen that crack forming is related not only with internal causes but also with thermo-mechanical parameters. So external reasons should be analyzed for cracking, for example, cracking occurs at the outside surface of bending samples under tensile stress condition. Another example is cracking at portholes and ectothecas of punching parts with low plasticity material. When the feed is small in drawing processes, forging cracking will occur under the applied forces together with subsidiary stresses. Temperature stress, transformation stress, damage by deformation

400


and residual stress during heating, forging and heat-treatment all can induce cracking. But whether cracking occurs, it is also depend on internal factors of billets. That is cracking caused by external causes together with internal causes. All external and internal causes of cracking are listed in Fig.5. It can be seen that there are many items which can induce cracking and all factors have influences on each other. Therefore, cause analysis of cracking is a very challenging task. Reasonable identification will be obtained by integrated and general investigations.

Metallurgical features (chemical composition, purity and phases) Solidifying and Crystallization (segregation, inclusion, coarse grains and damage

Applied Forcesď&#x201A;Ž Tensile and Shear Stresses (mechanical force, temperature stress, transformation stress, subsidiary and residual stress) Temperatureand Heating Rate ď&#x201A;ŽOverheating and Burning

High-temperature Mechanical Properties (strength and plasticity) Forgings

Deformation (strain rate and reduction)

(shape and size)

Billets

Forging cracks Fig .5 Influence factors of crack forming 3. Prevention and removal of forging cracks 3.1 The principle of crack prevention From above analysis of forging cracking, it is seen that both of internal causes and external causes must be considered together to prevent forging cracking. The key points for preventing cracking are listed as follows. (1) Chemical composition of materials must meet the demands severely. Harmful elements, such as S, P, [O], [N], Cu and Al etc., must be controlled. Microelements are easy to form inclusions, such as Sn and Sb, which must also be controlled. For example, forging cracking occurs in 1Cr18Ni9Ti stainless steel during forging processes because of excessive ferrites due to excessive Ti element in the steel. (2) Smelting and casting processes must be controlled so that the steel will be more clean and less defects. This is very important steps for preventing cracking. Cracking fractures often occur at crumby inclusions, coarse grains with weakening grain-boundaries, micro-cracks and gas bubbles under the surface of ingots. (3) The stress state must be beneficial to improve deformation. For example, punching and extrusion in dies instead of punching in the free forging process can improve stress states and prevent cracking. (4) Temperature must be controlled. The lower the temperature is, the more the strain-hardening is. And the plasticity of materials will decrease. When the heating temperature is too high, overheat and 401


burning will occur. And the plasticity of materials will also decrease. Then cracking will occurs. When deformation occurs in the single-phase fields or in the range of full recrystallization and softening microstructures, forging cracking is impossible occur. (5) Deformation velocity has very important effects on forging cracking of materials with low plasticity materials. Forging equipments must be chosen properly based on deformation materials to prevent cracking. For example, forging cracking has been found in forging processes of MB5 by hammers, and not found in forging processes by presses. The reason is that the velocity of recrystallization in magnesium is very slow. Forging cracking will occur when deformation velocity is fast. 3.2 The principle and methods for repairing internal cracks Supersonic detection indicates that many products are rejected by internal cracks and similar defects, because most of billets for forging products have porosity, inclusions, coarse grains and flaws. These defects can not be healing and compacting under stress concentration and shear stress conditions, and form damages because of uneven deformation. Therefore, in order to improve forging quality by effective measures of removal forming conditions of internal cracks, raw materials, smelting and casting, forging processes all should be controlled carefully. But that of healing, repairing and reusing of large forging with internal cracks has important meaning. The principle of healing and repairing of forgings with internal cracks is directional and diffusion migrating of metal atoms under applied diffuse force, such as concentration, electricity stress gradients. The basis of the principle is that any materials with uneven structures and composition will become even when thermodynamic conditions are obtained fully. As shown in Fig.6, mechanisms of internal cracking repairing include several stages, such as healing of bulges located crack opposite face, segmenting and globalizing of long cracks, shrinking and healing of small cracks. According to similar phenomenon of microstructure evolution, property variation and healing of biologic wounds during crack repairing processes, mechanisms of internal crack repairing was put forward and have been pay attention to in the circles.

Initial states of crack healing

Passivating of crack tips and bulging crack faces

Discretization of cracks

Globalizing and healing of discrete cracks crack healing Fig.6 The sketch map of internal Healing and repairing methods of High temperature diffusion, pressure diffusion, diffusion and plastic deformation have been applied in practice. The repairing method has been used successfully in repairing inclusion cracking in large tube-sheets and die blocks. The method has also been used successfully in repairing internal cracking in rolled tubes. The method has even been applied in five larger rejected forgings, which meet demands after high-temperature repairing. 4. Flake cracks in forgings 4.1 Features and hazards of flake cracks Flake crack in forgings is a kind of slender and brittle crack. It can induce great stress concentration and decrease mechanical properties abruptly. It can also cause abrupt fracture of active forgings, which would be a big accident.

402


4.2 Causes and prevention of flake cracks There are many theories about flake crack forming. Two of them are common. (1) Flake cracks are the result of hydrogen together with internal stresses (transformation stresses). Hydrogen often comes into molten steels by smelting and casting processes. Its distribution in molten steels is always un-uniform. It always gathers in micro-gaps of lattices around dislocations, and decreases the plasticity of steels and causes hydrogen brittleness. Transformation stresses will form when transformations from austenite to pearlite and ferrite occur during cooling processes of forgings. If the cooling velocity of forgings is fast, hydrogen can not escape from steels immediately. They will gather in micro-gaps, and form great local stress. Flake cracks centering around micro-gaps will occur when transformation stresses together with local stresses are greater than the ultimate strength. For large forgings with many internal defects, non-uniform microstructures and more stress concentrations, flake cracks induced by low-temperature brittleness must be considered. According to reasons of flake crack forming, some measures should be taken to prevent flake cracks. One is to decrease the content of hydrogen to the limit of free flake cracks, and decrease internal stresses as possible at the same time, such as baking charge materials, decreasing hazard gases in furnace atmosphere, boiling molten steels, removing gases by vacuum and making the molten steels free of hydrogen during smelting. The other is heat-treatments by diffusing hydrogen and decreasing transformation stresses of forgings. For example, what holding at 650â&#x201E;&#x192; for a longer time can diffuse hydrogen sufficiently and also make transformation uniformly so that decreasing transformation stresses. (2) Flake crack is a kind of internal stress crack, and induced by internal stress damages. Although the theory of hydrogen-transformation stress is accepted by scholars in the circle, many questions have been put forward. For example, flake cracks present in steel billets manufactured by continuous metal cast process, and not in steel billets by die casting and electro-slag re-melting. Flake cracks were fount more in bearing steels treated by vacuum than in bearing steels non-treated by vacuum. Flake cracks exit still in the cold-rolled working rollers manufactured by conventional forging process, which have been treated by diffusing hydrogen and have low content of hydrogen. However, flake cracks do not emerge in the cold-rolled working rollers manufactured by improved forging process, which prevents stress damages. Based on above examples, another theory of flake crack forming is put forward, which thinks flake cracks caused by many internal stresses together, such as transformation stresses, thermo-stresses, working stresses and residual stresses, and is a king of internal stress damages. According to the internal stress damage theory, flake cracks can be prevented by slow cooling of castings, control heating process, forging and heat-treatment, such as diffuse heating, uniform deformation, improved stress sates. Slow cooling after forging and diffuse annealing can remove much of hazard internal stresses and prevent flake crack forming. 4.3 Repairing forgings with flake cracks Repairing forgings with flake cracks is meaningful for economic reason. There are many cases of repairing forgings with flake cracks, such as the method of high-temperature heating together with upsetting, forging large pieces into small pieces, differential temperature forging by water cooling hot billets to disperse and heal flake cracks. The last called â&#x20AC;&#x153;differential temperature forging methodâ&#x20AC;?. In a word, there have great significances for investigating cracking in large forgings, integrated and general analyzing to find reasons and influence factors of cracking, taking measures to prevent cracking, all which can improve forging quality, promote economic efficiency and forging manufacturing technologies. Authors: HuiguangGuo, Taiyuan University of Science and Technology, Professor, Chief Expert of Confederation of Chinese Metalforming Industry, Working on Large Forging Theory and New Technology. Wenwu He, Taiyuan University of Science and Technology, PhD. and Associate Professor; Huiqin Chen, Taiyuan University of Science and Technology, PhD. and Professor; References: [1] Cai Kaike. High Temperature Mechanical Properties of Continuous Cast Steel Album [J].Journal of Beijing University of Science and Technology,1993.15(2)

403


[2] He Wenwu, Liu Jiansheng, Guo Huiguang. Deformation Pattern of the Large Generator’s Retaining Rings during Hydraulic Bulging Strengthening[J]. Material Science Forum, 2008, 575-578: 606-611. [3]Ma Qingxian, Wang Zhicheng, Zhong Yuexian. The Mechanism of Faults Originating From Inclusions in the Plastic Deformation Processes of Heavy Forging [J]. Journal of Materials Processing Technology, 2002,123: 61- 66. [4]Dong Lanfeng,Zhong Yuexian,Ma Qingxian,Yuan Chaolong,Ma Lishen. Prevention of Forging Cracks in Heavy Hydro—Generator Shafts[J]. Journal of Qinghua University,2008, 48(5): 765-768. [5]Zhang Hai. Inclusion Mmorphology of Disabled Pipe Plate[J]. Mmaterials Science and Technology, 2007, 15(6): 786-788. [6]Li Zeng-guo,Liu Geng-wu. Improvement of Forging Process for Valve Body Quality[J]. Forging & Stamping technology,2007,32(6):34-36. [7]Ni Liyong,Wang aobing. The Research Summarize on the Forging Technology of Heavy Disk-shaped Forging[J].Heavy casting and forgings,2007,(6):44-46. [8]Wang Wen-xue,Yang La_dao,Liu Zhao-wei,Wang Yu,Chi Jing-hao. Study on Relationship between High Temperature Properties and Billet Surface Quality of Martensitic Stainless Steel[ J] . Iron & Steel, 2007,42(9): 55-57. [9] Niu Jitai. Physical Simulation in Materials and Hot-working[M]. Beijing National Defence Industry Press, 2007. [10]Guo Huiguang. Controlled Hot Forming and Cooling of Retaining Rings of Mn18Cr18N steel [J] . Wang Z R. Advanced Technology of Plasticity 1993 [C] . Beijing: International Academic Publishers, 1993. [11] The Forging Quality Analysis Group. Forging Quality Analysis[M]. Beijing: China Machine Press,1983. [12]Song Zhi-gang,Chen Bin,Zheng Wen-jie,Shu Xian-jin,Wu Hong,Zhang Shu-qin. Hot Torsion Property of 00Cr22Ni5Mo3N Steel[J]. Journal of Iron and Steel Research, 2008, 20(5):37-40. [13]Liu Xuesheng Yang Fan Zhu Ruijin. Al and S Micro-amount Elements and Forging Cracks in 00Cr14Ni4Si4 Austenitic Stainless Steel[J]. Physical and Chemical Testing. Physical Volume, 1997,33( 11) : 3-8. [14]Wang Xianmin. Analysis Forging Cracks of 1Cr18Ni9Ti Stainless Steel[J]. Heat Treatment, 1997, (1) : 39- 41. [15]Mu Zhengzhi. Embrittlement Features and Mechanical Behaviors of Steels at High Temperatures [J]. Iron and Steel,1989,(1):7-11 [16]Li Xin , Liu jin. Study on Inner Crack Healing of Ultra-super-critical Rotor 12 Cr Steel[J]. Development and application of materials,2009,24(1):50-52. [17]Han Jingtao, Zhao Zongli, Zhang Yongjun. The Thermal Healing Technical Research of the Nonplastic Deformation for Heavy Duty Forgings Inner Cracks,Heavy Castings and Forgings. 2006, ( 4) : 1- 3. [18]Sun Haiyan. The Repairing Study for the Defects Inside the Heavy Forgings[J]. Heavy casting and forging,2003,(3):6-9 [19]Han Jingtao, Xu Shusen, Chen Gang. Inner Cracks and Forging Process Control of Heavy Forging[J]. Iron and Steel, 32(3):35-38. [20]Han Jintao. Concrescence Mechanism of Crack in Metal Material and its Application on Plasticity Formation Journal of Yanshan University, 2002,26 : 5- 9 [21]Liu huan. Heat Treatment Process of 35CrMo Steel Heavy Workpieces[J]. Chemical Engineering & Equipment,2010, 4, 92-93 [22]Wang Jiheng, Li Hui, Xie Chunsheng, Jiao Lei. Study on Microstructure and Properties of 35CrMo Steel by Modified Treatment[J].Hot Working Technology ,2009.3. 144-146. [23]Liu Defu,Liu Daqi. Research on Forming Mechanism of Flake Cracks in Steel, Heavy Castings and Forgings . 2008.5. 37-41 [24]Fu Qianjin. Method to Eliminate Differential Temperature Forging Forgings White Spots[J].China International Symposium on free forging,2010.5,53-56 [25]Han Jingtao,Inner Cracks and Forging Process Control of Heavy Forging. China International Conference on free forging memoir,2010,5,57-61

404


高碳合金钢大型锻件锻造加热研究 (中英文版,论文) 张洪奎 (宝山钢铁股份有限公司,中国) 摘要:高碳合金钢大型锻件因钢中含有较高的碳含量及较高的 Cr、Ni、Mo、V 等合金元素,并且采用大 钢锭锻造成形,碳及合金元素的偏析较为严重,尤其是钢锭心部存在亚稳定共晶碳化物偏析,钢锭高温 扩散锻造之后易产生内部过烧缺陷。本文针对含 0.85%C 及 5%Cr 的高碳合金钢大型锻件钢锭高温扩散 加热工艺进行研究,采用计算机数值模拟技术模拟钢锭锻造过程的内部温升,并通过试验确定了产生过 烧的临界温度,采用双阶梯加热方式实现了高温扩散处理与锻造质量的双重兼顾,成功解决了高碳合金 钢大型锻件易产生内部过烧的问题。 关键词:高碳合金钢;大型锻件;加热;内部过烧 高碳合金钢大型锻件因钢中含有较高的碳含量及较高的 Cr、Ni、Mo、V 等合金元素,并且采用大钢 锭锻造成形,碳及合金元素的偏析较为严重,尤其是钢锭心部存在亚稳定共晶碳化物偏析,降低钢锭的 可锻性,为此通常采用钢锭高温扩散处理改善碳化物偏析。钢锭的高温扩散加热温度很高,钢锭锻造之 后易产生内部过烧缺陷。本文针对含 0.85%C 及 5%Cr 的高碳合金钢大型锻件钢锭高温扩散加热工艺进 行研究,采用计算机数值模拟技术模拟钢锭锻造过程的内部温升,并通过试验确定了产生过烧的临界温 度,据此制定了合理的锻造加热工艺,采用双阶梯加热曲线实现了高温扩散处理与锻造的双重兼顾,成 功解决了高碳合金钢大型锻件易产生内部过烧的问题。 1 高碳合金钢大型锻件质量现状分析 高碳合金钢大型锻件主要应用于钢铁行业冷轧产线冷轧机组的工作辊和中间辊,该类产品为高碳高 合金钢产品,钢中的含碳量达到 0.85%,合金元素含量较高,Cr 元素含量达到 5%,并添加一定量的 Ni、 Mo、V 等合金元素,钢中存在大量的碳化物。用 Jmatpro 软件计算该钢在不同温度下的碳化物含量,平 衡态 M7C3 型碳化物含量高达 9%左右。

图 1 高碳合金钢锻件 5%Cr 冷轧辊用钢相图 高碳合金钢锻件 5%Cr 冷轧工作辊用钢规格较大,辊身直径可达Ф900mm,需采用大型钢锭锻造, 锻造之前钢锭内部存在亚稳定共晶碳化物偏析。

405


钢中的碳化物相对于基体而言是低熔点物质,并且是硬 而脆的相,可锻性较差。为此通常采用对钢锭进行高温扩散 处理减少碳化物的偏析程度,改善钢锭的可锻性。钢锭的高 温扩散加热温度很高,一般为 AC3 以上 150~250℃[1],钢锭 锻造之后易产生内部过烧缺陷。

图 2 高碳合金钢锻件 5%Cr 冷轧辊用 钢大钢锭中的亚稳定共晶碳化物

a)内部裂纹形貌 b)内部裂纹组织 图 3 高碳合金钢锻件 5%Cr 冷轧辊用钢内部过烧缺陷 2.高碳合金钢大型锻件加热工艺研究 2.1 高碳合金钢大型锻件高温扩散温度研究 大型锻件往往采用大型钢锭进行锻造,大型钢锭 凝固过程中,液相和固相中各种元素溶解度不同,各 元素的溶解度与温度存在相互依存的关系,以及凝固 过程选份结晶现象的存在均会引起偏析,表征为钢锭 的宏观和微观区域含有不同的化学成分,成分偏析是 钢液选份结晶的必然结果 [2] 。尤其对高碳合金钢而言, 不仅存在成分偏析,还存在明显的碳化物偏析,图 2 中的金相照片显示出高碳合金钢锻件 5%Cr 冷轧辊用 钢大钢锭中存在亚稳定共晶碳化物。该类共晶碳化物 可采用高温长时间扩散退火消除[3]。 确定高温扩散温度的原则是不产生过烧缺陷,为 此采用示差扫描量热仪(DSC)并结合金相法确定高 图 4 高碳合金钢锻件 5%Cr 冷轧辊用钢 碳(0.85%C)合金钢锻件 5%Cr 冷轧辊用钢的临界过 DSC 升温曲线 烧温度。 利用 NETZSCH-404C 示差扫描量热仪(DSC)测定固液转变的临界温度点。由于固相向液相转变 时存在明显的吸热现象,以氩气作为保护气氛,采用 DSC 以 20K/min 的速度,将 10mg 的试样从 80℃ 加热至 1450℃测量该吸热峰的起始位置。测试结果如图 4 所示,吸热峰的起始位置约为 1274℃,可视 其为该钢的实际过烧温度。 参考 DSC 的测试结果,将试样在不同温度等温后随炉冷却(即扩散退火),经过金相制备后,在抛光 态下通过低倍金相来观察确认组织的过烧倾向,结果见图 5.在经过 1250℃扩散退火后,可以发现组织中 并无明显过烧迹象。而当扩散退火温度达到 1280℃以上时,金相组织中开始出现典型的在三叉型的晶界 过烧痕迹如图 5(b~d)所示,因为钢加热到过烧温度以上时,往往是在奥氏体晶界区首先熔化。热处理试 样的金相分析与 DSC 的测试结果完全符合。同时,在黑色过烧痕迹中发现存在有少量共晶莱氏体碳化物 如图 6 所示,经过显微硬度测试其硬度明显高于退火基体。在过烧处发现共晶莱氏体碳化物说明过烧起 源于碳化物偏析处。

406


(a)

(b)

(c)

(d)

图 5 高碳合金钢锻件 5%Cr 冷轧辊用钢在不同温度扩散退火后的显微组织 (a)1250℃;(b)1280℃;(c)1300℃;(d)1350℃。

图 6 过烧后产生共晶莱氏体碳化物的显微组织 2.2 高碳合金钢大型锻件锻造变形温升研究 高碳合金钢锻件 5%Cr 冷轧辊钢锭高温扩散温度虽然低于过烧温度,但是钢锭经过锻造之后却产生 了内部过烧缺陷,主要是钢锭锻造变形过程中,由于变形产生大量能量,其中一部分转化为热能,表现 为材料内部温度升高导致过烧。 在金属成形过程中,塑性变形功不断转化为热,使变形体内温度不均匀变化,因而使变形体内热加 工性能亦随之改变。金属塑性变形引起的温升计算公式为[4]:

t 

  K   zm 0   p (1)  c

式中,η为排热率,K 为综合影响系数,m 为变形速率影响指数,ρ为变形体质量密度,kg/m3;c 为变形体比热容,kJ/(kg·K) 钢锭锻造变形过程中的温升是普遍现象,但是锻造变形过程中所引起的温升数值计算较为复杂,为 此本文采用计算机数值模拟技术模拟高碳合金钢大型锻件锻造变形温升。为了确定采用 Deform-3D 软件 模拟结果的可靠性,结合 Gleeble 热模拟试验评价 Deform-3D 软件模拟结果的可靠性。 实验中,在圆柱侧表面中心部位焊上热电偶测温,根据热电偶采集的数据结果,在 950℃,1050℃, 1150℃下变形材料外表面分别有 7℃,6.1℃,2.9℃的温升。利用 Deform-3D 软件进行模拟,并与实测 数据进行对比以检验模拟参数的可靠性。同样条件下的模拟温升分别为:7.3℃、5.6℃、3.3℃,与之前 的热电偶实测结果基本吻合。从而证明了依靠现有参数采用 Deform-3D 软件进行镦粗过程模拟是具有一 定的参考价值和可信度。

407


为了对比不同变形速率和变形量下钢锭内部同一位置处的温度变化情况,设计模拟钢锭剖面中 P1 点 为钢锭几何中心点,P2 为侧面中心点,P3 为模拟过程中出现的温度最高点。通过对大量模拟数据进行分 析处理之后,得到不同工艺条件下 P3 点的温升情况如图 7 所示。从一系列的模拟结果可以看出,在不同 变形速率下进行镦粗时,钢锭内部都存在一定程度的温升情况,且升高的温度与压下量及变形速率都成 正比。在 40mm/s 变形速度下,当变形量达到 50%时最高可出现约 72℃的内部温升。由此可见高碳合金 钢大型锻件锻造变形温升非常明显。

图 7 高碳合金钢锻件 5%Cr 冷轧辊用钢锻造变形温升数值模拟结果 2.3 高碳合金钢大型锻件锻造加热工艺优化 为了改善高碳合金钢锻件 5%Cr 冷轧辊用钢的碳化物偏析,采用高温扩散方法减少碳化物偏析。高 温扩散放在锻造之前进行,与钢锭加热同时进行。通过 Deform-3D 软件数值模拟高碳合金钢锻件 5%Cr 冷轧辊用钢锻造变形温升高达 72℃,再加上较高的高温扩散温度,锻造之后极易产生内部过烧缺陷,为 此钢锭高温扩散采用两段式加热,第一段加热为高温扩散阶段,高温扩散温度采用上限温度,最大限度 发挥了高温扩散改善碳化物偏析的作用;第二阶段为锻造加热阶段,结合锻造变形过程内部温升的特点, 确定了合理的锻造加热温度,采用降温的方法从高温扩散阶段直 接过渡到锻造加热阶段,实现了高温扩散与锻造变形过程质量的 双重控制,有效防止了内部过烧缺陷的产生。 3.工艺优化后的效果 采用上述优化工艺加热高碳合金钢锻件 5%Cr 冷轧辊钢锭进 行锻造,防止产生内部过烧的作用显著,超声波探伤合格率大幅 提高,同时碳化物分布较为均匀。 4.结论 4.1 高碳合金钢大型锻件高温扩散后直接锻造易产生内部过烧缺 陷。 图 8 高碳合金钢锻件 5%Cr 冷轧 4.2 高碳合金钢大型锻件锻造变形存在内部温升现象,温升高达 辊心部碳化物形貌 70℃以上。 4.3 高碳合金钢大型锻件锻造加热宜采用两段式加热,第一段加 热为高温扩散阶段,第二阶段为锻造加热阶段。 4.4 高碳合金钢大型锻件锻造加热采用两段式加热方式,可有效避免锻造变形过程产生内部过烧缺陷,同 时显著改善碳化物分布均匀性。 参考文献: [1]刘永铨.钢的热处理.冶金工业出版社,1981:136 [2]康大韬叶国斌. 大型锻件材料及热处理. 龙门书局,1996:51 [3]蔡美良丁惠麟孟沪龙. 新编工模具钢金相热处理. 机械工业出版社,2000:173 [4]盛虹伟李德江. 塑性变形温升对合金钢锻造的影响. 石油矿厂机械. 2008. 29(5): 46-47 作者简介:张洪奎(1965-):男,教授级高工,长期从事模具钢及冷轧辊研究,联系电话:021- 26032481; E-mail:zhanghongkui@baosteel.com

408


Research on Heating Behavior during the Course of Forging for Large-scale High-carbon Alloy Steel Forgings (Chinese & English version, Paper) Hong-kui Zhang (BAOSHAN IRON  STEEL CO.,LTD, China) Abstract:For large-scale high-carbon alloy steel forgings containing higher content of carbon and other alloying elements like Cr, Ni, Mo, V et al with forging from large-size ingot, there existed more serious carbon and alloy elements segregation. Especially metastable eutectic carbide segregation is found to be existing in the core part of ingots, which is apt to result in internal burnt defects after high temperature diffusion and forging. This paper is focused on the technology of high temperature diffusion heating process for the ingot of large-scale high-carbon alloy steel forgings with 0.85wt%C and 5wt%Cr. The numerical simulation method is used to simulate the internal temperature rising of the ingot in the course of forging process. The critical temperature of burnt defects appearing is determined by testing method. Double-step heating method is used to balance the consequence of high-temperature diffusion treatment with forging quality, then resolve Successfully the problems of burnt defects for large-scale high-carbon alloy steel forgings. Key words:High carbon alloy steel;Large-scale forging;Heating;Internalburntdefects 0.Introduction There wasserious carbon and alloy elements segregation in large-scale forgings for high carbon alloy steelcontaining high carbon and alloy elements like chromium, nickel, molybdenum and vanadiumwith forging from large-size ingots.Due to the carbon and alloy elements segregation in the core part of ingots and metastable eutectic carbides were found to appear in the core part of ingots, the forgeability would be weakened The general method used to reduce segregation of ingot is high temperature diffusion treatment.But higher temperature would lead to burnt defects.This paper is focused on the technology of high temperature diffusion heating process for the ingots of large-scale high-carbon alloy steel forgings with 0.85wt%C and 5wt%Cr by computer simulation method to simulate the increased temperature in the ingot during forging and determine the critical temperature of burnt defects. The result was that the internal burnt defects could be avoided by heating the ingots with double-step heating method. 1. Quality actuality of large forging with high carbon alloy steel One of the major applications of large-scale high carbon alloy steel forgings with 0.85%C and 5%Cr is used to produce cold rolling working rolls and intermediate rolls. There existed a large quantities of carbides in the steel. The result of calculation of phase diagram from Jmatpro software shows that there are 9wt% carbides of M7C3 in the steel.

Fig 1 The phase diagram of forgings with high carbon alloy steel contained 5%Cr The forgings of cold working rolls of 5%Cr need use large ingot to forge due to the roll barrel up to 900mm.There exists segregation of metastable eutectic carbides in the ingot. These carbides are the low-melting point materials in steel with higher hardness and lower toughness so that the forgeability of ingot is weakened. Therefore the ingots should suffer the high temperature diffusion treatment in order

409


to reduce segregation and improve forgeability.However, through high temperature diffusion treating burnt defects are apt to appearin the core part of ingots during forging.

Fig 2 Metastable eutectic carbides in ingots of 5%Cr cold working roll

a)shape of inside cracks

b) microdefects of inside cracks

Fig 3 Inside burnt defects of cold working roll of 5%Cr 2. Research on heating ingot of large-scale forgingsfor high carbon alloy steel 2.1 Temperature influence of high temperature diffusion treatment Large-scale forgingsare usually forged from large-size ingots. There exists chemical composition segregation in large ingots during solidifying because the alloy elements solubility in liquid phase and solid phase are different so that selecting composition crystallization happened. For high carbon alloy steel, there existed chemical composition segregation and carbides segregation. Figure 2 shows that metastable eutectic carbides are found to exist in the large-size ingots of cold working roll of 5%Cr. This type of metastable eutectic carbides can be reduced by long time holdingat high temperature. The guideline to select the temperature of high temperature diffusion treatment is to avoidburnt defects.Heating temperature for ingot must be selected to be lower than the critical temperature of burnt defects. By DSC and microdefects observation, the critical temperature of burnt defects of cold working roll of 5%Cr could be detected. The critical temperature of solid-liquidphase transformation point had been tested by NETZSCH404C (DSC). The principle of testing is that heat absorption will happen while solid is transformed to liquid. To test the temperature of endothermic peak, the temperature range was selected from 80 ℃ up to 1450 ℃ , the weight of sample was 10mg and the heatingspeed was 20K/min. The result as given in Figure4 showed that the temperature of endothermic peakwas about 1274℃ that was determined as critical burnt temperature. After heated in furnace at different temperatures, the microdefects was observed on the polished surface of samples. The result was shown in Figure 5. Burntdefects had not appeared after heating at 1250℃. From Figure5b to Figure5d, The trigeminal burnt Fig4 Curve of DSC heating for cold microdefects had been found while the heat temperature working roll of 5%Cr was up to 1280℃. Because the austenite grain boundary first melt when temperature is over burnt. The result of microdefects testing was accorded with that of DSC testing. A few ledeburite eutectic carbides had 410


been found in the black area of microdefects as shown in Figure 6. Microhardness of eutectic carbides was higher than matrix. The fact of finding eutectic carbides in the black area of microdefects indicated that burnt defectstended to appear at the carbide segregation area.

(a)

(b)

(c)

(d)

Fig 5 Microdefects of heating at different high temperature of cold working roll of 5%Cr (a)1250℃;(b)1280℃;(c)1300℃;(d)1350℃。

Fig 6 Microdefects of eutectic carbides bring from burnt 2.2 Temperature arising during forging high carbon alloy steel Although the heating temperature was lower than the critical temperature of burnt, the internal burnt defects were still found after forging cold working roll of 5%Cr. The main reason is that forging arising temperature is higher than the critical temperature of burnt. In the course of forging, some of deformation energy hadtransformed into heat energy which resulted in internal temperature arising in the ingots. Formula of temperature arising by plastic deformation[4] is :

t 

  K   zm 0   p (1)  c

η—heat conductivity;K—influence coefficient; ρ—deformation body density (kg/m3) ; c— deformation bodyspecific heat capacity kJ/(kg·K) Temperature arising during the deformation of ingot is a normal phenomenon. Since the calculation of deformation arising temperature is too complex, the computer simulation method was used to calculate.

411


To guarantee the reliability of Deform-3D simulation results, the Gleeble hot testing was adopted after computer simulation. The deformation arising temperatures of Gleeble hot testing at 950℃,1050℃,1150℃ were tested as 7.0℃,6.1℃,2.9℃ respectively while Deform-3D simulation result at the same condition were 7.3℃、 5.6℃、3.3℃ respectively. Both the results were so close that Deform-3D simulation result was proved as reliability.

Fig 7 Simulation results of temperature arising of forging high carbon alloy steel In order to compare the deformation arising temperature with different deformation rate and deformation amount at same position in ingot, P1 point was defined as geometric central pointon the ingot section; P2 point was defined as side surface central point and P3 point was defined as maximum temperature position. The simulation result of P3 was shown in Figure7. Temperature arising appeared when upsetting ingot with different deformation rate. The temperature arising was proportional to thedeformation speed and deformation amount. When deformation amount was 50%, the temperature arising of P3 would be about 72℃. This simulation results shown that temperature arising was striking during forging of high carbon alloy steel. 2.3 Optimizing of ingot heating for the forging of high carbon alloy steel Selecting appropriate heating method during the course of high temperature diffusion treatment for ingot to reduce carbides segregation of cold working roll of 5%Cr before forging was very important. The heating curve was double-step at high temperature. The first step was high temperature diffusion and the second step was heating for forging. The temperature of heating for forging must be determined with deformation arising temperature. This method can resolve the problem of internal burnt defects. 3.Effects of optimizing process The effects of internal burnt was striking during the course of forging of cold working roll of 5%Cr. The Qualified RateUltrasonic Flaw Detection is a substantial increase and the carbide distribution is more uniform, as shown in Fig 8 Micro defects of carbides of cold Figure 8. working roll of 5%Cr at core position 4.Conclusion 4.1 Internalburnt defects usually appear when direct forging high carbon alloy steel after high temperature diffusion treatment. 4.2Temperature arising will be over 70℃ during the course of forging deformation of high carbon alloy steel with 50%deformation amount . 4.3 Heating for forging of high carbon alloy steel should be double-step, the first step is high temperature diffusion and the second step is heating for forging. 4.4Double-stepheating for high carbon alloy steel can resolve the problem of internalburnt defects and carbides distribution is homogeneity. References [1] Liu Yongquan. Heat treatment of steel. Metallurgical industry publishing house. 1981:136 [2] Kang Datao,Ye Guobin. Large forging material and heat treatment. Longmen publishing house. 1996:51 [3] Cai Meiliang, Ding Huilin, Meng Hulong. New editing metallography and heat treatment of working and die steel. Mechanical industry publishing house. 2000:173 [4] Sheng Hongwei, Li Dejiang. Influence of Plastic deformation temperature arising on alloy steel forging. Petroleum ore plant machinery 2008. 29(5): 46-47 Corresponding author: Zhang Hongkui; Tel:86-21-26032481;E-mail:zhanghongkui@baosteel.com

412


采用横向锻造方法提高 H13 铝合金热挤压模具寿命 (中英文版,论文) 于爽、董绍国、张强(辽宁金钢重型锻造有限公司,中国) 白云鹏、李鹏伟(辽宁忠旺集团,中国) 摘要:H13 是美国牌号中碳高铬型热作模具钢,其中温性能好,应用十分广泛。由于 H13 原料价格昂贵, 模具加工周期长,对使用性能的要求高,因此,延长 H13 模具使用寿命,成为 H13 模具生产制造企业及 使用企业的重要研究课题。辽宁金钢重型锻造有限公司与辽宁忠旺集团的技术人员经过两年多的合作与 研究,对 H13 铝合金热挤压模具试验采用横向锻造方法,改变其纤维方向,并采用新的热处理工艺,实 践证明延长其使用寿命 1~1.5 倍。 热挤压模具的生产制造质量对实现挤压过程、提高产品质量及延长模具的服役寿命、降低成本等有 重要影响。在模具的生产制造流程中,锻造是获得要求的模具形状的重要步骤。通过锻造,并采用锻后 正回火及球化退火,可以有效地改善金属内部的组织结构及碳化物的分布和成分偏析等冶炼缺陷,为后 续的生产制造夯实必要的技术基础。同时,锻造过程中的参数易于操作和控制,所以,模具的毛坯锻造 及锻后热处理在整个模具生产制造过程中尤为重要。 本文着重介绍 H13 铝合金热挤压模具的毛坯锻造工艺。 H13 铝合金热挤压模具毛坯锻件的变形方法及变形程度的设计: 拔长与镦粗是该模具的主要变形方法。毛坯锻件通过拔长,可有效地改善碳化物的分布;通过镦粗, 可有效地减小纤维方向性,增加锻件横向机械性能。锻造时的变形程度(锻造比),直接影响锻件内部 碳化物的细化程度及分布情况。 随着镦拔次数的增加,碳化物的不均匀度级别逐渐降低。但当碳化物不均匀度级别降到一定程度时, 继续增加镦拔次数对它的影响就很小了。综合 H13 铝合金热挤压模具的工作情况及锻造毛坯所选用的原 料情况,合理设计变形方法及变形程度(锻造比),就可以满足模具的使用要求,延长其服役寿命。 模具毛坯锻件在设计锻造变形方法及变形程度(锻造比)时,应综合考虑以下条件: 1、模具的尺寸及形状复杂程度; 2、模具的工作部位(锻件的表层部分或中心部分); 3、模具的工作性能要求; 4、所选择的原材料、冶炼方法及交货状态。 试验前 H13 铝合金热挤压模具锻造工艺 我公司所采用的 H13 原料冶炼方式为电渣重熔钢锭,原料 的交货状态为锻制圆坯、退火。 1、变形设计: 采用坯料轴向镦拔方法,具体工序流程为 ①坯料轴向镦粗→②轴向拔长→③轴向镦粗→④锻件修整 成形。 图一小规格模具采用轴向镦拔工艺 2、锻造比设计: 正火+回火+球化退火处理后金相组织(检验 镦粗锻造比:二次镦粗锻造比均≥2 标准 NADCA207) 拔长锻造比:2.0~2.5 模具规格φ340,取样部位为模具心部 3、采用轴向镦拔锻造工艺后模具正火+回火+球化退火处 基体为退火珠光体组织 B2 级,腐蚀后 理后金相组织 500X

模具规格φ980,取样部位为模具心部

模具规格φ800,取样部位为模具心部

图二大规格模具采用轴向镦拔工艺,正火+回火+球化退火处理后金相组织(检验标准 NADCA207) 基体为退火珠光体组织 D3 级基体为退火珠光体组织 D1 级,腐蚀后 500X

413


试验后 H13 铝合金热挤压模具锻造工艺 1、变形设计: 采用横向锻造方法,具体工序流程为 坯料轴向镦粗→②改变纤维方向,横向拔长→③坯料轴向镦粗→④锻件修整成形 2、锻造比设计: 镦粗锻造比:第一次镦粗比≥2;第二次镦粗比≥2.5 拔长锻造比:2.5~3.5 图三小规格模具采用横向锻造工艺 正火+回火+球化退火处理后金相组织(检验标准 NADCA207)

模具规格φ340,取样部位为模具心部 基体为退火珠光体组织 A3 级 腐蚀后 500X 图四大规格模具采用横向锻造工艺 正火+回火+球化退火处理后金相组织(检验标准 NADCA207)

模具规格φ980,取样部位为模具心部 模具规格φ800,取样部位为模具心部 基体为退火珠光体组织 B1 级基体为退火珠光体组织 A2 级,腐蚀后 500X 3、采用横向锻造工艺与轴向镦拔工艺的机械性能对比 锻造工艺 模具规格 φ800 模具规格 φ800 模具规格 φ980

轴向镦粗 横向锻造 轴向镦粗 横向锻造 轴向镦粗 横向锻造

Rm(MPa) 520℃ 1145 1206 1120 1180 1010 1070

Rp0.2(MPa) 520℃ 1040 1098 1020 1067 920 988

A(%) 520℃ 5.0 8.0 4.5 5.5 8.0 10.0

Aku(J) 23℃ 9.0 12.5 7.0 8.0 7.0 7.0

HRC 23℃ 40.1 43.6 41 46.3 40 44

4、采用横向锻造工艺后模具正火+回火+球化退火处理后金相组织 采用轴向镦拔锻造工艺与横向锻造工艺对比 我们经过试验对比,小规格 H13 铝合金热挤压模具,采用横向锻造工艺与轴向锻造工艺,球化退后 的金相组织无明显差别。轴向镦拔锻造工艺同样能够细化毛坯内部碳化物,使其分布均匀,模具综合机 械性能良好,满足其工作要求。而且锻造时不需改变坯料纤维方向,易于操作,节省能源。但对于大规 格模具,由于其零件尺寸大,形状及工作受力复杂,采用的大坯料较小坯料冶炼缺陷多等情况,轴向镦 拔锻造工艺不能更好地满足其工作要求。

414


采用横向锻造工艺,有利于击碎坯料中心部分碳化物,使碳化物细小、分布均匀,有效地改善锻件 心部的组织结构及成分偏析,适合于大规格的利用中心部位工作的 H13 铝合金热挤压模具。由于改变纤 维方向锻造,消除了金属方向性,提高了模具的纵横性能的均匀性,锻件内部纤维流线分布符合铝合金 热挤压模具工作时的受力情况要求。 两年来,经用户的使用情况反馈,12500T 挤压机上的 071 规格模具(主要用于生产航空零件),采 用横向锻造工艺后,服役寿命至少延长 1~1.5 倍。 目前,我们正在对日本以及国内几大钢厂的 H13 材质的化学成分、淬回火后的金相组织、高温力学 性能及对模具服役寿命的影响进行对比实验,以下是一组 H13 原材料化学成分、模具锻后正回火+球化退 火后、淬回火后的显微组织对比,高温力学性能及模具服役寿命正在试验中。 模具毛坯规格:直径φ800 厚度 240 锻造工艺:横向锻造 取样部位:模具心部 表一化学成分对比 标准成分 GB/T1299 日本钢 KDA1M 齐钢 H13 宝钢 H13

C

Si

Mn

Cr

Mo

V

P

S ≤ 0.030

0.32~0.45

0.80~1.20

0.20~0.50

4.75~5.50

1.10~1.75

0.80~1.20

≤0.030

0.41

0.41

0.42

5.15

1.52

0.60

0.006

0.002

0.43 0.41

0.95 0.82

0.37 0.36

5.33 5.36

1.42 1.29

1.09 0.93

0.006 0.010

0.007 0.006

图五模具采用横向锻造工艺 正火+回火+球化退火处理后金相组织(检验标准 NADCA207)

日本钢 (检验标准 NADCA207) 齐钢(检验标准 NADCA207) 基体为退火珠光体组织 B1 级基体为退火珠光体组织 A2 级

齐钢 (检验标准 NADCA207) 基体为退火珠光体组织 B1 级 从原材料对比看,日本 H13 的化学成分与国内 H13 略有差别,原料的纯净度比国内要高,但通过 横向锻造工艺,从坯料的显微组织结构来看,没有太大差别。制定合适的锻造工艺及锻造比,并进行合 理的热处理工艺,就可以在一定程度上弥补冶炼技术工艺的不足。 采用横向锻造方法需要注意的事项: 1、由于横锻过程中改变纤维方向拔长时,坯料中心金属外流,如外流金属不能受到均匀的大变形, 模具毛坯 1/2 半径处容易出现环形碳化物级别不均匀现象,所以在第二次镦粗(最后一次变形工序)时, 必须有足够的锻造比。综合考虑坯料的高径比及模具的工作要求,第二次镦粗比在 3.0 左右较为适合.

415


2、锻造前,应先将上砧及下砧(或锤头及下砧)预热,防止第一次镦粗时坯料因棱角处冷却速度过 快而出现裂纹。 3、如果采用电渣重熔钢锭锻造时,需加大锻造比,并且至少需要两次垂直方向(即十字方向)改变 纤维方向横向锻造,才能有效击碎坯料心部碳化物。 淬火组织 晶粒度

日本 KDA1M

9.5

齐钢 H13

9.5

宝钢 H13

8.0 表二模具采用横向锻造工艺淬回火后的金相组织 4、在改变纤维方向横向拔长工序及最后一火镦粗工序中,必须严格控制锻件的终锻温度,坯料的每 次压下量、变形量及变形速度,否则在锻件端面圆周棱角处及外圆表面极易出现裂纹。 结束语 模具成形技术所具有的高效率、高一致性是其它成形工艺无法比拟的,高质量、高寿命模具是模具 成形技术的基础保证。目前,我国模具的制造水平和使用寿命与发达国家相比还有很大差距。主要原因 一是冶炼过程中有害元素的控制;二是锻造过程中细节的控制;三是锻后的预备热处理及最终热处理的 控制;四是模具服役过程中操作与维护的控制。要逐渐缩小差距,科学有效的方法是模具的生产制造企 业与使用企业应打破企业之间、行业之间局限性,通过相互联合,详细记录、跟踪模具的生产制造及使 用的各种数据并加以分析总结,通过相互交流,不断积累经验。模具生产制造企业应根据实际使用情况, 不断调整改进生产制造工艺;模具使用企业,要注意模具日常使用中的保养与维护,特别是模具定期进 行内应力消除等保护性措施,以满足模具工作要求,延长模具服役寿命,实现模具高精度,长期工作的 目标,逐渐缩短模具生产技术与发达国家之间的差距。

416


Extending Service Life Of H13 Hot Extrusion Dies For Aluminum Alloy By Transverse Forging Technology (Chinese & English version, Paper) ShuangYu, ShaoguoDong, QiangZhang (Jingang Forge Co., Ltd., China) YunpengBai, PengweiLi (China Zhongwang Holdings Limited, China) Abstract: With good mediumtemperature performance, US steel brand H13 is widely used as a high carbon and chromium hot-work die steel. Because of the high cost of H13 raw material, long processing cycle of the dies, high requirements of operational performance, therefore, it has been an important research subject to extend the service life of H13 die for both the die manufacturer and its user. Through the research and cooperation for more than two years, the technicians from Jingang Forge and Liaoning Zhongwang Group experimented transverse forging technology to forge H13 hot extrusion dies for aluminum alloy, and succeeded in extending its service life of 1 ~ 1.5 times by changing fiber direction and adopting new heat treatment process. The manufacturing quality of the hot extrusion dies is the key to achieve the extrusion process, improve product quality, extend the service life of the dies and reduce cost. And forging is an important step to achieve the required shapes in the whole manufacturing process of the dies. Through forging, normalizing, tempering and spheroidizing post forging, the internal metal organization structure and carbide distribution can be effectively improved, and the defect of chemical composition segregation generated in smelting can also be avoided, which lays a necessary foundation for the subsequent manufacturing process. Meanwhile, the parameters in forging process is easy to be operated and controlled, so the blank forging of the die and the heat treatment post forging is especially important in the whole production process of the dies. This paper mainly presents the blank forging technology of H13 hot extrusion dies for aluminum alloy. The design of deformation methods and deformation degree of H13 blank forgings of hot extrusion dies for aluminum alloy Drawing and upsetting process is the main methods of deformation. Carbide distribution can be effectively improved through drawing, and the fiber orientation can be effectively reduced through upsetting, thus to increase the forging mechanical properties in transverse direction. Deformation degree (forging ratio) has direct impact on the refinement and distribution of the internal carbide of the forging. Along with the increasing of the times of drawing and upsetting, the non-uniformity of carbide will be gradually reduced. There will be little influence to continue drawing and upsetting when the nonuniformity level of carbide is reduced to a certain degree. Comprehensively considered the working condition of H13 hot extrusion dies for aluminum alloy and the forging material, rational design of the deformation methods and deformation degree (forging ratio) can meet the operatingrequirements of the die and extend its service life. The following factors should be taken into consideration when designing the deformation method and deformation degree (forging ratio) of forging blank of the dies. 1. 2. 3. 4.

The size of the die and the complexity of the die shapes; The working area of the die (surface part or center part of the forging); The work performance requirements of the dies; The raw material, smelting method and delivery state;

The previous forging technology of H13 hot extrusion die for aluminum alloy The raw material we choose is H13 ESR ingot, delivery state to be forged round billet with annealing. 1.

Deformation design

Drawing and upsetting in the axial direction, the specific procedures include: (1) Upsetting in axial direction;

417


(2) Drawing in axial direction; (3) Upsetting in axial direction again; (4) Trimming into shape; 2. Forging ratio design Upsetting forging ratio ≥2 for both 2 times Drawing forging ratio: 2.0 ~ 2.5 3. The metallographic organization after normalizing, tempering and spheroidizing by axial drawing and upsetting forging technology. Image 1 Drawing and upsetting in axial direction for small size die metallographic organization after normalizing, tempering and spheroidizing (Test standard NADCA207)

Size of dieφ340mm,sampling location: die core Matrix: annealing pearlite organization level B2 After Corrosion 500 X Image 2 Drawing and upsetting in axial direction for large size die metallographic organization after normalizing, tempering and spheroidizing (Test standard NADCA207)

Size of dieφ980mm,sampling location: die core Size of dieφ800mm,sampling location: die core Matrix: annealing pearlite organization level D3Matrix: annealing pearlite organization level D1 After Corrosion 500 X The new experimental forging technology of H13 hot extrusion die for aluminum alloy 1.

Deformation design

Drawing and upsetting in transverse direction, the specific procedures include: (1) Upsetting in axial direction; (2) Drawing in transverse direction to change the fiber direction; (3) Upsetting in axial direction; (4) Trimming into shape; 2. Forging ratio design Upsetting forging ratio: Step 1 ≥ 2, Step 2 ≥ 2.5 Drawing forging ratio: 2.5 ~ 3.5 3. Comparison of mechanical properties Forging technology

Rm(MPa) 520℃

Rp0.2 ( MPa ) 520℃

418

A(%) 520℃

Aku(J) 23℃

HRC 23℃


Die Dia. φ340mm

Die Dia. φ800mm

Die Dia. φ980mm

Upsetting In axial direction Forge in transverse direction Upsetting In axial direction Forge in transverse direction Upsetting In axial direction Forge in transverse direction

1145

1040

5.0

9.0

40.1

1206

1098

8.0

12.5

43.6

1120

1020

4.5

7.0

41

1180

1067

5.5

8.0

46.3

1010

920

8.0

7.0

40

1070

988

10.0

7.0

44

4. The metallographic organization after normalizing, tempering and spheroidizing by transverse drawing and upsetting forging technology. Image 3 Drawing and upsetting in transverse direction for small size die metallographic organization after normalizing, tempering and spheroidizing (Test standard NADCA207)

Size of dieφ340mm,sampling location: die core Matrix: annealing pearlite organization level A3, After Corrosion 500 X Image 4 Drawing and upsetting in transverse direction for large size die metallographic organization after normalizing, tempering and spheroidizing (Test standard NADCA207)

Size of dieφ980mm,sampling location: die core Size of dieφ800mm,sampling location: die core Matrix: annealing pearlite organization level B1Matrix: annealing pearlite organization level A2 After Corrosion 500 X The Comparison of two kinds of forging technologies Experimental results show that there’s no obvious difference on the metallographic organization after spheroidizing between axial forging technology and transverse forging technology for small size H13 hot extrusion dies for aluminum alloy. Axial forging technology can also refine the internal carbide of the blank, make its distribution even, comprehensive mechanical properties of the die is also good, and meet requirements. And there’s no need to change the fiber direction during the process of blank forging, it’s easy to operate and save energy. But for large size die, the axial forging technology can't meet its working requirements well because of its large size, complexity of its shape and force, more smelting defects and etc. The transverse forging technology has helped to break the carbide in the center of the blank, make the carbide small, distributed evenly, improve the organization structure and composition segregation in the center of the forging effectively, and is suitable for large size H13 hot extrusion dies for aluminum alloy

419


with central areas stressed. The uniformity in both longitudinal and transverse direction are improved due to the change of fiber direction and elimination of metal direction. The internal fiber flow distribution inside the forgings is in accord with the working force requirements of hot extrusion dies for aluminum alloy. The feedback from the users over the past two years proved that the service life of spec 071 die of 12500 T extrusion machine (mainly for the production of aviation parts) is extended by at least 1 ~ 1.5 times by the transverse forging technology. At present, we are experimenting comparatively on the chemical analysis, metallographic structure after QT, mechanical performance in high temperature and the influence on the service life of the H13 material from Japan and several domestic big steel mill. Below is a comparison on H13 chemical analysis, microstructure after normalizing, QT and spheroidizing, the mechanical performance in high temperature and the influence on the service life is being tested now. Blank size:diaφ800mm thickness 240mm Forging technology:transverse forging Sampling location:die core Table 1 Composition on chemical analysis C

Si

Mn

Cr

Mo

V

P

S

Standard analysis GB/T1299

0.32~0.45

0.80~1.20

0.20~0.50

4.75~5.50

1.10~1.75

0.80~1.20

≤0.030

≤0.030

Japan steel KDA1M

0.41

0.41

0.42

5.15

1.52

0.60

0.006

0.002

0.43

0.95

0.37

5.33

1.42

1.09

0.006

0.007

0.41

0.82

0.36

5.36

1.29

0.93

0.010

0.006

Qi steel H13 Bao steel H13

Image 5 Transverse forging technology metallographic organization after normalizing, tempering and spheroidizing (Test standard NADCA207)

Japan steel(Test standard NADCA207) Qi steel (Test standard NADCA207) Matrix: annealing pearlite organization level B1Matrix: annealing pearlite organization level A2

Qi steel(Test standard NADCA207) Matrix: annealing pearlite organization level B1

420


Table 2 Metallographic structure of the die after QT by transverse forging technology Hardened Structure

GrainSize

Japan SteelKDA1M

9.5

Qi SteelH13

9.5

Bao SteelH13

8.0 Through the comparing of chemical composition, we find there is slight difference between H13 Japan steel and domestic steel, the purity degree of the Japanese steel is higher than the domestic one. But through transverse forging process, there isnâ&#x20AC;&#x2122;t not much difference on the microstructure of the blank. Proper forging process, forging ratio and reasonable heat treatment process can make up for the smelting deficiency to a certain extent. The matters need attention for transverse forging methods: 1. When drawing in transverse direction to change the fiber direction, there will be metal outflows in the center of the forging blank. If the inhomogeneous deformation occurred to the outflow metal, there will be annular uneven carbide in 1/2 radius of the die blank, so in the second upsetting (last deformation process), the forging ratio must be enough. By comprehensively consideration of the height-diameterratio of the blank and the working condition of the die, 3.0 is more suitable for the second upsetting ratio. 2. The upper anvil (or hammer head) and lower anvil should be pre-heated before forging to prevent cracking on the edgesandcorners due to the fast cooling in the first upsetting process. 3. If ESR ingot is used for forging, then the forging ratio need to be increased, and at least two times of transverse forging in vertical direction (Cross direction) are needed to change the fiber direction, in order to break the carbide in the center of the blank effectively. 4. In the transverse drawing process to change fiber direction and the last heating and upsetting process, final forging temperature, reduction, deformation degree and speed of deformation must be strictly controlled every time, otherwise, cracking is easily occurred in the circumference edges of end faces and the excircle surface of the forgings. Conclusion The high efficiency, high consistency of die forming technology is incomparable to other forming technology, high quality and high life is the basic guarantee of die forming technology. At present, compared with developed countries on the technique level and service life of the dies, we still have a long way to go. As for the reasons, the first is the control of harmful elements in the process of smelting; Second is the detail control in the process of forging; Third is the control of preliminary heat treatment and final heat treatment; And the Fourth is operation and maintenance in the working process of the dies. To gradually reduce the gap, one scientific and effective method for the manufacturer and user is to break the limitations between enterprises and industries, cooperate together to keep detailed records to track the manufacturing data and service data, analyze and summarize on the data, communicate mutually, and accumulate experiences constantly. The die manufacturer should adjust and improve their manufacturing process according to their actual applying; The user must pay attention to the die maintenance in the daily use, especially carry out protective measures such as regular internal stress relieved, in order to meet the working requirements of the dies, extend their service life, keep their high precision and long-term working, and gradually bridge the gap in die manufacturing technology with developed countries.

421


40CrNi2Si2MoVA(300M)钢自由锻工艺研究 (中英文版,论文) 卢艳,崔一平,夏欲民,郑永灵,刘成 (贵州安大航空锻造有限责任公司,中国) 摘要:为了避免40CrNi2Si2MoVA(300M)钢自由锻件出现低倍粗晶,并使其获得优良的综合机械性能, 对该材料锻造技术难点进行充分调研后开展了自由锻工艺研究。根据40CrNi2Si2MoVA(300M)钢不同 棒料规格选择是否增加镦拔工序以加大变形量,并在锻造成形过程中作了如下控制:控制锻造火次及各 火次变形量(尽量减少锻造火次,每火变形量按≥35%控制);控制锻造加热温度,尽量避免坯料在高 温下空烧不变形,当空烧不可避免时降低加热温度;控制锻后冷却方式;合理选择预备热处理工艺参数 等。通过工艺试验及批生产验证,自由锻件未出现低倍粗晶,各项性能指标均符合技术要求。 关键词:镦拔火次变形量空烧加热温度预备热处理 1 引言 40CrNi2Si2MoVA(以下简称300M)钢性能优良,有很高的拉伸强度,较高的综合机械性能,优良 的疲劳性能,是目前国际上应用较广的起落架用钢,也是当前世界上强度最高、综合性能最好,有着良 好的发展前景和可观的经济效益。因该材料不推荐焊接以避免焊缝过渡弱区,均采用整体锻件,故锻件 尺寸较大,有的锻件形状复杂,且该材料有较明显的过热敏感[1]。 通过锻造工艺试验及批生产考核验证,研究不同规格原材料棒料生产锻件的锻造及锻后预备热处理 工艺。 2 原材料状况 2.1 产地 抚钢 2.2 冶炼方法 真空感应加真空自耗。 3 锻造技术特点 根据调研结果并查阅有关资料[2],300M钢技术特点主要表现在以下几个方面: (1)原材料从钢锭——棒材——锻件的锻比一般要达到8~12。 (2)锻造每火变形量应≥35%,避免空烧引起粗晶(晶粒长大)。 (3) 300M钢锻件锻后缓冷,具体要求可在保温箱、保温坑、砂坑、石灰槽中进行,缓冷至150℃以下 出箱空冷。 4 试制方案 鉴于抚钢供货状态的棒材都经过了镦拔,Ф250以下(包括Ф250)规格的棒料组织比较均匀(主要 从低倍及晶粒度来进行评价)细小,锻造时若变形量达到35%以上则不必再进行改锻,Ф250以上规格的 棒料锻造成形前需进行镦拔(镦拔变形量应≥50%)。锻件成形过程中严格控制变形量:难度较大的异型件 合理分配每一火的变形量,个别尺寸有问题时可降低加热温度进行修整。为保证锻件质量,防止出现粗 晶,应避免空烧或小变形,锻造时尽量减少火次。对于采用大规格棒料(Φ>250mm)成形的锻件,镦拔 后成形时应保证最小变形量≥35%,并尽量一火完成。一火完成可避免锻件局部高温空烧和后续锻造变 形量不足。如不能一火完成,需增加火次时,后续火次加热温度应适当降低(如1000±20℃)。表1为从 不同变形量的锻件上切取小试块进行空烧试验晶粒度结果,试验结果表明,在920℃、950℃、980℃空烧 后,晶粒度由8级降为7级,但在1120℃空烧后,晶粒度由8级降为6.5级,在1160℃空烧后,晶粒度由8 级降为6级。因此选1000℃进行加热,保证在锻件小变形及整形时有约150℃的温度范围(终锻温度不小 于850℃)。锻后缓冷操作根据生产现场具体情况,可置于余热在400℃~600℃的炉子内,随炉冷却至 150℃以下出炉空冷。 表1 不同变形量的锻件取样空烧后晶粒度[3] 锻件原始情况

920℃

950℃

980℃

1120℃

1160℃

变形量54%、晶粒度8级

7级

7级

7级

6.5级

6~5.5级

变形量28%、晶粒度8级

7级

7级

7级

6.5级

6级

422


5 锻件研制情况 5.1 锻造成形 加热设备、锻造工序及锻造设备见表 2,锻件采用天然气炉加热,锻造加热温度:第一火为 1160℃, 后续火次加热温度根据变形情况降低至 1000℃。 表2 锻造工序及设备 序号 材料规格 锻造工序 锻造设备 1 Ф200 拔长→成形 3吨锤 2 Ф250 一镦一拔(补足变形量)→成形 12.5MN水压机、3吨锤 3 Ф300 改锻→成形 12.5MN水压机、3吨锤 4 Ф350 两镦两拔→成形 12.5MN水压机 第一火终锻温度≥850℃,后续火次终锻温度≥900℃,锻后缓冷(置于余热在 400℃~600℃的炉 子内,随炉冷却至 150℃以下出炉空冷) 。 5.2 锻件预备热处理 预备热处理制度为:正火:925℃,空冷;回火:720℃,空冷。 5.3 硬度检查 锻件经预备热处理后硬度 HBS=192~269。 5.4 低倍组织 未出现低倍粗晶,也未见其它缺陷。 5.5 力学性能 在供应状态(正火+回火)下切取试样,试样经最终热处理(淬火(870±15)℃×1h,油冷;回火 (300±5)℃×2h,空冷;回火(300±5℃)×2h,空冷)后进行理化测试,典型件结果见表 3。 表 3 300M 钢锻件纵向力学性能 б0.2 Ψ Ak бb δ5 序号 原材料规格 (MPa) (MPa) (%) (%) (J) 1 1970 1680 13.5 57 75 Ф200 1970 1680 13.0 57 80 2 1980 1770 11 59 70 Ф250 1960 1740 13 57 65 3 2000 1710 11 54 66 Ф300 1990 1730 11 54 72 4 2070 1810 12 50 59 Ф350 2030 1790 12 51 51 技术要求

≥1860

≥1515

≥8

≥30

≥39

6 分析与讨论 在锻造过程中,尺寸较大、形状复杂的锻件通过增加工艺余量后,锻件尺寸得以保证,锻件各项技 术指标均符合 GJB 5061 的要求,重要的是锻造过程控制得当,未出现粗晶情况,锻件整体质量达到预 期要求,因此从以下几方面进行控制,可保证锻件质量: (1)锻造:第一火加热温度:1160℃,终锻温度≥850℃,后续火次加热温度可视情况适当降低至 1000℃,终锻温度≥900℃。锻后缓冷(置于余热在400℃~600℃的炉子内,随炉冷却至150℃以下出 炉空冷)。 (2)预备热处理 正火:925℃,空冷;回火:720℃,空冷。 7 结论 40CrNi2Si2MoVA(300M)钢自由锻件的锻造工艺,重点在于控制锻造火次(避免高温下空烧)、 变形量(每火≥35%)、锻造加热温度(小变形或不变形时适当降低)、锻后冷却(缓冷)及合理选择 热处理工艺参数等方面,在这几方面加强控制,可防止锻件出现粗晶现象并获得良好的综合机械性能。 参考文献 [1]第六二一研究所.300M 钢制锻件标准,1992 年 5 月。 [2]《中国航空材料手册》编辑委员会.中国航空材料手册, 2002 年 1 月。 [3]40CrNi2Si2MoVA 钢锻造加热工艺参数优化研究,第五届泛珠三角塑性工程(锻压)学术年会论文集, 2010 年 8 月。

423


Technical Study on Free Forging of 40CrNi2Si2MoVA (300M) (Chinese & English version, Paper) YanLu, Yiping Cui, YuminXia, YonglingZheng, ChengLiu (Guizhou Anda Aviation Forging Co., Ltd., China) Abstract: In order to avoid occurrence of coarse grains on macrostructure of the free forgings of steel 40CrNi2Si2MoVA (300M), and achieve excellent integrated mechanical properties, we initiated the technical study after carrying out investigations and researches on the technical difficulties of forging this material. We made the choice whether to add the processes of upsetting and drawing for the purpose of increasing amount of deformation base on sizes of the bars of steel 40CrNi2Si2MoVA (300M), and carried out the following control during the process of forming by forging: controlling of the heating number for forging, and amount of deformation by each heating (minimize the heating number for forging, and control amount of deformation of each heating that not less than 35%.); controlling of the heating temperature for forging, to avoid deformation of the billet when heating without deformation in a high temperature, in the case that heating without deformation is inevitable, decrease the heating temperature; controlling the cooling method after forging; reasonable choices of the technological parameters of the preparation heat treatment etc. The technology tests and batch production verifications demonstrated that there were no coarse grains that occurred on the macrostructure of the free forgings, each performance index was in line with the technical requirements. Keywords: upsetting and drawing; number of heating; amount of deformation; heating without deformation; heating temperature; preparation heat treatment 1 Introduce 40CrNi2Si2MoVA (“300M” for short hereinafter) is of excellent properties of steel, and very high tensile strength, higher integrated mechanical properties, excellent fatigue properties, it is steel that being more widely used for undercarriage in international at present, of which own the highest strength and best integrated properties in the worldwide nowadays, and the development prospect is good and the economic benefits is considerable. Because welding of this material is not recommended so as to avoid the discontinuity of the weld zone, solid forging is applied, and this results in forgings of larger size, and some of which are of complex shape, such material has more obviously liable to overheating [1]. The study on manufacturing of production forgings that made of different sizes of bars was carried out through the forging technology tests and batch production verification. 2 Background of Raw Material 2.1 Place of Origin Fushun Mill. 2.2 Melting Process Vacuum Induction plus consumable electrode melting. 3 Technical Characteristics of Forging According to the results of investigations and references to related data[2] , the technical characteristics of the steel 300M are mainly represented in the following aspects: (1) Forging ratio of raw material from ingots to bars and to forgings is generally required to reach 8 to 12. (2) Amount of deformation by each heating for forging shall be ≥35%, to avoid coarse grains (grain growth) caused by heating without deformation. (3) Slow cooling after forging of the steel forging 300M, and this process can be carried out in the insulation can, insulation pit, sand pit or liming tank according to the specific requirements. Then discharge for air cooling when the temperature by slow cooling reaches below 150℃. 4. Trial-manufacture Program In view of the condition of the bars supplied by Fushun are upset and drawn, the structures of bars of the size not more than Ф 250 are relatively uniform (the evaluation is mainly carried out on the macrostructure and the grain size) and fine, if the deformation amount reaches more than 35% when 424


forging, there is no need to carry out upsetting and drawing again. For the bars of size more than Ф 250, the upsetting and drawing (deformation amount of upsetting and drawing shall be ≥50%) is necessary prior to forging for forming. Strictly control the deformation amount during the process of forging for forming: for the profiled pieces of relatively higher difficulty, the deformation amount of each heating shall be distributed appropriately, and the heating temperature could be decreased for trmming when there is something wrong with individual size. In order to ensure the quality of forgings, and prevent from occurrence of the coarse grains, heating without deformation or small deformation shall be avoided, and the number of heating shall be minimized during forging. For forgings that formed by bars of large size (Φ>250mm), the minimum deformation amount when being formed after upsetting and drawing shall be ensured ≥35%, and the number of heating shall be one as can as possible, only heating once can avoid local high temperature heating without deformation of the forgings and insufficient deformation amount of the subsequent forging. If it is impossible, and there is a need to add the number of heating, the heating temperature of the subsequent heating shall be reduced appropriately (e.g. 1000±20℃). Table 1 shows the results of the grain sizes gained from the heating without deformation test, which was carried out on small test blocks taken from the forgings of different deformation amount, and the test results show that after being heated without deformation under 920℃, 950℃, 980℃, the grain size decreased from 8 to 7, while after being heated without deformation under 1120℃, the grain size decreased from 8 to 6.5, and after being heated without deformation under 1160℃the grain size decreased from 8 to 6. Thus, when 1000℃ is selected for heating, while the small deformation amount forgings and trimming is ensured, it is allowed for a temperature range about 150℃ (the final forging temperature is not less than 850℃). The operation of slow cooling after forging could be done in a furnace with the excess heat from 400℃ to 600℃, and cooled in the furnace to 150℃ below, then followed by discharging for air cooling, in accordance with the specific situation on the production site. Table 1- Grain sizes after being heated without deformation of samples taken from forgings of different deformation amount Original Condition of Forgings Deformarion Amount 54%, Grain Size 8 Deformarion Amount 28%, Grain Size 8

920℃ 7 7

950℃ 7 7

980℃ 7 7

1120℃ 6.5 6.5

1160℃ 6~5.5 6

5 Situations of Trial-manufacture of Forgings 5.1 Forging for forming Heating equipments, forging processes and forging equipments see Table 2. The nature gas furnace is applied for forgings, and the heating temperature for forging is: the first heating is 1160℃, and the subsequent heating temperature decrease to 1000℃ according to the condition of deformation. Table 2 – Forging Processes and Equipments

1

Material Size Ф200

2

Ф250

3

Ф300

4

Ф350

S/N

Forging Process

Forging Equipment

Drawing in length→forming

3T Hammer

upsetting and drawing separately once(make the deformation amount sufficient)→forming upsetting and drawing→forming upsetting and drawing separately once twice→forming

12.5MN Water Press, 3T Hammer 12.5MN Water Press, 3T Hammer 12.5MN Water Press

The final forging temperature of the first heating is ≥850℃, and the final forging temperature of the subsequent heating is ≥900℃, and slow cool after forging (done in a furnace with the excess heat from 400℃ to 600℃, and cooled in the furnace to 150℃ below, then followed by discharging for air cooling). 5.2 Preparation Heat Treatment of Forgings System of preparation heat treatment: normalization: 925℃, air cooling: tempering: 720℃, air cooling. 5.3 Hardness Check Hardness of forging after preparation heat treatment: HBS=192 to 269. 5.4 Macrostructure

425


No coarse grains occurred on the macrostructure and no other defects as well. 5.5 Mechanical Properties Cut off specimens of the condition of supply (normalized and tempered), and carried out the physicochemical testing after the final heat treatment of specimens (quenching (870±15)℃×1h, oil cooling; tempering (300±5)℃×2h, air cooling). The results of typical pieces see Table3. Table 3 Longitudinal Mechanical Properties of Forgings of steel 300M

1

Material Size Ф200

2

Ф250

3

Ф300

4

Ф350

S/N

Technical Requirements

бb(MPa)

б0.2(MPa)

δ5(%)

Ψ(%)

Ak(J)

1970 1970 1980 1960 2000 1990 2070 2030

1680 1680 1770 1740 1710 1730 1810 1790

13.5 13.0 11 13 11 11 12 12

57 57 59 57 54 54 50 51

75 80 70 65 66 72 59 51

≥1860

≥1515

≥8

≥30

≥39

6 Analysis and Discussions During the process of forging, the size of forgings of larger size and complex shape can be ensured through adding technological allowance, each technical index of the forging met the requirements of GJB 5061, and one important thing is that the forging process was controlled properly, when there was no situation of coarse grain occurred, the whole quality of the forging reached the anticipated requirements, thus carry out control base on the following aspects can ensure the forging quality: (1) forging: the first heating temperature: 1160℃, the final temperature is ≥850℃, the heating temperature of the subsequent heating could be reduced to 1000 ℃, according to the situation, and the final forging temperature is ≥900℃. slow cool after forging (done in a furnace with the excess heat from 400℃ to 600℃, and cooled in the furnace to 150℃ below, then followed by discharging for air cooling). (2) Preparation Heat Treatment Normalizing: 925℃, air cooling; tempering: 720℃, air cooling. 7 Conclusions The key points of the forging technology of the free forging forgings of steel 40CrNi2Si2MoVA(300M) are as the following: controlling of the number of heating for forging (avoid heating without deformation in high temperature), deformation amount (each heating ≥35%), heating temperature for forging (it could be reduced when there is small deformation or no deformation), cooling after forging (slow forging) and reasonable selection of the technological parameters of heat treatment and other aspects, enhance controlling of all these aspects mentioned above can prevent from occurrence of coarse grains and obtain excellent integrated mechanical properties. Referenced Documents [1] Criteria for 300M Steel Forgings, No.621 Research Institute, 1992, 5. [2] China Aeronautical Materials Handbook, Editorial Committee of China Aeronautical Materials Handbook, 2002, 1. [3] Research on Technological Parameters Optimization of Heat Treatment for Forging of 40CrNi2Si2MoVA Steel, Thesis Compilation of The 5th Pan-Pearl River Delta (Pan-PRD)Plasticity Engineering (Forging and Press) Academic Annual Conference, 2010, 8.

426


其他论文 Other Paper

427


Q345E 大圆坯的生产工艺研究 (中英文版,论文) 陈宏豫尹修刚 (承德建龙特殊钢有限公司,中国) 摘要:承德建龙特殊钢有限公司引进 DANILI 的 14 米弧半径,五机五流大圆坯连铸机于 2011 年 2 月投 产,与大圆坯连铸机配套的是 2 座 65 吨氧气顶吹转炉-钢包精炼炉-真空精炼炉,可生产铸坯断面为∮ 280-600mm,1 年来累计为无缝钢管厂和锻造厂生产圆坯 70 万余吨,30 余个钢种。其中包括锻造用 CL60、42CrMo、460C、Q345E 等钢种。 根据市场需求,在反复论证、认真准备的基础上,共计生产了 4000 余吨 Q345E 大圆坯。在 Q345E 的生产过程中精心操作,认真管控,使钢水温度和成分得到精细控制,铸坯质量完好,经某厂锻造的成 的风电法兰锻件质量稳定良好,经检测达到质量要求,尤其低温冲击方面,-50℃,AKv 稳定达到 80J 以上。 关键词:大圆坯连铸机 65 吨氧气顶吹转炉 Q345E 风电法兰锻件 1.前言 Q345E钢是一种综合力学性能、焊接性能、低温韧性、冷冲压及切削加工性能均较好的低合金高强 度结构钢,多用于船舶、车辆、大型容器、大型钢结构等行业。在同等的强度要求下,Q345E钢零件的 【 】 危险尺寸较小,故一般比使用碳钢材料节约钢材20%~30% 1 。 承德建龙特殊钢有限公司引进DANILI的14米弧半径、五机五流大圆坯连铸机于2011年2月投产,与 大圆坯连铸机配套的是1座提钒转炉-2座65吨氧气顶吹转炉-钢包精炼炉-真空精炼炉,可生产铸坯断面为 ∮280-600mm,1年来累计为无缝钢管厂和锻造厂生产圆坯70万余吨,30余个钢种,其中包括锻造用 CL60、42CrMo、460C、Q345E等钢种。 本文介绍我司根据市场需求,在反复论证、认真准备的基础上,生产Q345E大圆坯情况,共计了 4000余吨。在Q345E的生产过程中精心操作,认真管控,使钢水温度和成分得到精细控制,铸坯质量完 好,经某厂锻造成的风电法兰锻件质量稳定良好,经检测达到质量要求,尤其低温冲击方面,-50℃AKv稳 定达到80J以上。 2.工艺流程和技术要求 本次生产铸坯断面为∮600mm 的 Q345E 圆坯主要应用于锻造风电立柱法兰。要求对低温冲击性能 要求很高,因此对铸坯的表面和内部质量有严格的要求,对最终成分也有严格的窄成分限制,控制难度 较大。为了达到 Q345E 钢锻件的综合力学性能要求,本文进行了一系列试验摸索,取得了预期的效果。 2.1 工艺流程 Q345E大圆坯生产工艺流程如下:铁水预处理-提钒转炉-转炉半钢冶炼-LF炉精炼-VD真空精炼炉真 空处理-圆坯连铸-连铸坯检查清理-质量检验-合格入库。 【 】 根据文献报到的Q345E的缺陷 2 ,为改善连铸坯质量,试验钢在冶炼过程中主要采取转炉脱磷脱硫、 LF炉造白渣深脱硫和VD炉真空精炼脱气等措施;在连铸过程中,通过低过热度保护浇注和低速浇铸等工 艺确保钢水洁净度,有效减轻连铸坯内部缺陷。 2.2 技术要求 现行的 GB/Tl591-l994《低合金高强度结标准中 Q345E 的力学性能和化学成分分别见表 1、2、3。 表 1 钢的牌号及化学成分 wt% Ni C Si Mn P S Cr Ti Al V Cu 钢种 0.14~ ≤ 1.10~ ≤ ≤ ≤ ≤ 0.015~ ≤ 0.030~ ≤ Q345E 0.50 0.18 0.50 1.45 0.013 0.005 0.30 0.20 0.035 0.15 0.10 A、钢气要求:H≤2ppm;O≤30ppm;N≤100ppm B、碳当量 CEV=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15≤0.43(min:0.35) 表2 法兰力学性能表 最小屈服强度 YS(Mpa) 抗拉强度 TS (Mpa) 产品厚度δ(mm) 产品厚度δ(mm) 牌号 >50 >100 >150 >3 >100 >150 ≤100 ≤150 ≤200 ≤100 ≤150 Q345E 345 295 285 490~630 470~630 450~630

428

最小延伸率% 产品厚度δ(mm) >60 >150 ≤150 ≤250 20 18


表3 法兰的冲击性能表 牌号 冲击试验温度,℃ 冲击功(切向,三个试样平均值,不小于),J Q345E -50 50 Q345E钢属于低碳合金钢,符合GB/T1591—1994《低合金高强度结构钢》,其母材金相为带状分 布的铁素体+珠光体,它是在16Mn合金钢系列的基础上增加了一些微量合金元素,并且严格控制P及s元 素,以提高其低温度冲击性能。Q345E钢在保证拉伸性能的基础上,侧重改善钢材的冲击韧性;为防止 低温环境下结构脆断,增加了钒、铌等细化晶粒的微量元素,Q345E钢及16Mn钢的化学成分见表1,力 学性能见表2,冲击性能要求见表3。 按照GB/T 1591-2008的规定,Q345E钢锻件的力学性能要求为:屈服强度R />265 MPa,抗拉强 度450 MPa≤R ≤600 MPa,锻后伸长率A≥18%,Ak 2(一40℃)i>27 J。 产品外形尺寸需求见表 4、5。 表 4 圆坯的尺寸公差表

表5 圆坯的不圆度表

3 生产工艺设计 【 】【 】【 】【 】 根据兄弟厂的生产经验 3 4 5 6 ,试验严格控制成分和操作工艺力争一次满足客户需求。 3.1化学成分设计 试验钢添加铌、钒等微合金元素,主要以碳和锰作为强化元素,通过严格控制磷和硫等有害元素改 善内部质量、各向异性。 3.1.1碳 碳几乎对钢材的所有性能都有影响。随着碳含量的增加,钢的屈服强度和抗拉强度均显著提高。但 碳含量过高会导致钢的塑性和韧性下降,同时影响钢的焊接性能。为获得良好的焊接性能和优良的综合 力学性能,结合标准中对碳含量的要求,将其控制在0.14%-0.17%较为适宜。 3.1.2锰 在冶炼过程中,锰可脱氧和降低硫的有害作用;在轧制过程中,锰能降低奥氏体转变温度,从而细 化铁素体晶粒,有利于提高钢板的强度和韧性。因此,在成分设计时,锰应控制在接近标准上限,实际 冶炼过程中连铸坯锰含量应控制在1.3%-1.5%。 3.1.3硫和磷 硫和磷在低合金钢中被认为是有害元素。磷主要影响钢的塑性,硫影响钢的冲击韧性和韧-脆转变温 度。因此,需将硫和磷含量分别控制在0.005%,0.013%以下。通过严格控制铁水中的硫和磷含量、 对铁水进行扒渣处理、转炉冶炼过程中采取下渣检测、挡渣出钢和LF炉深脱硫等工艺控制有害元素含量。 同时,通过VD炉真空处理后使用Si-Ca线进行夹杂物变质处理,通过控制软吹流量和软吹时间促进夹杂物 上浮,从而降低夹杂物含量。 3.1.4钒 钒在钢中主要起的作用:细化组织晶粒,提高晶粒粗化温度,从而降低钢的过热敏感性,并提高钢 的强度和韧性,增加回火稳定性,并产生二次硬化效应。对中、低碳含量的钢,无论在退火、正火或调质 状态,钒除提高钢的强度,特别是屈服点和屈强比以外,还改善钢的塑性和韧性。由于材料晶粒的细化, 所以细化后材料的晶粒度等级大大提高,晶界的比重加大,同时钢的强度增加,材料对裂纹的敏感性大

429


大降低。当V含量低于0.035%时,材料的低温性能及强度,很难稳定地达到风电法兰用钢的要求,当V含 量高于0.060%不仅材料的成本提高,而且容易在铁素体内产生次生的另类组织,反而降低材料的低温冲 击性能,所以V含量确定为:0.035-0.060%。 3.1.5 夹杂物控制 在炼钢工序夹杂物控制理沦研究较为成熟,目前夹杂物含量主要取决于设备水平和工艺控制水平, 基于现状进行了工艺微调及开发新的控制技术。①做好一次脱氧工作,采用铝脱氧,便于上浮去除;②做 好钢水的脱P、S工作,提高钢水的洁净度;③做好软吹工作,控制好软吹的强度,软吹是一个去除夹杂 物及均匀钢水的成分的重要过程,但是如果软吹强度过大,会造成钢水的二次氧化,从而增加钢中的夹 杂物含量;④做好钢水的保护工作,避免钢水的二次污染;⑤控制好结晶器的液位,避免较大的波动造 成结晶器卷渣。 3.2 工艺流程设计 3.2.1优化脱氧制度 在转炉冶炼终点操作中,炉内钢液中碳含量、氧活度、温度存在一个统计关系,采用多元回归分析, 得到转炉终点氧含量预报模型。在铁水成分和冶炼制度一定的条件下,要准确控制转炉终点[O],必须准 确控制好以下参数:①控制[C]含量命中率90.10%;②控制终点温度在1620~1670℃;③渣中 (FeO+MnO)14%~18%;④提高转炉终点碳和温度的命中率,杜绝后吹。通过准确预报,采取合理脱氧 制度,实现深度脱氧,保证合理氧含量。 3.2.2转炉出钢滑板挡渣及预熔合成渣渣洗 转炉滑板挡渣工艺在承德建龙特殊钢有限公司早已推广。它的应用可确保转炉渣下到钢包中的渣厚 度<50mm,为提高钢水质量和合金收得率创造了条件。 为了确保钢中P含量低于0.013%,又采用了转炉留钢出钢。 开发转炉出钢预熔合成渣渣洗工艺,在转炉放钢前和出钢中,将所有预熔合成渣加入到钢包中,在 放钢过程中预熔合成渣对钢水进行渣洗,并快速形成顶渣,并视过程渣情况配加钢芯铝和脱氧剂和合金。 钢水经合成渣洗后,脱氧产物进一步降低。同时渣系也发生较大变化,提高了精炼渣碱度,为精炼造白 渣脱硫创造了有利的热力学和动力学条件,同时配以镁碳砖综合砌筑钢包,有效降低了钢中夹杂物含量。 3.2.3生产过程系统施实低温控制 炼钢厂在稳定工艺操作的基础上,实施各工序低温运行,采取优化转炉出钢口材质及尺寸、钢包保 温及在线烘烤、耐火纤维在包盖系统上的研究应用、合金在线高温烘烤、钢包红净出钢、连铸系统保温 等技术,实现了转炉炼钢系统温度控制的低温均衡可控有效,将连铸机中间包温度稳定在液相线上1020oC,降低了钢水氧化性,有效减少钢水中夹杂物含量。 3.2.4稳态生产 制定标准化操作指导书,落实转炉“恒容恒热”装入制度和标准化操作模式;建立连铸机“恒拉 速”、“恒温度”、“恒液面”。从而提高了各工序的配合意识,有效提高了铸坯质量。 3.2.5 连铸机全程保护浇铸和电磁搅拌 为了保证减少真空精炼过的钢水二次氧化,连铸过程全程采用大包加盖及长水口保护、中间包液面 保护渣及吹氩保护等措施,使过程增氮≤10ppm。 为了得到良好的铸坯组织,采用了结晶器和二冷末端电磁搅拌技术。 4 试验结果(质量检验)及分析 在某环锻厂进行锻造风电法兰,连铸坯的尺寸为∮600mm,风电法兰的尺寸为 3200 mm×2900 mm×150 mm,法兰采用正火+回火工艺。力学性能检验和显微组织分析结果表明,此次试验生产的 Q345E 各项性能均达到了标准要求,一次性试验成功。 4.1 圆坯表面质量 Q345E 圆坯产品经检验表面光滑质量良好,无渣坑(沟)、结疤、划痕等缺陷,切口整齐。 4.2 化学成分 Q345E钢的实测化学成分如表6所示,均精确控制在设计的成分范围内。 表 6 Q345E 钢的实测化学成分 C

Si

Mn

P

S

Cr

Ni

Cu

Ti

V

AL

N

O

CEV

H

0.140.17

0.200.30

1.281.38

≤ 0.011

≤ 0.005

0.040.06

0.050.06

0.020.03

≤ 0.003

0.0320.045

0.0150.030

≤95

≤15

0.42

≤ 1.3

注:其中 O、N、H 的单位为 ppm。 4.3 Q345E 圆坯的内部质量 经检验,Q345E 圆坯的内部质量良好,中心缩孔≤0.5 级,中心疏松≤1.0 级,无中心裂纹和皮下裂 纹。 430


4.4 力学性能 4.4.1 拉伸试验 Q345E 制造的法兰拉伸试验结果如表 7 所示。 表 7 Q345E 制造的法兰拉伸试验表 最小屈服强度 YS(Mpa) 抗拉强度 TS (Mpa) 产品厚度δ(mm) 产品厚度δ(mm) 牌号 >50 >100 >150 >3 >100 >150 ≤ ≤150 ≤200 ≤100 ≤150 100 Q345E 450~6 345 295 285 490~630 470~630 30 标准 370 530 实际检 验值

最小延伸率% 产品厚度δ(mm) >60 ≤150 20 28

385

545

30.5

365

535

285.5

380

540

28

385

540

29

380 535 4.4.2 Q345E 制造的法兰切向低温冲击性能(-50℃,AKv,J) Q345E 制造的法兰切向低温冲击性能如表 8 所示。 表 8 Q345E 制造的法兰切向低温冲击性能表 1 2 3 平均 120 110 112 114 90 110 100 100 112 119 105 112 80 110 116 102 99 105 111 105 96 98 113 102.3 4.5Q345E 制造的法兰显微组织 Q345E 法兰所作的显微组织图如图 1。

图1

Q345E 风电法兰显微组织图

4.6 Q345E 制造的法兰探伤结果 Q345E 圆坯锻造法兰的探伤检验结果如图 2 所示。

431

28

>150 ≤250 18


图 2 Q345E 锻造法兰探伤结果 4.7 结果分析 从 Q345E 圆坯生产到制造成法兰的全过程数据材料的分析结果看,各项指标均符合客户的要求。 5 结论 (1)承德建龙特殊钢有限公司的大圆坯连铸生产线具有生产锻造用高强度结构钢的能力。 (2)Q345E钢锻件的综合力学性能特别是低温冲击韧度要求偏高,需要通过一系列较为严格的过程 控制(包括材质、冶炼、锻造、热处理等工序)以保证产品合格。 (3)Q345E钢锻件可通过雾冷正火来最大限度发挥材料的潜力,达到较高的综合力学性能,正火温度 为(890±10)℃,加回火。 参考文献: 【1】陈立奇,段世浩.Q345E 钢锻件的力学性能研究.热处理, 2011,26(2):39-42. 【2】赵华,时义祥,宋锐,贺秀丽. Q345E 探伤不合的原因分析与研究. 科技信息, 2010,21:30. 【3】齐建军,李绍杰,赵春风. 微合金元素对 Q345E 棒材低温韧性的影响. 材料热处理技术, 2009,5:8083. 【4】李少杰,王国营,樊一丁,齐建军.Q345E 棒材低温冲击功的研究.河北冶金,2011,5:23-27. 【5】顾林豪,隋鹤龙,王彦锋,吴斌,姜中行,麻庆申,王根矶. Q345E 厚板低温冲击韧性不合格的原 因分析与改进措施.首钢科技,2009,:3:15-17. 【6】王建锋,邓深,饶江平,李光强,张峰. 钛微合金化 Q345E 钢的试验研究. 钢铁钒钛, 2010,4:20-25. 作者介绍: 陈宏豫,钢铁冶金专业博士(后),教授级高工,电子邮件:chenhongyu@ejianlong.com; 尹修刚,压力加工专业,品种开发工程师,电子邮件:yinxiugang@ejianlong.com; 单位:承德建龙特殊钢有限公司 地址:河北省承德市兴隆县平安堡镇 067201 电话:0314-5316865 传真:0314-5316417

432


Study about Production of Q345E Circle Billet (Chinese & English version, Paper) HongYuChen, XiuGangYin (Chengde Jianlong Specil Steel Co.,Ltd., China) Abstract:The circle billet caster is introduced by Chengde Jianlong Special Steel Co., LTD from DANILI.

The caster is 14 m arc radius and five flows and put into production In January 2011.It is form a complete is 2×65tLD-LF-VD.The circle billet section is from ∮280mm to 600mm.Its productions for Seamless steel tube mill ang Forge plant has been more than 700000 tons, more than 30 kinds for 1 year. And the productions Includ forging with CL60、42CrMo、460C、Q345E, etc. According to the market demand, in 1 year, more than 4000 tons Q345E circle billet has be produced. And for this a lot of works has been done in repeated proofs and careful preparations. In the Q345E production process,the molten steel temperature and componentsget fine control, and Q345E circle billet quality is good. The Q345E circle billet has been forged intowind power flange by a factory. And the wind power flange forgingquality is good and achieves the quality requirements. in low-temperature impact,-50 ℃, AKv is stability to 80 J above especially. Key words: the great circle billet caster 65 tons LD Q345E wind power flange forging

1. Foreword The Q345E is a good with low-alloy steels and its comprehensive mechanical performance, the welding performance, low temperature toughness, cold stamping and cutting processing function are good. It is used in more for ships and cars, large containers, large steel structure, etc. In the same strength requirement, the risk of Q345E steel parts size is small. In general, use it can save steel 20% ~ 30% than carbon steel material. The circle billet caster is introduced by Chengde Jianlong Special Steel Co., LTD from DANILI. The caster is 14 m arc radius and five flows and put into production In January 2011.It is form a complete is 2×65tLD-LF-VD.The circle billet section is from ∮280mm to 600mm.Its productions for Seamless steel tube mill ang Forge plant has been more than 700000 tons, more than 30 kinds for 1 year. And the productions includ forging with CL60、42CrMo、460C、Q345E, etc. This paper introduce our company producing Q345E that according to the market demand,more than 4000 tons Q345E circle billet has be produced. And for this a lot of works has been done in repeated proofs and careful preparations. In the Q345E production process,the molten steel temperature and componentsget fine control, and Q345E circle billet quality is good. The Q345E circle billet has been forged intowind power flange forging by some forging a factory. And the wind power flange forgingquality is good and achieves the quality requirements. in low-temperature impact,-50 ℃, AKv is stability to 80 J above especially. 2. Technological process and technical requirements In the production of billet section for∮600 mm ,Q345E circle billet is mainly used in forging wind power flange. Because its low temperature impact performance requirements are very high, circle billet surface and internal quality is the strict, final ingredient also is the strict narrow composition limits, and these control the difficulty is large. In order to achieve Q345E forgings comprehensive mechanical performance requirements, the paper conducted a series of experiments exploration, achieved the desired effect. 2.1 Technological process Technological process of Q345E flow as follows: KR iron pretreatment-v extraction of converter converter-half steel smelting LD-LF -VD - circle billet continuous casting -check clean-quality inspection-qualified in warehouse. To improve the quality of circle billet, in the steel smelting process the main measures has been taken that dephosphorization and desulfurization are in LD and LF furnace is used for deep desulfurization through mading white desulfurization slag. And deep vacuum deairing with VD refining measures is used. In the process of continuous casting, through the low superheat casting, protection and low

433


speed casting process are ensured for the molten steel cleanliness, effectively reduce casting billet internal defects. 2.2 technical requirements The current” GB/Tl591-l994 " the mechanical properties and chemical composition standard of the Q345E with low-alloy and high strength " respectively see table 1, 2, 3. Table 1 Steel grades and chemical composition Si Mn P S Cr Ti Al

C 0.14~ 0.18

Q345E

≤ 0.50

1.10~ 1.45

≤0.013

≤0.005

≤0.30

≤0.20

0.015~ 0.035

wt% Ni ≤0.50

V

Cu

0.030~ 0.15

≤0.10

A、Steel gas requirements: H≤2ppm;O≤30ppm;N≤100ppm B、carbon equivalent CEV=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15≤0.43(min:0.35) Table 2

Flange mechanics performance table SMYS(Mpa) Product thickness δ(mm) >50 >100 >150 ≤100 ≤150 ≤200

牌号

Q345E

Table 3

345

295

285

Tensile strength(TS) (Mpa) Product thickness δ(mm) >3 >100 >150 ≤100 ≤150 490~630

470~630

450~630

Minimum elongation % Product thicknessδ(mm) >60 >150 ≤150 ≤250 20

18

Flange impact performance table

Mark

Impact test temperature,℃

Impact energy (tangential, three sample, no less than the average), J

Q345E

-50

50

Q345E is belonged to a low carbon steel alloy. Q345E steel is in line with the GB/T1591-1994 "with lowalloy steels". its parent material metallographic is ferrite pearlite in the belt distribution. it is based on the 16Mn steel alloy series added some trace alloy elements and strictly controls P and s elements, to improve its low temperature performance impact.Q345E on the basis of guarantee tensile properties is focusing on improving the impact toughness of the steel. To prevent low temperature environment structure brittle fracture, fine grains of trace elements the vanadium, niobium are increased. Q345E and 16Mn chemical composition are seen in table 1 and table 2 mechanical properties, impact performance requirements to table 3. According to GB/T 1591-2008 regulation, Q345E forgings mechanics performance requirements for: the yield strength R / > 265MPa, tensile strength 450MPa ≤R≤600MPa, forging elongation A≥18%, Ak 2 (40 ℃) i> 27 J.The product shape dimension demands are seed in table 4, 5. Table 4

The circle billet dimensional tolerance table

nominal diameter The allowable deviation (avoid flat area measurement) d≤150 ±1.6d ±1.5d 150<d≤250 250≤350 ±1.3d ±1.2d 350> flat area is a circle billet surface Plane made by pulled by machine in pull in the process

Table 5

The outofroundness table of circle billet

The outofroundness < No avoid flat area measurement Avoid flat area measurement d≤150 4.5%d 2.8%d 4.5%d 2.5%d 150<d≤250 250≤350 4.%d 2%d 3.5%d 2%d 350> outofroundness computational formula:outofroundness=dmax-dmin,dmax.dmin is Max and Min diamete in same Section. nominal diameter

3. Production Process Design According to the experience in other wokes [3] [4] [5] [6], test strictly controls the composition and operation process and strives to a satisfying the needs of customers once. 3.1 Chemical composition design

434


To reduce the production cost, it is improve internal quality, anisotropy and Z to performance that add niobium vanadium micro alloying elements and mainly with carbon and manganese as strengthening elements and strictly control of phosphorus and sulfur and other harmful elements. 3.1.1 The carbon The carbon affects almost all of steel performance. Along with the increasing of the content of carbon steel yield strength and tensile strength were significantly increase. But the high carbon content of steel will lead to plasticity and toughness drop, and affects of the steel welding performance. To obtain good performance and good welding of complex mechanical properties, combined with standard of carbon content requirements, 0.14% -0.17% carbon content will be is relatively appropriate. 3.1.2 The manganese In smelting process, manganese can reduce the deoxidizing and harmful sulfur role.In rolling process, manganese can reduce the austenitic transition temperature to refine ferrite grain and improve the strength of the steel plate and toughness. Therefore, in the composition design, manganese should be controlled in close to standard upper limits, the actual smelting process of casting billet manganese content should be controlled in 1.3%-1.5%. 3.1.3 The Sulfur and phosphorus The sulfur and phosphorus are harmful elements in low alloy steel. The phosphorus mainly effect of plastic steel. Sulfur effect of the impact toughness and toughening-brittle transition temperature. Therefore, sulfur and phosphorus content should be controlled in 0.005% .It is necessary to control sulfur and phosphorus content below 0.005% and 0.013% respectively. It is used to control harmful element content Through the strict control of the molten iron sulfur and phosphorus content, molten iron slaggingoff, The converter slag detection in the process of adopting and pushingoff the slag with Slagtrap, LF deep desulfurization process, etc. After the VD processing, It is used to reduce the inclusion content that Si-Ca line is Joined in liquid steel for degeneration inclusion and soft blow flow and time promote are controlled for inclusion floatation. 3.1.4 The vanadium In steel the main role of the vanadium is refining organization grain, enhancing the grain coarsening temperature which can reduce the sensitivity of the steel overheating, and improving steel strength and toughness, increasing the tempering stability, and causing a secondary sclerosis effect. No matter in annealing, firing or conditioning state, for low carbon content steel, the vanadium is not only improving the strength of steel vanadium especially the yield point and ultimate but also improving steel plasticity and toughness. The materials grain refinement causes the material thinning grain level greatly improved, the grain boundaries proportion increasing, and increasing strength of steel, reducing greatly the material crack sensitivity. When the vanadium content is below 0.035%, the low temperature performance and strength of material is difficult to achieve stability with the wind power flange requirements. when the vanadium content is higher than 0.060%, it is to increase in the cost of not only material and product the alternative organization within ferrite easily, but also reduce low-temperature impact performance.So it is confirm that the vanadium is 0.035-0.060% certainly. 3.1.5 the inclusions control In the steelmaking process, control all reason inclusions is mature. At present the inclusion content mainly depends on the level of equipment and process control level. Based on the current situation and the new technology fine-tuning control technology are developed. It is to join a aluminum at deoxidization and facilitate inclusion floatation purify. (2)It is remove P, S work in molten steel and improve steel cleanliness. (3) It is do soft blow job and control the soft wind strength. And soft blow is an important process to remove inclusion and even homogenize the composition of molten steel. But if soft blow strength is too big, it can cause the molten steel second oxidation, thus increase the content of steel inclusions. (4) It is to protecte the molten steel and avoid the molten steel second pollution. (5) It is good control of the mould level to avoid larger fluctuation cause mould roll residue. 3.2 Production process design 3.2.1 Deoxidizing system optimization In the converter smelting operation, there is a statistical relationship between carbon content and oxygen activity and temperature. Using multiple regression analysis a model in the end point can be got to forecast the converter oxygen content. In the molten iron composition and smelting system certain conditions, to be accurately control end [O] of converter must be accurate control the following

435


parameters. (1) It is carbon content control shooting average 90.10%. (2) endpoint temperature is in 1620-1670 ℃. (3) (FeO + MnO) content is 14%-18% in the slag. (4) It is to improve shooting average of the converter endpoint carbon and temperature and to put an end to blow after. Through the accurate forecast and taking reasonable deoxidizing system and realizing the depth of deoxidizing ensure reasonable oxygen content in the converter smelting operation end. 3.2.2 The slidingplatepushingofftheslag and premelted synthetic slag wash during tapping The converter slidingplatepushingofftheslag had been used by Chengde Jianlong Specil Steel Co., Ltd for long times. It can ensure that slag thickness turning down to ladle is under 50 mm. This method created conditions to improve the quality of the molten steel and to enhance alloy yield. In order to ensure that the steel P content in less than 0.013%, leave steel during tapping is used. Developing of premelting synthetic slag washing, all the premelted synthetic slag is put into ladle before and during tapping process. The aim is that the premelting synthetic slag washs liquidsteel during tapping and form top slag quickly. And during this process steel core aluminum and deoxidizer and alloy are put into ladle Depending on the process. 

After washing, deoxidizing products reduce further. And slag content also change and the refining slag basicity is improved. This created favorable conditions of thermodynamics and kinetics for refining desulfurization white slag. At the same time, it is effective to reduce the steel inclusions with magnesium carbon brick comprehensive ladle lining. 3.2.3 The low temperature control system during production process On the basis of stable process operation, Steel mills each working procedure implement low temperature operation. Because of optimizing the converter tapping hole materials and size and taking ladle heat preservation and online baking and research useing refractory fiber in the cap and on baking alloy online in high temperature and taking ladle red envelope and clean and taking continuous casting system insulation, it is realized that temperature system is low and effective and steerable in the steelmaking system. So theundish temperature is stability about liquid phase line 10-20 oC and it is reduced that the molten steel is low oxidizing and effectively reduce inclusion content in the molten steel. 3.2.4 Steady production Some works are done that Formulate standardized operation instruction and implement the converter "constant volume and everhot " loading system and standardized operation mode and establish continuous caster "constant drawing speed", "constant temperature ", "constant liquid level",3 constant steady-state pouring process. And these works effectively improve cooperation consciousness and the circle billet quality. 3.2.5 The caster casting protection and electromagnetic stirring In order to ensure that vacuum purified molten secondary oxidation is reduce, in the whole process of continuous casting it is taken that the ladle is capped and the nozzle is protected and tundish liquid level is protected by slag and blowing argon protection, etc. those make the Adding nitrogen≤10 PPM in the process.In order to get good organization, the mould and the cold end electromagnetic stirring technology is used. 4. Test results (quality inspection) and analysis The ∮600mm Q345E circle billet is used and wind power flange is forged In a ring forging plant and the wind power flange size is 3200 mm×2900 mm×150 mm. The flange heattreatment is fire and backfiring technology. mechanical properties test and microstructure analysis results show that the test of the Q345E performance has reached the standard requirement, and a one-time test success. 4.1 The circle billet surface quality The Q345E circle billet products is inspected and smooth surface of good quality is good, no residue pit (ditch), scarred, scratch, defects and cut is neat. 4.2 The chemical composition The Q345E chemical composition is shown in table 6, all the composition is in the accurate control design range. Table 6

Q345E Measured chemical composition

C

Si

Mn

P

S

Cr

Ni

Cu

Ti

V

AL

N

O

CEV

H

0.140.17

0.200.30

1.281.38

≤ 0.01

≤ 0.00

0.040.06

0.050.06

0.020.03

≤ 0.00

0.0320.045

0.0150.030

≤95

≤15

0.42

≤ 1.3

436


1

5

3

Note: O, N, H unit is for PPM. 4.3 The Q345E circle billet internal quality Upon examination, The Q345E circle billet internal quality is good. The center is under 0.5 magnitude. centre porosity is under 1.0 magnitude. And it is no center crack and subcutaneous crack. 4.4 The mechanicalproperty 4.4.1 The tensile test The Q345E manufacturing flange tensile test results is shown in table 7. Table 7 Q345E manufacturing flange tensile test table SMYS(Mpa) Product thicknessδ > >100 >150 50≤100 ≤150 ≤200

mm

Q345E Standard value

345

Actual inspection value

295

285

Tensile strength (TS) (Mpa) Product thicknessδ >3 >100 >150 ≤100 ≤150 490~630

470~630

450~63 0

Minimum elongation % Product thicknessδ >60 >150 ≤150 ≤250 20

370

530

28

385

545

30.5

365

535

285.5

380

540

28

385

540

29

380

535

28

18

4.4.2 The Q345E manufacturing flange tangential low-temperature impact performance(-50℃, Akv, J) The Q345E manufacturing flange tangential low-temperature impact performance is shown in table 8. Table 8

Q345E manufacturing flange tangential low-temperature impact performance table 1 120 90 112 80 99 96

2 110 110 119 110 105 98

3 112 100 105 116 111 113

平均 114 100 112 102 105 102.3

4.5 The Q345E manufacturing flange microstructure The Q345E flange of microstructure figure is shown in figure 1. Porter theory

1. The microstructure: ferrite +pearlite;2.The nonmetallic inclusion:Al.O,BI.O,CO.5,DO.5; 3. Grain degrees at 8.0 in magnitude

Lengthways analytical instrument ■Microscope

Crosswise ■Polishing machine

437

Circumference


Basis

■GB/T13299-1991 ■GH/T6394-2002 ■GB/10561-2005 □其他

Figure 1 Q345E wind power flange microstructure figure 4.6 The results of Q345E manufacturing flange testing The results of Q345E circle billet forging flanges detection test is shown in figure 2.

Figure 2 Q345E forging flanges detection results 4.7Results Analysis From the results of analysis that are whole process from Q345E circle billet production to maked into flange, all the indexes meet the requirement of the customer. 5 The conclusion (1) Chengde Jianlong Specil Steel Co.,Ltd circle billet continuous casting production line is able to product circle billets with high strength steel for forging. (2) The requirements on comprehensive mechanics performance of Q345E steel for forgings are the high side, and especially is low-temperature impact toughness requirements. It is necessary to through a series of relatively strict process control (including material, smelting, forging, heat treatment and, etc.) to ensure the product quality. (3) Q345E steel forged can through the fog LengZhengHuo to maximize the potential of the play materials and achieve high comprehensive mechanical properties. normalizing temperature is (890 + 10)℃ and adds tempering. References: 【1】陈立奇,段世浩.Q345E 钢锻件的力学性能研究.热处理, 2011,26(2):39-42. 【2】赵华,时义祥,宋锐,贺秀丽. Q345E 探伤不合的原因分析与研究. 科技信息, 2010,21:30. 【3】齐建军,李绍杰,赵春风. 微合金元素对 Q345E 棒材低温韧性的影响. 材料热处理技术, 2009,5:8083. 【4】李少杰,王国营,樊一丁,齐建军.Q345E 棒材低温冲击功的研究.河北冶金,2011,5:23-27. 【5】顾林豪,隋鹤龙,王彦锋,吴斌,姜中行,麻庆申,王根矶. Q345E 厚板低温冲击韧性不合格的原 因分析与改进措施.首钢科技,2009,:3:15-17. 【6】王建锋,邓深,饶江平,李光强,张峰. 钛微合金化 Q345E 钢的试验研究. 钢铁钒钛, 2010,4:20-25. The authors introduce: HongYuChen, steel metallurgical professional doctorate (after), are professor angsenior engineer, , email:chenhongyu@ejianlong.com; XiuGangYin, pressure professional processing, the variety development engineers, email: yinxiugang@ejianlong.com; Chengde Jianlong Specil Steel Co.,Ltd Chengde city in hebei province XingLongXian peace at the town 067201 TEL:0314-5316865 FAX:0314-5316417

438


439

Saarstahl  

The report gives an overview of the 18th IFM in Pittsburgh and the current market development.

Read more
Read more
Similar to
Popular now
Just for you