WEEK 1 Introduction to  Materials:

Strength –  Is  it  strong  or  week?   Some  materials  are  strong  in  both   Compression  and  Tension.   Stiffness  –  Stiff,  Flexible,  Stretchy  or   Floppy.  Nylon  ropes  are  strong,  but   not  stiff.   Shape  –  Linear,  Planar,  Volumetric.   Material  Behaviours  –  Isotropic  or   Anisotropic?   Economy  and  Sustainability  –  Cost,   Impact  on  the  environment,  etc.

Bricks –  Strong  especially  in   compression  and  very  stiff

Nylon  Rope  –  Strong  in  tension,   but  not  stiff

Basic Structural  Forces:   •

A force  is  any  influence  that   produces  a  change  in  the  shape   or  movement  of  a  body   Forces  are  considered  as  vector   quantities  with  both  magnitude   and  direction   They  are  represented  as  arrows   with  the  length  of  the  arrow   proportional  to  its  magnitude.

Tension: Tension  is  when  and  external   load  pulls  on  a  structure   causing  the  particles  within  the   structure  to  move  apart  and   hence  stretch  the  material.

Compression: Compression  is  the  opposite  of   tension.  It  occurs  when  a  force   pushes  on  an  object  or   structure  causing  the  particles   within  it  to  compact  together   resulting  in  a  shortening  of  the   material.

Static Loads:   Static  loads  are  loads  that  are   applied  slowly.  They  can  be  either   live  or  dead  loads.     These  include  people,  furniture,   rain,  building  elements  and  the   weight  of  the  structure  itself.

Dynamic Loads  are  applied  suddenly   with  rapid  changes  in  magnitude  and   point  of  application.  Examples  of   dynamic  loads  are  wind  and   earthquake  forces  and  precautionary   measures  need  to  be  taken  into   account  when  building  structures  to   minimize  the  effect  of  these  forces.

Ground Pressure:     Ground  Pressure  is  a  horizontal   force  a  mass  of  soil  exerts  on  a   vertical  retaining  structure.

WEEK 2

Frame  Structure.

Structural Systems:

Solid Structures  –  Stone  and  brick,     strong  in  compression.  Eg,  Arches       Surface  (Shell)  Structures  –  Planar.   Eg,  Sydney  Opera  House

Skeletal (Frame)  Structures  –  Very   efficient  for  transferring  loads     Membrane  Structures  –  Not  very   common  in  the  built  environment,   but  often  used  in  sports  stadiums.   Very  efficient  in  tension     Hybrid  –  Air  is  an  integral  part  of  the   structure

Frame Structure

Solid  Structure

Construction Systems:   Service  Systems  –  Provide   essential  services  to  the  building.   Eg,  water,  electricity,  heating.   Structural  Systems  –  To  support   and  transmit  loads  safely  to  the   ground.   Enclosure  Systems  –  The  roof,   exterior  walls,  windows  and   doors.

SOLAR PANELS

ESD and  Selecting  Materials:     Environmentally  Sustainable  Design   features  include  insulation,  solar  and   wind  energy  and  using  local   materials  as  well  as  shelters  for   protection  from  the  sun,  windows   for  light,  water  harvesting  and   ventilation  to  moderate   temperatures.

Embodied Energy:     Embodied  energy  is  the  energy   involved  in  making  and  transporting   products  and  materials  as  well  as  the   construction  of  a  building.     Embodied  energy  and  Carbon   Emissions  can  be  reduced  by  using   recyclable  materials  and  materials   that  involve  little  transportation.

Structural Joints:

Fixed  Joint

Roller  Joints  –  Loads  transferred  in   one  direction,  in  other  directions  the   roller  will  move.   Pin  Joints  –  Allow  rotation  but  no   up/down  or  left/right  movement.   Fixed  Joints  –  Allow  no  movement,   which  can  cause  elements  to  bend   easily.

WEEK 3

Structural Elements:

The design  of  a  structural  element  is   based  on  the  loads  to  be  carried,  the   material  used,  and  the  form  and   shape  chosen  for  the  element.     Modular:   -­‐  Brick   -­‐  Ashlar  Stone

Mass Construction  Materials     Generally  strong  in  compression,  but   not  in  tension,  they  insulate  well  and   are  quite  durable.     -­‐ Stone   -­‐ Earth   -­‐ Clay  (Bricks)   -­‐ Concrete

Mortar

Masonry Definitions   Masonry  refers  to  a  building  with   units  of  various  natural  or   manufactured  products,  usually  with   the  use  of  mortar  as  a  bonding   agent.   Bond:  The  pattern  or  arrangement  of   the  units   Course:  A  horizontal  row  of  units   Joint:  The  way  units  are  connected

Mortar: A  mixture  of  cement  or  lime,   sand  and  water  used  as  a  bonding   agent

Masonry Material   -­‐  Stone  (slabs,  ashlar  blocks,  rubble)   -­‐  Clay  (bricks,  blocks)   -­‐  Concrete  (blocks,  commons)

Masonry Construction     Vertical  Elements:  Walls  and   Columns     Horizontal  and  Curved  Elements:   Beams/Lintels  and  Arches

Bricks

Bricks are  made  from  clay  and  are  a   standard  size  masonry  unit.  They  are   made  by  shaping  clay  and  water  and   fired  in  a  kiln.  They  expand  over   time.   Properties   Hard,  low  ductility,  low  flexibility,   medium  fragility,  medium  density,   very  durable,  high  reusability.

Concrete Blocks     A  standard  size  masonry  unit  that   shrinks  over  time;  made  by  mixing,   molding  and  curing  concrete,  sand,   water  and  gravel.  They  can  be  hollow   or  solid  and  the  holes  allow  for   reinforcement.  They  can  be   structural  or  decorative  elements   and  have  similar  properties  to  bricks.

Stone

Igneous  stone  is  formed  when   molten  rock  (lava)  cools.  Eg.  Granite,   basalt,  and  bluestone     Sedimentary  stone  is  softer  and  is   formed  when  accumulated  particles   are  subjected  to  moderate  pressure.   Eg.  Sandstone  and  limestone

Metamorphic stone  like  marble  and   slate  is  formed  when  the  structure  of   igneous  or  sedimentary  stone   changes  when  subjected  to  pressure,   high  temperatures,  or  chemical   processes.       Stone  is  generally  hard,  has  low   ductility  and  flexibility  and  is  not   fragile  in  thick  blocks/slabs.

SANDSTONE

Geometry and  Equilibrium     The  centre  of  mass  (centre  of   gravity)  is  the  point  about  which  an   object  is  balanced.  The  location  of   the  center  of  mass  depends  on  the   objects  geometry.     Equilibrium  is  a  state  of  balance  or   rest  resulting  from  the  equal  action   of  opposing  forces.

For equilibrium  to  exist  the  sum  of   the  applied  and  reaction  forces  must   equal  zero.       Moment  of  Forces   The  moment  of  a  force  is  the   tendency  to  make  an  object  or  point   rotate.  Moment  forces  have  a   magnitude  and  a  sense.

Mo =  F  x  d          (force  x  distance)

Foundations

The foundation  is  the  lowest  division   of  a  building  –  its  substructure  –   constructed  partly  or  wholly  below   the  surface  of  the  ground.  Its     function  is  to  support  and  anchor  the   substructure  above  and  transmit  its   loads  safely  to  the  earth.    In  Australia   the  footings  are  the  structure  and   the  foundation  is  the  ground.

Shallow Foundations

Shallow  or  spread  foundations  are   used  when  the  soil  close  to  the   surface  has  adequate  bearing   capacity.  They  are  placed  directly   below  the  lowest  part  of  the   substructure  and  transfer  vertical   loads  directly  to  the  supporting  soil.

Deep Foundations     Deep  foundations  are  used  when  the   soil  under  a  structure  is  unstable  or   has  inadequate  bearing  capacity.   They  extend  down  through  the  soil   and  transfer  the  loads  to  sand,  gravel   or  a  more  appropriate  bearing   stratum  well  below  the  surface.

WEEK 4

Span –  The  distance  between  two

structural supports

Spacing –  The  repeating  distance   between  a  series  of  similar  elements     Spacing  of  the  supporting  elements   depends  on  the  spanning  capabilities   of  the  supported  elements.

ROOF BEAMS

Beams   Beams  are  usually  a  horizontal   structural  element.  The  function  of  a   beam  is  to  carry  loads  along  the   length  of  the  beam  and  transfer   them  to  vertical  supports.

Floor and  Framing  Systems   Slabs  –  Slabs  can  span  one  or  two   ways.  The  thickness  of  the  slab  is   usually  the  span  divided  by  30.

Steel Framing  –  It  can  take  various

Timber Systems     Timber  flooring/framing  systems  are   very  traditional.  They  use  a   combination  of  bearers  (primary   beams)  and  joists  (secondary   beams).  The  joists  are  usually  the   beams  closest  to  the  surface  (top)  of   the  floor.

forms and  can  sometimes  be   combined  with  concrete  slabs.  It  can   be  heavy  structural  steel  or  light   gauge  framing.

FLOOR  FRAMING

FLOOR FRAMING  FOR  DECKING

Concrete

Concrete  is  a  fluid  before  it  hardens   and  is  poured  into  place.  Formwork   is  used  to  mould  the  concrete  into   the  desired  shape.       Concrete  reaches  75%  of  its   compressive  strength  in  7  days  and   its  finial  testing  strength  in  28  days.

Concrete is  an  artificial  stone.  When   cement  is  mixed  with  water  it  binds   the  sand  and  gravel  aggregates  to   make  concrete.  It  is  usually  1  part   cement,  2  parts  fine  aggregates,  4   parts  coarse  aggregates,  and  0.4-­‐0.5   parts  water.  Too  much  water  creates   weak  concrete  and  not  enough   water  makes  it  unworkable.

CONCRETE  SLAB

Properties Concrete  is  not  completely   waterproof  so  it  needs  sufficient   cover  or  protection.   It  is  hard,  durable  and  cost  effective;   it  has  low  ductility  and  fragility  and  is   medium-­‐high  density.  Concrete  is   not  easy  to  recycle.

Reinforced Concrete

REINFORCED  CONCRETE

Concrete  is  strong  in  compression   but  weak  in  tension.  To  improve  the   structural  performance  of  concrete,   steel  (strong  in  tension)   reinforcement  in  the  form  of  mesh   or  bars  is  added.

Cantilevers Cantilevers  are  created  when  a   structural  element  is  supported  at   only  one  end  or  the  overhanging   portions  of  a  member  are  significant.   The  function  is  the  same  as  a  beam.   Cantilevers  can  be  horizontal,   vertical  or  angled.

IN SITU  CONCRETE

In Situ  Concrete   In  situ  concrete  is  poured  into   framework  and  cured  on  site.  There   is  limited  time  to  cure  the  concrete   before  it  hardens  and  becomes   unworkable.  Air  bubbles  are   removed  by  vibrating  the  concrete.  It   is  widely  used  in  footing  and   retaining  walls.  Joints  in  concrete  are   potential  weak  points.

Concrete can  sometimes  be  sprayed   into  place;  this  is  useful  for   swimming  pools  and  basement  walls.

Construction joint  –  used  to  divide   it  into  more  manageable  sections  of   work

Control joint  –  Required  to  absorb   the  expansions  and  contractions  and   the  long-­‐term  tendency  for  concrete   to  shrink.

IN SITU  CONCRETE

Pre-­‐cast Concrete   Pre-­‐cast  concrete  is  manufactured   (fabricated)  in  factories  and   transported  to  site.  This  allows  for   the  work  on  site  to  progress  faster   and  allows  for  more  standardized   outcomes.  It  can  sometimes  be  a   higher  quality,  as  the  climate  doesn’t   affect  the  setting  of  the  concrete.

Using  pre-­‐cast  concrete  usually   means  more  joints  need  to  be  used,   as  the  pieces  need  to  be  transported   to  site  so  they  cannot  be  as  big.  The   type  of  joint  depends  on  the  desired   aesthetic  outcome.   Pre-­‐cast  concrete  elements  are  often   associated  with  the  structure  of  a   building  and  are  generally  used  for   retaining  walls,  walls,  and  columns.

CONCRETE PANELS

Pre-­‐cast concrete  allows  for  a  wider   rang  of  finishes  as  it  is  made  in  a   more  controlled  environment,  but   can  be  limited  in  size.     There  are  many  benefits  in  using   precast  concrete.  For  example,  the   silicone  formwork  can  be  reused   (cost  effective)  and  it  allows  for   repetition.

WEEK 5

From Wood  to  Timber

Early  Wood:  Has  rapid  growth  at  the   beginning  of  the  growing  season.  It   has  thin,  large  cells  and  a  lighter   colour.   Late  Wood:  Has  slower  growth,   often  limited  by  lack  of  water.  It  has   thick,  small  cells  and  a  darker  colour.   It  gives  the  growth  ring.

Structural Nature  of  Wood

The  direction  of  the  grain  of  the   wood  determines  the  strength,   stiffness  and  structural  performance   of  the  wood.  It  is  generally  stronger   along,  or  parallel  to  the  grain.

WOOD GRAIN

Wood to  Timber

Seasoning or  drying  strengthens  the   timber  by  removing  water  to  less   than  15%.  This  provides  increased   dimensional  stability.     It  can  by  done  by  air  seasoning  that   can  take  from  6  months  up  to  two   years  but  is  very  cheap  or  by  kiln   seasoning  that  can  take  from  20-­‐40   hours  and  is  much  more  common.

SOFT  WOOD

Soft Wood  –  Conifer  Species   Radiata  Pine,  Cypress  Pine,  Hoop   pine,  Douglas  Fir

Hard Wood  –  Includes  all   Eucalyptus  Species   Victorian  Ash,  Brown  Box,  Spotted   Gum,  Jarrah,  Tasmanian  Oak,  Balsa   Wood  (not  a  eucalyptus  species)

Timber Properties   Medium-­‐low  hardness  (can  be  easily   marked),  medium-­‐low  fragility   (geometry  dependant),  low  ductility,   high  flexibility,  medium  plasticity,     density  can  be  low  or  high   (depending  on  type)  very  durable   (can  vary  depending  on  type),  high   reusability,  generally  sustainable  and   cost  effective.

HARD  WOOD

KNOTS

Timber is  graded  according  to  its   strength.  This  is  used  to  determine   the  size  of  timber  needed  to  support   certain  loads.  Some  pieces  of  timber   will  be  stronger  in  some  points  than   others,  but  it  is  given  the  grade  for   the  lowest  strength  it  has.     Knots  in  timber  create  weak  points   as  it  causes  a  slope  in  the  grain.

Timber  can  be  damaged  by  water   and  sunlight.  Fungal  attacks  often   occur  when  the  moisture  is  >20%   and  water/lack  of  water  can  cause   swelling/shrinking  resulting  in  cracks.   Direct  sunlight  can  cause  excessive   drying  (fire  hazard)  and  insect   attacks.  The  best  way  to  protect  it  is   to  avoid  exposure  to  weather  or  seal   it  (often  done  by  painting).

DAMAGED TIMBER

Plywood: Made  by  gluing  and   pressing  thin  laminates  together  in   alternate  directions  to  form  a  sheet   giving  two-­‐way  strength.  Used  for   floors  and  bracing/joinery.

MDF: Made  by  breaking  down  wood   waste  into  fibers  and  combining   them  with  wax  and  resin.  It  is  more   dense  than  ply  wood  and  is  used  for   non-­‐structural  applications.

Chipboard and  Strandboard:

CHIPBOARD

Made by  layering  wood  residual   (chips  and  strands)  in  specific   orientations  with  wax  and  resin  and   applying  high  temperatures  and   pressure.  Can  be  used  as  part  of   structural  systems  such  as  flooring   and  cladding  finishes.

LVL:

Laminated Veneer  Lumber  is  made   from  laminating  thin  sheets  of   timber  with  the  grain  aligned  in  a   longitudinal  direction.  Very  deep  and   long  sections  can  be  made  and  it  has   a  very  high  strength.  It  is  often  used   in  structural  systems  as  posts  or   beams.

GLULAM: Glue  laminated  timber  is   made  by  gluing  pieces  of  sawn   timber  together  (in  a  longitudinal   direction).  Often  used  in  structures.

CLT: Cross  Laminated  Timber  is   made  by  gluing  and  pressing  thin   laminates  together  in  alternate   directions  to  form  a  sheet.  It   provides  strength  in  two  directions   and  is  often  used  as  structural   panels.

Walls

Walls are  used  to  enclose  and   separate  buildings/rooms,  protect   the  interior  from  the  exterior,   insulate,  moderate  climate  and  filter   out  light.     They  can  be  a  major  structural   component  and  part  of  the  structural   system  (carry  loads).

Structural Frames:  Concrete

frames (big  city  buildings),  Steel   frames  (industrial  buildings),  Timber   frames  (post  and  beam).

Load Bearing  Walls:  Concrete   (many  new  apartment  buildings),   Masonry  (bricks,  etc).

Stud Walls:  Light  gauge  steel

framing, timber  framing  (very   common  in  housing).

Concrete Frames:  Typically  use  a   grid  of  columns  with  concrete  beams   connecting  them.

Steel Frames:  Typically  use  a  grid  of   steel  columns  connected  by  steel   girders  and  beams.

Post and  Beam/Timber:  Typically   uses  a  grid  of  posts  or  poles   connected  to  timber  beams.  Bracing   is  required  to  stabilize  the  structure.

TIMBER FRAMING

Load Bearing  Concrete:  This  can  be

achieved using  in-­‐situ  or  precast   concrete.  The  load  bearing  panels   may  also  provide  support  for   spandrel  panels  over  and  link  into   other  structural  elements  (floor   slabs,  roof  structure,  etc).

Masonry: Can  be  solid  or  reinforced

Metal and  Timber  Stud  Framing   Framed  walls  use  smaller  sections  of   framing  timber  or  light  gauge  steel   framing  to  meet  the  structural   demands  of  the  construction.   Noggins  (restraining)  prevent  long   pieces  of  timber  buckling  while   bracing  (cross,  diagonal  and  sheet   bracing)  is  used  to  prevent  the  wall   from  tipping/twisting.

with steel.  It  is  usually  made  from   clay  bricks  or  concrete  units.

TIMBER STUD  FRAMING

WEEK 6

Roofs are  the  primary  shelter  for

ROOF

buildings; they  collect  rainwater  and   come  in  many  different  forms.

Flat Roofs:  have  a  pitch  of  1-­‐3   degrees.  If  they  are  completely  flat  a   pond  can  form  increasing  the  load   and  causing  damage.

Pitched and  Slopping  Roofs:  have   a  pitch  greater  than  3  degrees.   Tiles  should  be  pitched  at  >15°

Concrete Roofs

Concrete roofs  are  generally  flat   plates  of  reinforced  concrete  (or  pre-­‐ cast  slabs  with  a  topping  of   concrete).  The  top  surface  is  sloped   towards  drainage  points  and  the   entire  roof  surface  finished  with   applied  waterproof  membrane.

Structural Steel  Framed  Roofs   Flat  steel  roofs  consist  of  a   combination  of  primary  and   secondary  roof  beams  or  roof  beams   and  purlins.     Sloping  steel  roofs  consist  of  beams   and  purlins  and  light  sheet  roofing.   Portal  Frames  consist  of  a  series  of   braced,  rigid  frames  with  purlins  for   the  roof  and  grits  for  the  walls.

GABLE ROOF

Light Framed  Roofs

Trussed Roofs

Gable Roofs  are  characterized  by  a   vertical,  triangular  section  with  a  wall   at  one  or  both  ends  of  the  roof.   Made  from  timber/steel  it  consists  of   common  rafters,  ridge  beams  and   ceiling  joists.     Hip  roofs  are  similar  but  also  consist   of  hip  rafters,  valley  rafters,  and  jack   rafters.

Framed roofs  constructed  from  a   series  of  open  web  type  steel  or   timber  elements.  Trusses  are   manufactured  to  be  able  to  span   long  distances.  The  roofing  material   selected  and  the  functional   requirements  of  the  roof  often   determine  the  shape  of  the  element.

ROOF TRUSSES

Metals Ferrous  –  Iron  (common  and  cheap)

Non-­‐ferrous –  All  other  metals   (generally  more  expensive  and  less   common)

Alloys –  Combinations  of  two  or   more  metals

Properties Metals  generally  have  low  fragility,   high  ductility,  medium-­‐high   flexibility,  high  plasticity  (while   heated),  high  density,  good   conductivity,  high  durability  and   reusability  and  are  cost  effective.   Their  hardness  is  varied  depending   on  the  type.

METAL

RUSTY METAL

Water Related  Damage   Oxidation  and  Corrosion  –  Metals   ions  can  react  with  oxygen  forming   and  oxide  that  can  either  protect  the   metal  or  result  in  corrosion  (rust).   To  protect  them  from  corrosion   metals  should  be  sealed  by  enamel   or  paint,  treated  chemically   (galvanized)  or  avoid  prolonged   exposure  to  moisture.

CORRUGATED IRON

Ferrous Metals   Iron:  Iron  is  magnetic,  very  reactive   chemically  (easily  corrodes)  and  has   good  compressive  strength.

Wrought Iron:  Heated  and   hammered  into  desired  shape,   expensive.  (bars/decorative  element)

Cast Iron:  Melted  and  poured  into   moulds  with  high  compressive   strength.

Iron Alloys

STEEL

Steel is  an  alloy  of  iron  with  carbon   being  the  primary  additional  alloy   element.  It  is  strong,  transfers  heat   and  electricity  well,  comes  in  many   different  shapes  and  is  long  lasting.       Steel  Sheeting  can  be  used  for   cladding/roofing  but  must  be   protected  from  weather  exposure.

Structural Steel   Used  for  framing,  columns,  purlins,   beams  and  stud  frames.     Hot  Rolled  steel  elements  are   shaped  while  hot,  use  more  material   and  are  used  for  primary  structural   elements.  Cold  Formed  steel   elements  are  folded  from  sheet  that   have  been  previously  produced  and   used  for  secondary  elements.

Stainless Steel  Alloys

STAINLESS STEEL

Chromium is  the  main  alloying   element  with  no  less  that  12%.  It  is   made  into  coils,  sheet,  plates,  bars,   wires  and  tubing  and  is  generally   used  in  harsh  environments  such  as   kitchens  or  operating  rooms.  It  is   very  rarely  used  in  primary  structural   elements.

Non-­‐Ferrous  Metals

Aluminium: Is  light,  easily  formed,   expensive  and  used  for  handrails,   door  handles,  window  frames  and   cladding

ALUMINIUM

Zinc: Is  used  to  galvanize  steel/iron   and  as  cladding

Lead: Is  soft  and  ductile,  is  a  poor   conductor  of  electricity  and  isn’t  very   common  and  it  can  be  poisonous   when  in  contact  with  water/ingested   but  was  used  in  roofing/tank  lining

Titanium: Is  used  in  strong,

TIN

lightweight alloys,  used  for  cladding   and  can  resist  corrosion.  It  is  light,   strong  and  expensive

Tin: Is  very  rare  in  construction,  but   can  often  be  seen  in  decorative   elements

BRASS

Bronze (copper  +  tin):  Is  tough,   hard,  corrosion  resistant  and  used  in   bearings,  springs  and  clips

Brass (copper  +  zinc):  Has  a  low   melting  point,  is  easy  to  cast  and  is   used  for  locks,  gears,  screws,  valves,   and  fittings

Copper: Is  a  good  conductor  of   electricity,  very  ductile  and  was   traditionally  used  as  roofing  material   but  is  now  seen  in  water/heating   pipe  work  and  electric  cabling

COPPER

WEEK 7

Detailing For  Heat  and   Moisture

For water  or  air  to  penetrate  into  a   building  all  of  the  following  must   occur.   -­‐  An  opening   -­‐  Water/air  present  at  the  opening   -­‐  A  force  to  move  the  water/air   through  the  opening

WINDOW   SILL  TO   KEEP   WATER   AWAY

To  prevent  water  penetrating  into  a   building,  three  different  strategies   are  employed.     -­‐  Remove  openings  OR   -­‐  Keep  water  away  from  openings  OR   -­‐  Neutralise  the  forces  that  move   water  through  the  openings   One  is  sufficient  but  if  two  or  more   strategies  are  pursued  there  is  added   security  in  case  one  fails.

Openings  can  be:     Planned  elements  such  as  window,   doors,  skylights,  etc.   OR   Unplanned  openings  in  the  building   fabric  created  by  poor  construction   workmanship  or  deterioration  of   materials.

SKYLIGHT

Keeping Water  From  Openings

Water can  be  directed  away  from   openings  by:   -­‐  Grading  (sloping)  roofs   -­‐  Overlapping  elements  (eg  roof  tiles)   -­‐  Sloping  window  and  door  sills   -­‐  Sloping  ground  surfaces   Neutralising  Forces   This  is  done  by  using  overlaps  and   slopes  so  gravity  moves  the  water

Techniques To  Remove/Seal   Openings

SILICONE SEAL

-­‐  Sealants  (e.g.  silicone)   -­‐  Gaskets  (e.g.  preformed  shapes   made  from  artificial  rubbers,  etc)     Both  techniques  rely  on  correct   installation  and  will  deteriorate  over   time  due  to  weathering

ROOF INSULATION

Controlling Heat   -­‐  Heat  gain  and  heat  loss  occur  when:   Heat  is  conducted  through  the   building  envelope   -­‐  The  building  envelope/elements   are  subjected  to  radiant  heat  sources   -­‐  Thermal  mass  is  used  to  regulate   the  flow  of  heat  through  the  building   envelope   Effective  control  saves  energy/money

Heat Conduction  can  be   controlled  by:

INSULATION

-­‐  Thermal  Insulation  (reduce  heat   conduction)   -­‐  Thermal  Breaks  (rubbers  and   plastics  used  to  reduce  heat  transfer)   -­‐  Double  Glazing  (air  space  between   glass  reduces  the  flow  of  heat)

reflective surfaces  (less  heat   absorbed)  and  shading  systems  (stop   radiation  striking  the  building).   Large  areas  of  Thermal  Mass  can  be   used  to  absorb  and  store  heat  over   time.  When  temperatures  drop  the   stored  heat  is  released.  Materials   used  include  masonry,  concrete  and   water  bodies.

Controlling Air  Leakage     Strategies  to  stop  air  leakage  and   heat  gain/loss  include  eliminating   openings  and  the  forces  that  move   the  air  through  the  openings  as  well   as  adding  weather  stripping  around   doors,  windows,  etc.

RUBBER DOOR  SEAL

RUBBER   Rubber  can  be  natural  (sourced  from   a  rubber  tree)  or  synthetic   (synthesized  in  a  lab  –  technically  a   plastic).     Rubbers  can  lose  their  properties   when  exposed  to  weather,  especially   sunlight.

Types and  Uses

Natural  –  Used  for  seals,  gaskets,   flooring,  insulation,  hosing  and   piping.   Synthetic  –  EPDM  (gaskets),   Neoprene  (control  joints),  Silicone   (seals)

WINDOW   SEAL

Properties   Rubbers  have  low  fragility,  high   ductility,  high  flexibility/plasticity,   poor  conductor,  varied  hardness   (hard  resists  abrasions,  soft  provided   better  seals),  very  durable,  high   reusability  and  are  generally  cost   effective.

PLASTICS Thermoplastics  –  mouldable  when   heated,  become  solid  when  cooled.   E.g.  Polyethylene,  poly(methyl   methacrylate),  polyvinyl,   polycarbonate.

PLASTIC   OUTDOOR   ROOFING

Thermosetting Plastics  –  can  only   be  moulded  once.  E.g.  Melamine   Formaldehyde  (laminex),  Polystyrene   (insulation  panels)

Elastomers –  Synthetic  Rubbers

Properties Medium-­‐low  hardness  and  fragility,   high  ductility,  high  flexibility/   plasticity,  low  density,  poor   conductors,  very  durable,  high   reusability  (except  thermosetting),   generally  cost  effective.

Considerations

Weather related  damage   Plastic  properties  degrade  when   exposed  to  weather  (especially   sunlight)  and  need  to  be  checked   and  maintained.

Protection Avoid  exposure  to  weather  when   possible.

DAMAGED PLASTIC

PAINTS

Paints are  liquid  until  they  are   applied  to  a  surface  forming  a  film   that  becomes  hard  when  in  contact   with  the  air.     Their  main  purpose  is  to  protect  and   colour  a  particular  element.     Clear  paints  are  called  lacquers  or   varnishes.

Components

Binder –  the  film-­‐forming   component  (polyurethanes,   polyesters,  resins,  oils)

Diluents –  dissolves  the  paint  and   adjusts  the  viscosity  (alcohol,   petroleum,  distillate,  esters)

Pigment –  gives  the  paint  colour  and   opacity.  Can  be  natural  (clays,   calcium,  carbonate,  etc)  or  synthetic

MATT                                                                      GLOSS   FINISH                                                                    FINISH

Types and  Uses   Oil  Based  –  Used  prior  to  plastic   paints  (water  based),  high  gloss   finishes  can  be  achieved,  not  water   soluble  (turpentine  needed  to  clean   brushes).

Water Based  –  Most  common   today,  durable  and  flexible,  tools  and   brushes  can  be  cleaned  with  water.

WEEK 8

Doors and  Windows  allow  light,   insulation,  views  and  access.  They   can  be  timber,  aluminum  (common   in  commercial  and  office  buildings),   or  steel  (used  for  security  purposes).       Curtain  Walls  are  hybrid  systems   that  act  as  windows  and  a  wall  that   carries  its  own  load  and  transfers   loads  to  the  concrete  structure.

Glass

History

Formers –  the  basic  ingredient  that  can

1 century  BC  –  Brown  Glass

be melted  and  cooled  to  produce  glass.

11-­‐13th centuries  –  Sheet  Glass  (sliced

E.g. Silica

from brown  glass)

Fluxes –  help  formers  to  melt  at  lower,

17th century  –  Lead  Crystal  (easier  to  cut)

more practical  temperatures.  E.g.  Soda

17th century  –  Plate  Glass  (improved

ash, potash,  lithium,  carbonate

optical qualities)

Stabilizers –  combine  with  formers/

1910 –  Lamination

fluxes to  keep  the  finished  glass  from

1959 –  Float  Glass  (molten  glass  is

dissolving or  crumbling.  E.g.  Magnesia

poured over  a  bath  of  molten  tin)

Glass Properties

Waterproof, medium-­‐high  density,   transmits  heat  and  light  but  not   electricity,  very  hard,  high  fragility,   low  ductility,  high  flexibility  and   plasticity  when  molten  but  low  when   cooled,  very  durable,  very  high   reusability  and  recyclability,   generally  expensive  to  produce  and   transport.

Flat  Glass  –  typically  sheets  of  clear   or  tinted  float,  laminated,  tempered,   wired,  etc     Shaped  Glass  –  curved,  blocks,   channels,  tubes,  fibers     Float  Glass  –  now  the  most  common   glass  production  process  in  the  world

ANNEALED GLASS

Clear Float  Glass  (annealed  glass)     The  simplest  and  cheapest  glass   product  available  in  the  market.  No   further  treatment  beyond  the  float   fabrication.     Ideal  in  low  risk,  low  cost,  small  size   glazing  scenarios.  Breaks  into  very   sharp  and  dangerous  shards.

Laminated Glass     A  tough  plastic  interlayer  (PVB)  is   bonded  together  between  two  glass   panes.   This  improves  the  security  and  safety   of  the  glass  product,  as  even  though   the  glass  can  still  crack,  the  sharp   fragments  tend  to  adhere  to  the   plastic  rather  than  falling  apart.

TEMPERED GLASS  (shower   screen)

Tempered Glass  (toughened  glass)     Produced  by  heating  annealed  glass   to  approximately  650°C,  at  which   point  it  begins  to  soften.  The   surfaces  of  this  heated  glass  are  then   cooled  (quenched)  rapidly  creating  a   state  of  high  compression  in  the   outer  surfaces  of  the  glass.

↓ continued…

As a  result  the  bending  strength  is   increased  by  a  factor  of  4-­‐5  times   that  of  annealed  glass  and  makes  it   break  (shatter)  into  small,  pallet   shaped  pieces  rather  than  sharp   shards,  improving  the  safety  of  the   product.   Ideal  to  used  in  highly  exposed   situations  (e.g.  Facades)  or  when  the   size  required  is  particularly  large.

WEEK 9

Construction Detailing

-­‐  Movement  Joints   -­‐  Health  and  Safety  (fire,  stairs,   ramps)   -­‐  Ageing  Gracefully   (deterioration/decay)   -­‐  Repairable  Surfaces  and  Resistance   to  Damage   -­‐  Cleanable  Surfaces   Constructability

Ageing  Copper

Monolithic Materials   A  single  material  or  materials   combined  so  that  components  are   indistinguishable  (e.g.  metal  alloys).

Composite Materials   Created  when  two  or  more  materials   are  combined  in  such  a  way  that  the   individual  materials  remain  easily   distinguishable.

Composite Materials   A  composite  is  formed  from  a:   -­‐  Combination  of  materials  that  differ   in  composition  or  form   -­‐  Remain  bonded  together   -­‐  Retain  their  identities/properties   -­‐  Act  together  to  provide  improved   specific  or  synergistic  characteristics   not  obtainable  by  any  of  the  original   components  acting  alone

Types

Composite materials  come  in  many   different  forms  but  can  be  grouped   into  four  main  types     -­‐  Fibrous  (fibers)   -­‐  Laminar  (e.g.  sandwich  panels)   -­‐  Particulate  (e.g.  gravel  and  resins)   -­‐  Hybrid  (combinations  of  two  or   more  composite  types)

Fiber Reinforced  Cement

FIBERGLASS BATH

Common forms  are  sheet  and  board   products,  pipes  and  roof  tiles.  It  is   water  and  termite  resistant  and  will   not  burn,  rot  or  warp.

Fiberglass Used  for  transparent/translucent   roof  and  wall  cladding,  pools,  baths,   etc.  It  is  fire  resistant,  weatherproof,   lightweight,  and  strong.

TIMBER  COMPOSITES   (POSI-­‐TRUSS)

Aluminium Sheet  Composites   Generally  come  in  a  honeycomb   sheet  lined  with  two  external  skins  of   thin  aluminium.  It  is  lightweight,   unbreakable  and  weather  resistant.

Timber Composites   Solid  and  engineered  timber  with   galvanized  steel  used  for  beams  and   trusses.  Min  material  used  for  max   efficiency  and  cost  effective.

SITE VISIT

KANE Construction’s  project  in   Melbourne’s  CBD  consists  of  adding   six  new  levels  on  top  of  the  19  floor   Owen  Dixon  Chambers  West   building.     The  building  required  a  tower  crane   to  be  positioned  on  the  existing  roof   with  works  being  undertaken  while   the  building  remained  occupied.

The  structure  is  formed  from  a  steel   frame,  concrete  and  a  curtain  wall.       In  this  image  part  of  the  frame  has   been  sprayed  with  fire-­‐rated   protection  to  make  sure  the  building   receives  the  minimal  amount  of   damage  and  can  last  longer  in  the   case  of  a  fire.

This  image  shows  part  of  the  newly   installed  curtain  wall.  The  panels  are   lifted  into  place  by  the  crane  and  the   crew  then  fixes  them  into  place.

The walls  in  the  building  are  a   structural  steel  frame  with  beams   along  the  top  and  bottom  and  posts   positioned  vertically.  The  posts  bend   quite  easily  however  when  fixed  in   place  properly  and  the  walls  and   plaster  are  finished  they  are  a   lightweight  and  strong  element.

Hebel flooring  was  used  as  it   provides  superior  strength,  thermal   and  acoustic  properties  in  a  load   bearing  modular  solid  aerated   concrete  flooring  system  while  being   lighter  in  weight  than  normal   concrete  panels.  This  is  significant   because  of  the  height  of  the  building   and  load  it  can  support.  The  hebel  is   reinforced  with  steel  for  strength.

Like  the  walls,  the  roof  framing  is   also  made  from  steel.  It  consists  of   many  different  sized  beams  and   trusses.  The  steel  frame  supports  the   roof  as  well  as  the  hebel  flooring  and   suspended  ceilings  on  other  floors.

WEEK 10

Collapses and  Failures

Failures  can  be  caused  by  a  variety  of   different  things  such  as  corrosion,   warping,  twisting,  cracking  and   breaking.  This  can  be  caused  by   exposure  to  weather  and  sun,  water   related  damage,  unexpected  high   loads  and  many  other  things.

When thinking  about  design  we   should  choose  materials  that  help  to   keep  a  safe  and  unpolluted   environment.  We  should  choose   natural  and  organic  materials  that   will  last  longer  and  can  be  reused  to   minimize  embodied  energy,   pollution,  environmental  impact,   energy  use  and  waste.  We  should   design  for  purpose  and  durability.

CONSTRUCTION WORKSHOP

In our  construction  workshop  we   were  given  two  long  pieces  of   plywood  and  two  pieces  of  pine  to   make  a  beam  that  would  span  one   meter  and  withstand  a  point  load.     We  used  one  piece  of  pine  as  a  long   beam  with  one  piece  of  pine   attached  on  each  side  for  extra   support  as  well  as  smaller  pieces  of   pine  in  between.

The  point  load  applied  to  our  beam   was  a  big  block  of  wood.     Our  beam  deflected  38  centimeters   and  held  a  load  of  approximately  300   kilograms  before  the  plywood  on   each  side  cracked.

Glossary

Noggin –  A  horizontal  element  inserted  between     wall  studs  for  strength   Brace  –  Serving  to  brace  (support)  a  structure       Parapet  –  A  low  protecting  wall  along  the  edge  of   Column  –  An  upright,  cylindrical  pillar  that   a  roof,  bridge  or  balcony   supports  part  of  a  structure       Point  Load  –  A  load  which  is  localised  to  a  specific   Compression  –  The  action  of  compressing  or   location  on  a  structure   being  compressed       Purlin  –  A  horizontal  beam  along  the  length  of  the   Eave  –  The  part  of  a  roof  that  meets  or  overhangs   roof   the  walls  of  a  building       Rafter  –  A  beam  forming  part  of  the  internal   Flashing  –  A  metal  strip  used  to  stop  water   framework  of  a  roof   penetrating  the  junction  of  a  roof  with  another     surface   Retaining  Wall  –  A  wall  that  holds  back  earth  or     water   Footing  –  The  supporting  base  or  groundwork  of     a  structure   Shear  Force  –  Unaligned  forces  pushing  one  part     of  an  element  in  one  direction  and  another  part  in   Frame  –  An  open  structure  that  gives  shape  and   the  opposite  direction   support  to  something       Skirting  –  A  wooden  board  running  along  the  base   Joist  -­‐  A  length  of  timber  or  steel  supporting  part   of  an  interior  wall   of  the  structure  of  a  building,  typically  arranged     in  parallel  series  to  support  a  floor  or  ceiling   Span  –  The  space  or  distance  between  two  points       Lintel  –  A  horizontal  support  across  the  top  of  a   Stability  –  The  state  of  being  stable   door  or  window       Stress  –  Pressure  or  tension  exerted  on  a  material   Load  Path  –  A  path  that  forces  pass  through  to   object   the  foundations  of  a  structure       Stud  –  An  upright  wall  framing  element   Masonry  -­‐  The  building  of  structures  from     individual  units  laid  in  and  bound  together  by   Substructure  –  An  underlying  or  supporting   mortar;  the  term  masonry  can  also  refer  to  the   structure   units  themselves     Tension  –  A  force  that  tends  to  stretch  an  element

References   -­‐  Weekly  e-­‐Learning  for  Constructing  Environments,  2014,  http://issuu.com/envs10003     -­‐  Constructing  Environments  Lectures,  2014     -­‐  Francis  D.K.  Ching,  Building  Constructed  Illustrated,  Fourth  Edition,  2008

2014-Constructing Environments Log Book - Rebecah Wiesner

Log Book Constructing Environments University of Melbourne

2014-Constructing Environments Log Book - Rebecah Wiesner

Log Book Constructing Environments University of Melbourne