Page 1

SOUNDPROOFING SOLUTIONS WOOD, STEEL AND MASONRY STRUCTURES


CONSTRUCTION SOLUTIONS

FLANKSOUND PROJECT

CLT

13

Wall - wall junctions

54

TIMBER FRAME

34

Wall - floor junctions

59

X-RAD

70

L junction

54

T junction

55

X junction

57

L junction

59

T junction

65

X junction

67

T vertical junction

70

X vertical junction

70

L horizontal junction

71

from page

011

T horizontal junction

71

X horizontal junction

72

from page

043 SOLUTIONS FOR STAIRS

from page

CONTENTS

175


RESILIENT PROFILES High-performance structural

90

Structural

110

For beams

120

For indoor use

124

XYLOFON XYLOFON WASHER XYLOFON WASHER TITAN SILENT

90 104 105 106

CORK ALADIN STRIPE TRACK GRANULO

110 112 118 119

SILENT BEAM SILENT UNDERFLOOR TIE-BEAM STRIPE CONSTRUCTION SEALING

120 121 122 123

SILENT GIPS GIPS BAND SILENT EDGE

124 125 126

SOUNDPROOFING FOILS

SEALING PRODUCTS

Underscreed

134

Foams

160

Foils for walls

140

Expanding tapes

162

Membranes for roofs

144

Plasterable tapes

166

Under floor

149

SILENT FLOOR SOFT

134

HERMETIC FOAM

160

SILENT FLOOR

136

SILENT FLOOR EVO

138

SILENT WALL MASS

140

SILENT WALL

142

TRASPIR METAL

144

SILENT STEP SOFT

149

SILENT STEP

150

SILENT STEP ALU

151

SILENT STEP UNI

152

FRAME BAND

162

KOMPRI BAND

164

PLASTER BAND IN

166

PLASTER BAND OUT

166

from page

153

from page

127

from page

081

COMPLEMENTARY PRODUCTS Membranes

170

Acrylic tapes

171

BARRIER 100

170

ALU BAND

171

FLEXI BAND

172

SPEEDY BAND

173

DOUBLE BAND

174

from page

167


A BRIEF GUIDE TO ACOUSTICS

SOUND WAVES AND ACOUSTICS THE ABC OF ACOUSTICS When a body starts vibrating, the air particles in contact with it begin to oscillate, setting in motion the adjacent ones and generating a perturbation in the medium, which spreads to the surrounding environment. This type of vibration can generate a sound wave that spreads through air, gas, liquid or solid objects with a speed that depends on the physical properties of the body.

Material

Speed of sound [m/s]

Dry air (15°) Water

1460

Brick

3650

Glass

5000

Cork

500

Elastic rubber

SOUND OR NOISE?

341

30 + 70

SOUND: when this pressure wave reaches our ear, the signal is translated through a complex series of organs into a nervous stimulus and finally becomes the feeling of sound we experience everyday. NOISE is related to the subjective judgement of a listening experience; it is commonly defined as an unwanted sound that disturbs the ongoing activities in our daily lives.

LOW FREQUENCY SOUND λ

ACOUSTICS AND PERCEPTION Measuring a sound means measuring a variation of sound pressure: pressure is a force per unit area and its unit of measure is the pascal (Pa). Frequency, wavelength and speed are linked by mathematical relationships.

lower frequency

HIGH-FREQUENCY SOUND λ

Wavelength = speed/frequency

λ=c/f

Wavelength = speed · period

λ = c · T [m]

[m]

THE GREATER THE

THE SHORTER THE

FREQUENCY (F)

WAVELENGTH (λ)

higher frequency

A SOUND WAVE IS DESCRIBED BY THESE PRECISE FACTORS: SPEED c: expressed in m/s, it depends on the physical properties of the body through which the wave spreads;

DID YOU KNOW...?

FREQUENCY f: measured in Hertz (Hz) it quantifies the number of complete oscillations made by the sound source in a second; PERIOD T: expressed in seconds (s), it is the inverse of frequency and describes the time required to perform a complete oscillation; WAVELENGTH λ: measured in metres (m), it quantifies the distance covered by the sound wave in a period; AMPLITUDE A: expressed in metres (m), it indicates the maximum extension of the oscillation.

4 | SOUND WAVES AND ACOUSTICS | A BRIEF GUIDE TO ACOUSTICS


A BRIEF GUIDE TO ACOUSTICS

NOISE PERCEPTION 140 PAIN, DAMAGE TO HUMANS

WHAT DECIBELS ARE (dB) 130

The decibel is the logarithmic unit used to measure the level of noise. As it spreads, a sound wave causes a local variation of the atmospheric pressure detectable by the human ear. The range of sensitivity of the human ear to pressure variation is very broad, therefore, its value is expressed with respect to a reference term in logarithmic scale. Hence the definition of decibel.

120

INTENSE DISCOMFORT PAIN

110

100

STRONG DISCOMFORT

90

LOGARITHMIC SCALE 80

Each 10 dB increase is an increase of ten times. For example, a 30 dB sound has ten times more energy than one at 20 dB and 100 times more than one at 10 dB.

DISCOMFORT

70

60

+ 3 dB

MODERATE DISCOMFORT INTERFERENCE

50

Since the decibel follows a logarithmic scale, it can be stated that a 3 decibel increase is equivalent to double the sound energy.

40

POSSIBLE LACK OF CONCENTRATION

30

A value of 60 dB (A) is normally considered as the limit for areas with intense human activity for the whole night period (10 pm - 6 am). These values are recommended by WHO (World Health Organisation) as the threshold not to be exceeded for public exposure to noise.

20

QUIET, SILENCE

10 AUDIBLE THRESHOLD

0

λ

A 0

0,5

T

130 dB

AEROPLANE AT TAKE-OFF AT 50 m

120 dB

AMBULANCE SIREN, CAR HORN AT APPROX. 1 m

110 dB

CLUB, ROCK CONCERT

95-100 dB

TRAIN PASSING

85-90 dB

HEAVY TRAFFIC AT 15 m

60-70 dB

VACUUM AT 3 m, NOISY OFFICE

50 dB

URBAN RESIDENCE

1

35-40 dB FAN

F

25-30 dB

NIGHT-TIME ENVIRONMENT, LIBRARY

10-15 dB

RUSTLING OF LEAVES, WHISPERING

A BRIEF GUIDE TO ACOUSTICS | NOISE PERCEPTION | 5


A BRIEF GUIDE TO ACOUSTICS

ACOUSTICS AND LIVING Acoustics is the science that deals with sound and architectural acoustics covers the behaviour of the sound field within an enclosed space, represented by the indoor environments of buildings.

LIVING COMFORT In building acoustics, sound is divided into two categories, depending on the mode of transmission: AIRBORNE NOISE: the medium carrying the sound energy is air. STRUCTURAL NOISE: the sound crosses the structure carrying the vibrations from room to room, even when not contiguous.

Wooden structures, like all lightweight constructions, do not have a high acoustic performance at low frequencies. This is particularly true concerning impact sounds and the transmission of structural vibration through the structure. For this purpose, we must stop the propagation of vibrations in order to obtain a reduction of noise transmission using resilient products employed according to the principle of desolidarisation. DESOLIDARISATION: construction technique or action which keeps elements isolated or separated when contact would allow the transmission of vibrations and, therefore, noise. RESILIENT PRODUCTS: elastic separating layers between rigid elements whose main task is to prevent the transmission of vibrations in the building structure (e.g. impacts or noise from footsteps) to its partitions. Working at the level of the structure allows to solve the problem at the source, giving a greater flexibility and tolerance during processing and modification of the subsequent layers, such as thermal and acoustic insulation or coverings and various kinds of dry linings.

ACOUSTIC COMFORT

The World Health Organisation (WHO) defines the concept of health as "a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity". Thus, acoustic comfort is the condition in which a person’s activity is not disturbed by the presence of other sounds and no damage occurs to the hearing system. In fact, exposure to noise causes psychological disorder and hinders the performance of normal human activities, reducing efficiency and the ability to concentrate.

6 | ACOUSTICS AND LIVING | A BRIEF GUIDE TO ACOUSTICS


A BRIEF GUIDE TO ACOUSTICS

ABSORPTION, TRANSMISSION OR REFLECTION

Wi = Wr + Wt + Wa

(tr an

sm

Wr (reflected)

a = Wa /Wi r = Wr /Wi

W

t

The absorption, reflection and transmission coefficients (a, r, τ) are defined as the ratio between the absorbed, reflected and transmitted sound power to the incident sound power.

itt ed )

Wa (absorbed)

When a sound wave impinges on a partition, part of the sound power is reflected into the source room (Wr); part of it is transmitted into the receiving room (Wt) and a third component is absorbed by the wall (Wa). Thus the incident sound power can be expressed as:

τ = Wt /Wi

(in

a+r+τ=1

W

i

ci de nt )

Therefore the relation holds:

It is crucial to distinguish between two different concepts and interventions: sound insulation and sound absorption.

SOUND INSULATION AND ABSORPTION The INSULATION of a partition is linked to the transmission of sound between rooms and is inversely proportional to τ. The SOUND ABSORPTION characterises the control over the sound field inside a room through maximising the absorption coefficient α, for example by decreasing the energy content of nth degree reflections through the use of sound absorbing materials. In building acoustics, reference is generally made to the apparent sound absorption coefficient α = (1-r). The reverberation time in an enclosed environment is closely tied to the room’s apparent sound absorption.

REVERBERATION TIME T60

60 dB

It is the time required by a stationary sound field to decay by 60 dB after the sound source has been switched off. It can be estimated from Sabine’s law: T60 = 0.161 V/A. V is the volume of the room (m3) and A is the equivalent absorption area (m2), which can be obtained by multiplying each surface of the room by its absorption coefficient.

50 dB 40 dB 30 dB 20 dB 10 dB 0 dB

A BRIEF GUIDE TO ACOUSTICS | ABSORPTION, TRANSMISSION OR REFLECTION | 7


A BRIEF GUIDE TO ACOUSTICS

METRICS IN BUILDING ACOUSTICS Building acoustics is a branch of acoustics that deals with the control of noise propagation in buildings. It specifically deals with the verification and optimisation of airborne sound insulation, impact sound insulation (or insulation against footsteps) and of building installations.

NORMALISED LEVEL DIFFERENCE Normalised level difference D2m,nT represents the difference in dB between the average temporal space of the noise pressure level measured externally and that measured inside the building, corresponding to a given reverberation time for the recipient environment.

D2m,nT = L1,2m - L2 + 10log(T/T0)

(dB)

Where L1,2m is the external sound pressure level measured at 2 m from the faรงade (dB), L2 is the sound pressure in the recipient environment (dB), T is the reverberation time in the recipient environment (s) and T0 is the reference reverberation time of 0,5 s.

APPARENT SOUND REDUCTION INDEX The apparent sound reduction index R' is defined as "minus 10 times the logarithmic relationship between the sound power transmitted into the receiving environment and the incident sound power on the separating element." It is commonly determined from measurements as:

R' = L1- L2 + 10log(S/A)

(dB)

where L1 is the sound pressure level in the source room (dB), L2 is the sound pressure level in the receiving room (dB), S is the area of the separating element (m2) and A is the equivalent absorption area in the receiving room (m2).

IMPACT SOUND INSULATION Normalised impact sound pressure Ln is the impact sound pressure level measured in the receiving room when a standardised tapping machine is active in the source room, corresponding to the reference equivalent absorption area in the receiving room.

L'n = Li + 10 log(A/A0)

(dB)

The impact sound pressure level can be alternatively normalised with respect to the reverberation time of the receiving room (standardised impact sound insulation LnT ). Each of these parameters is expressed as a function of frequency. To describe the behaviour of a partition with a single number, a special procedure is used (based on EN ISO 717-1 and EN ISO 717-2) that relates the performance of the wall under analysis to a reference curve. The weighted index takes the subscript W.

8 | METRICS IN BUILDING ACOUSTICS | A BRIEF GUIDE TO ACOUSTICS


A BRIEF GUIDE TO ACOUSTICS

DIRECT AND FLANKING TRANSMISSION ON SITE MEASUREMENTS VS. LABORATORY MEASUREMENTS

SOUND REDUCTION INDEX R

Sound insulation measurements return significantly different results when performed on site or in accredited laboratories. This is mainly due to two factors: first, when partitions are mounted in the laboratory, it is easier to control the quality of the installation. Second, on site measurements are affected by the presence of flanking transmission paths.

LABORATORY MEASUREMENTS Let’s take as an example a measurement of the sound reduction index of a wall. In the laboratory, the test wall is installed in test chambers expressly designed for the purpose which are structurally decoupled from each other. Therefore, the laboratory measurements characterise the transmission through the separating wall only (direct transmission), which is generally referred to as SOUND REDUCTION INDEX R.

Dd

ON SITE MEASUREMENTS When this quantity is measured on site, the result is typically lower than the value measured in a laboratory for the same wall. This occurs because the sound transmission between the rooms is characterised not only by direct transmission but also by flanking transmission, i.e. the contribution of the lateral walls to the propagation of sound into the receiving room.

NOTE: In the description of transmission paths, capital letters represent the wall excited in the source room, while the lower case letters represent the wall that radiates sound into the receiving room. The direct transmission path is identified as Dd, while for instance the transmission paths in which the separating wall is the "source" and a side wall radiates into the receiving room are identified as Df.

FLANKING TRANSMISSION PATHS When a sound source is switched on in the so-called “source room”, sound induces a vibrational state in the separating wall. Part of the energy is radiated directly into the receiving room by the wall itself (direct transmission, path Dd). The separating wall also transmits vibrations to the adjacent walls, which in turn radiate energy into the receiving room (path Df).

APPARENT SOUND REDUCTION INDEX R'

The sound source that excites the source room also induces a vibrational state in the side walls. From the side walls, sound energy can be radiated into the receiving room through two other transmission paths: through the separating wall (Fd) or through the side walls of the receiving room (Ff), completing the first order transmission paths. All these flanking quantities are added to the direct sound transmission and return to a lower value of sound insulation relative to that measured in the lab. When R is measured on site, it is generally referred to as APPARENT SOUND REDUCTION INDEX R‘.

Dd Ff

Fd Df

The contribution of the flanking transmission paths can be quite significant. Since most of the current laws require the acoustic requisites to be accomplished when measured on site, it is crucial for the acoustic designer to properly estimate the contribution of flanking transmission.

A BRIEF GUIDE TO ACOUSTICS | DIRECT AND FLANKING TRANSMISSION | 9


A BRIEF GUIDE TO ACOUSTICS

THE CEN MODEL (EN ISO 12354) The CEN model proposed in the EN ISO 12354 series of standards provides a powerful tool to predict the acoustic performance of a partition from the characteristics of the construction elements. The EN ISO 12354 series has been expanded to provide more specific information regarding timber frame and CLT structures.

EN ISO 12354-1:2017 Airborne sound insulation between rooms.

EN ISO 12354-2:2017 Impact sound insulation between rooms.

APPARENT SOUND REDUCTION INDEX EN ISO 12354 norms provide two methods to calculate the acoustic performance of a partition: the detailed method and the simplified method. When using the simplified calculation model, disregarding the presence of small technical elements and airborne transmission paths Dn,j,w, the apparent sound reduction index R‘w can be calculated as the logarithmic sum of the direct component RDd,w and the flanking transmission components Rij,w.

JUNCTIONS FOR CLT ELEMENTS EN ISO 12354-1:2017

3

K13 = 22 + 3,3 log f/fk K23 = 15 + 3,3 log f/fk

2

1

The sound reduction index for flanking transmission paths Rij,w can be estimated as:

4

where Ri,w and Rj,w are the sound reduction indices for flanking elements i and j, respectively; ΔRi, ΔRj are the sound reduction index improvements obtained through additional layers of element i in the source room and/ or element j in the receiving room; S is the area of the separating element and lij is the length of the junction between the separating wall and flanking elements i and j, l0 being the reference coupling length of 1 m. Among the input parameters required by the model, the sound reduction indices can be easily obtained from accredited laboratory measurements or from the manufacturers of construction elements. Additionally, a number of open-access databases offer data for frequently used construction solutions. The ΔRw can be estimated by modelling the wall-covering combination in terms of a mass-spring-mass system (EN ISO 12354 Annex D). The most critical parameter to estimate is THE VIBRATION REDUCTION INDEX Kij. This quantity represents the vibration energy dissipating into the junction, and is associated with the structural coupling of the elements. High values of Kij generate the best junction performance. Standard EN ISO 12354 provides some predictive estimates of two standard T and X junctions for CLT structures, which are shown on the right, but the experimental data available is still limited.

10 | THE CEN MODEL | A BRIEF GUIDE TO ACOUSTICS

1

3

2

K13 = 10 - 3,3 log f/fk +10 M K24 = 23 + 3,3 log f/fk K14 = 18 + 3,3 log f/fk fk = 500 Hz M = log (m‘perp,i /m‘i)


CONSTRUCTION SOLUTIONS


CONSTRUCTION SOLUTIONS


CONSTRUCTION SOLUTIONS

CLT SOLUTION_01 01

13

07

08

10

09

Rw ( C ; Ctr ) = 60 ( -1 ; -4 ) dB

Ln,w ( Cl ) = 42 ( 0 ) dB

STCASTM = 60

IICASTM = 42

STRATIGRAFIA A

f (Hz)

05. 06. 07. 08.

SILENT FLOOR (s: 5 mm) CLT (s: 160 mm) Resilient plasterboard connectors (s: 60 mm) Metal structure for plasterboard

12 f

5000

500

315

200

Ln,w = 42 (0)

f (Hz)

STRATIGRAFIA A2

STRATIGRAFIA A

04. Compact gravel fill with cement (1800 kg/m3) (s: 80 mm)

125

80

5000

3150

2000

20

1250

20

800

40

500

40

315

60

200

60

125

80

80

Ln (dB)

80

01. Concrete screed (2400 kg/m3) (s: 60 mm) 02. BARRIER 100 03. Mineral wool insulation s' ≤ 10 MN/m3(110 kg/m3) (s: 30 mm)

11

STRATIGRAFIA A

R (dB)

RW = 60 (-1 ; -4)

14

3150

02

2000

03

1250

04

800

06 05

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

Rw

[dB] 18,6 38,2 44,8 48,0 49,5 50,1 49,0 51,6 50,6 50,7 54,2 58,4 59,9 64,6 68,7 73,6 75,0 74,1 73,8 76,2 76,9 60

Ln,w

[dB] 69,1 67,3 59,7 52,9 51,1 46,6 49,4 47,5 41,8 40,5 38,8 36,7 34,5 30,1 27,5 22,5 18,2 17,1 17,3 13,8 12,5 42

09. Air chamber (s: 10 mm) 10. Mineral wool insulation low density (1,25 kg/m²) (s: 50 mm) 11. 12. 13. 14.

2 plasterboard panels (s: 25 mm) Resilient profile: XYLOFON Resilient profile: SILENT EDGE Fastening system: 8x240 mm HBS 300 mm step TITAN SILENT 800 mm step

CONSTRUCTION SOLUTIONS | CLT | 13


CONSTRUCTION SOLUTIONS

CLT SOLUTION_02 01

13

07

08

Ln,w ( Cl ) = 44 ( 1 ) dB

STCASTM = 59

IICASTM = 44

STRATIGRAFIA A2

f (Hz)

04. Compact gravel fill with cement (1800 kg/m3) (s: 80 mm) 05. 06. 07. 08.

SILENT FLOOR (s: 5 mm) CLT (s: 160 mm) Resilient plasterboard connectors (s: 60 mm) Metal structure for plasterboard

14 | CLT | CONSTRUCTION SOLUTIONS

11 f

Ln,W = 44 (1)

09. Air chamber (s: 10 mm) 10. Low density mineral wool insulation (1,25 kg/m²) (s: 50 mm) 11. 12. 13. 14.

Plasterboard panel (s: 12,5 mm) Resilient profile: XYLOFON Resilient profile: SILENT EDGE Fastening system: 8x240 mm HBS 300 mm step TITAN SILENT 800 mm step

5000

500

315

200

125

80

5000

3150

20

2000

20

1250

40

800

40

500

60

315

60

200

80

125

80

80

Ln (dB)

01. Concrete screed (2400 kg/m3) (s: 60 mm) 02. BARRIER 100 03. Mineral wool insulation s' ≤ 10 MN/m3 (110 kg/m3) (s: 30 mm)

12

STRATIGRAFIA 2A

R (dB)

RW = 59 (-1 ; -4)

10

09

Rw ( C ; Ctr ) = 59 ( -1 ; -4 ) dB

14

3150

02

2000

03

1250

04

800

06 05

f (Hz)

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

Rw

[dB] 18,7 34,9 36,9 43,8 45,6 49,1 49,9 49,1 49,4 48,7 53,0 57,4 59,9 64,6 68,9 74,2 74,9 74,6 75,1 78,4 79,9 59

Ln,w

[dB] 69,6 64,5 66,9 57,4 52,7 50,1 51,5 46,2 42,0 41,0 38,9 36,8 34,7 30,4 27,4 24,2 21,9 22,7 22,1 20,6 19,4 44


CONSTRUCTION SOLUTIONS

CLT SOLUTION_03 05

04

03

02

01

08

06

09

Rw ( C ; Ctr ) = 53 ( -1 ; -3 ) dB

Ln,w ( Cl ) = 48 ( 0 ) dB

STCASTM = 53

IICASTM = 48

STRATIGRAFIA 3A

07 f

STRATIGRAFIA 3A

RW = 53 (-1 ; -3)

f (Hz)

01. Concrete screed (2400 kg/m3) (s: 60 mm) 02. BARRIER 100 03. Mineral wool insulation s' ≤ 10 MN/m3(110 kg/m3) (s: 30 mm) 04. Compact gravel fill with cement (1800 kg/m3) (s: 80 mm)

L n,w = 48 (0)

06. 07. 08. 09.

5000

3150

2000

1250

800

500

315

200

80

5000

3150

2000

20

1250

20

800

40

500

40

315

60

200

60

125

80

80

80

125

Ln (dB)

R (dB)

f (Hz)

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

Rw

[dB] 15,5 27,8 35,3 46,1 43,8 45,7 47,6 46,4 45,8 44,9 46,6 47,4 50,3 55,7 58,2 61,6 62,8 64,8 66,6 69,6 71,6 53

Ln,w

[dB] 59,3 63,1 58,4 51,9 57,5 55,1 55,4 55,0 51,4 50,0 47,9 47,3 44,9 39,3 36,0 32,6 26,0 24,2 23,1 19,1 13,3 48

CLT (s: 160 mm) Resilient profile: XYLOFON Resilient profile: SILENT EDGE Fastening system: TITAN SILENT 800 mm step

05. SILENT FLOOR (s: 5 mm)

CONSTRUCTION SOLUTIONS | CLT | 15


CONSTRUCTION SOLUTIONS

CLT SOLUTION_04 06

05

04

03

02

01

Rw ( C ; Ctr ) = 57 ( -2 ; -9 ) dB

Ln,w ( Cl ) = 60 ( 0 ) dB

STCASTM = 57

IICASTM = 60

f

STRATIGRAFIA B

STRATIGRAFIA B R (dB)

Ln (dB)

80

80

60 60 40 40

RW = 57 (-2 ; -9)

f (Hz)

STRATIGRAFIA B

01. Concrete screed (2000 kg/m3) (s: 50 mm) 02. SILENT FLOOR EVO (s: 10 mm) 03. Mineral wool insulation s' ≤ 10 MN/m3(110 kg/m3) (s: 40 mm)

16 | CLT | CONSTRUCTION SOLUTIONS

5000

3150

2000

1250

800

500

315

200

125

20

80

5000

3150

2000

1250

800

500

315

200

125

80

20

f (Hz)

Ln,w = 60 (0)

STRATIGRAFIA 3dNET

04 . EPS-lightened screed (s: 120 mm) 05. BARRIER 100 06. CLT (s: 150 mm)

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

Rw

[dB] 30,7 37,1 40,8 46,3 46,1 49,5 51,6 54,4 55,7 59,6 64,5 67,6 69,8 72,1 71,8 74,1 74,5 71,1 57

Ln,w

[dB] 69,5 68,1 68,3 65,1 62,9 62,3 63,4 61,6 58,7 56,2 53,7 51,1 48,7 45,6 42,5 37,8 33,0 24,1 60


CONSTRUCTION SOLUTIONS

CLT SOLUTION_05 07

06

05

04

03

02

01

11

14

08

15

16

09

18

10

13

DnT,w ( C ; Ctr ) = 63 ( -3 ; -10 ) dB

L'nT,w ( Cl ) = 45 ( 2 ) dB

NNICASTM = 64

NIRSASTM = 45

12 f

40

30

30

20

20

10

D nT,w = 63 (-3 ; -10)

f (Hz)

01. 02. 03. 04. 05.

Wood floor (s: 15 mm) SILENT STEP (s: 2 mm) In-floor heating system (s: 70 mm) BARRIER 100 Mineral wool insulation s' ≤ 10 MN/m3 (110 kg/m3) (s: 30 mm)

06. 07. 08. 09. 10.

Compact gravel fill (s: 85 mm) CLT (s: 150 mm) Solid wood batten with resilient connectors Air chamber (s: 6 mm) Low density mineral wool insulation (1,25 kg/m²) (s: 40 mm) Fir covering (s: 19 mm)

L’nT,w = 45 (2)

2000

40

1000

50

500

50

2000

60

1000

60

500

70

250

70

250

DnT (dB)

125

L’nT (dB)

80

125

19

STRATIGRAFIA D TIROLO

STRATIGRAFIA D TIROLO

11.

17

f (Hz)

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

DnT,w [dB] 20,5 24,6 25,5 34,8 41,2 46,6 52,2 53,9 56 59,5 61,5 64,9 67,4 68,4 69,2 67,8 69,9 73,3 75,6 79,6 80,3 63

L'nT,w [dB] 61,8 61,3 63 58,7 55 52 50,9 49,5 47,7 42,4 40,5 38,5 38,3 35,5 32,7 31,1 28,9 26,6 22,4 17,6 11,4 45

12. Resilient profile: XYLOFON 13. Slab fastening system HBS 8x260 mm 300 mm step TITAN SILENT 1000 mm step 14. CLT (s: 100 mm) 15. Low density wood fibre insulation (s: 160 mm) 16. TRASPIR 17. NAIL BAND - NAIL PLASTER - GEMINI (s: 2 mm) 18. Wood ventilation batten (s: 32 mm) 19. Wood shingle covering (s: 30 mm) Façade fastening system screws DGZ

CONSTRUCTION SOLUTIONS | CLT | 17


CONSTRUCTION SOLUTIONS

CLT SOLUTION_06 04

07 06 05

08

03

02

09

11

01

12

10

L'nT,w ( Cl ) = 34 ( 0 ) dB

f

NISRASTM = 34

STRATIGRAFIA ALADIN L’nT (dB)

Without resilient profile L'nT,w ( Cl ) = 38 ( 1 ) dB NISRASTM = 38

50

40

30

20

L’nT,w = 38 (1)

L’nT,w = 35 (0)

L’nT,w = 34 (0)

5000

3150

2000

1250

800

500

315

200

125

80

10

with ALADIN STRIPE SOFT L'nT,w ( Cl ) = 35 ( 0 ) dB NISRASTM = 35

f (Hz)

STRATIGRAFIA G

01. 02. 03. 04. 05.

Wood floor (s: 15 mm) SILENT STEP UNI (s: 2 mm) Concrete screed (s: 70 mm) BARRIER 100 Mineral wool insulation s' ≤ 10 MN/m3 (s: 30 mm)

06. Gravel fill (1600 kg/m3) (s: 80 mm) 07. CLT (s: 146 mm)

18 | CLT | CONSTRUCTION SOLUTIONS

08. 09. 10. 11. 12.

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

Solid wood batten (b: 50 mm s: 150 mm) Air chamber Low density mineral wool insulation (s: 120 mm) 2 plasterboard panels (s: 25 mm) Resilient profile: ALADIN STRIPE EXTRA SOFT

L'nT,w [dB] 43,3 40,8 43,0 41,9 40,6 37,2 41,0 44,8 39,7 37,3 36,1 33,6 31,8 25,3 19,6 16,7 38

L'nT,w [dB] 44,6 40,6 41,4 40,6 37,7 33,6 35,1 35,2 32,2 27,6 24,7 22,2 18,3 13,2 8,0 7,3 34

L'nT,w [dB] 45,7 40,7 43,8 43,3 38,8 35,3 37,3 37,4 34,4 30,1 27,0 24,8 20,9 16,0 9,8 7,9 35


CONSTRUCTION SOLUTIONS

ROOF SOLUTION_01 01

04

02

05

06

07

08

Rw ( C ; Ctr ) = 44 ( -2 ; -8 ) dB

11

03

09

Without TRASPIR 3D COAT Rw ( C ; Ctr ) = 43 ( -1 ; -7) dB STCASTM = 44 LIA ( Cl ) = 36,9 ( A ) dB

10

LIA ( Cl ) = 32,7 ( A ) dB

f

STCASTM = 44

STRATIGRAFIA 3dNET

STRATIGRAFIA 3dNET R (dB)

RW = 43 (-2 ;-7)

01. 02. 03. 04. 05. 06.

RW = 44 (-2 ; -8)

Galvanised steel sheet metal (s: 0,6 mm) TRASPIR 3D COAT (s: 8 mm) Fir wood planking (s: 20 mm) Solid wood battens (s: 60 mm) TRASPIR High density wood fibre insulation (200 kg/m3) (s: 22 mm)

f (Hz)

LIA = 36,9 (A)

07. 08. 09. 10. 11.

LIA = 32,7 (A)

4000

2500

1600

1000

630

400

160

4000

20

2500

20

1600

40

1000

40

630

60

400

60

250

80

160

80

250

LIA (dB)

f (Hz)

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

Rw Rw LIA LIA

[dB] 20,2 22,6 27,8 30,7 34,8 37,2 39,0 40,6 43,7 48,6 50,2 54,6 59,5 60,7 62,0 63,1 64,7 67,2 44

[dB] 20,4 22,0 26,5 29,5 33,8 36,5 39,4 42,1 43,4 46,1 45,5 49,2 54,5 57,0 59,8 61,1 63,1 65,9 43

[dB] 29,7 34,0 33,3 33,1 30,8 30,6 29,5 27,8 25,3 21,6 20,3 15,6 12,0 10,4 8,8 5,7 4,4 2,8 32,7

[dB] 29,7 34,5 34,6 35,2 33,4 34,4 33,7 31,2 30,1 26,9 26,6 22,4 19,7 18,6 16,7 15,4 13,6 12,3 36,9

Wood fibre insulation (110 kg/m3) (s: 180 mm) VAPOR Fir wood planking (s: 20 mm) Fir glulam beam (s: 200 mm) Fastening with DGZ

CONSTRUCTION SOLUTIONS | ROOF | 19


CONSTRUCTION SOLUTIONS

CLT SOLUTION_07 04

03

02

01

05

Without profile LnT,w ( Cl ) = 45 ( 1 ) dB R'w ( C ; Ctr ) = 60 ( -1 ; -4) dB Ln,w ( Cl ) = 49 ( 1 ) dB DnT,w ( Cl ) = 59 ( -1 ; -4 ) dB

LnT,w ( Cl ) = 45 ( 1 ) dB

STRATIGRAFIA G

STRATIGRAFIA G

LnT,w = 45 (1)

f (Hz)

03. High density

02. High density wood

04. CLT (s: 160 mm)

20 | CLT | CONSTRUCTION SOLUTIONS

5000

3150

2000

1250

800

f (Hz)

STRATIGRAFIA G

01. High density cardboard

fibre insulation (s: 40 mm)

500

LnT,w = 43 (2)

STRATIGRAFIA G

and sand panels (s: 30 mm)

315

80

20

5000

20

3150

30

2000

30

1250

40

800

40

500

50

315

50

200

60

125

60

80

70

200

LnT (dB)

70

125

LnT (dB)

LnT,w ( Cl ) = 43 ( 2 ) dB

crushed gravel (s: 100 mm)

05. Resilient profile: XYLOFON

f

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

LnT,w [dB] 59,6 55,0 56,1 57,4 54,9 51,9 47,3 46,3 48,6 47,8 43,3 36,1 29,9 25,9 23,4 22,2 22,6 21,6 21,8 21,0 20,0 45

LnT,w [dB] 59,3 56,9 55,3 56,8 55,0 49,8 46,0 44,8 45,1 45,7 43,0 37,3 29,7 23,0 16,4 14,4 15,1 15,7 15,5 15,5 14,8 43


CONSTRUCTION SOLUTIONS

R'w ( C ; Ctr ) = 62 ( -1 ; -4 ) dB

FSTCASTM = 60

FSTCASTM = 61

20

Rw = 60 (-1 ; -4)

Rw = 62 (-1 ; -4)

f (Hz)

f (Hz)

Ln,w ( Cl ) = 49 ( 1 ) dB

Ln,w ( Cl ) = 47 ( 2 ) dB

AIICASTM = 49

AIICASTM = 47

STRATIGRAFIA G

Ln (dB)

4000

20

2500

30

1600

30

1000

40

630

40

160

50

4000

50

2500

60

1600

60

1000

70

630

70

400

80

250

R’ (dB)

80

160

R’ (dB)

f

STRATIGRAFIA G

400

STRATIGRAFIA G

250

R'w ( C ; Ctr ) = 60 ( -1 ; -4 ) dB

STRATIGRAFIA G

DnT,w ( C ; Ctr ) = 59 ( -1 ; -4 ) dB

5000

3150

2000

1250

800

500

315

80

f (Hz)

Ln,w = 49 (1)

200

20

5000

20

3150

30

2000

30

1250

40

800

40

500

50

315

50

200

60

125

60

80

70

125

Ln (dB)

70

f (Hz)

Ln,w = 47 (2)

DnT,w ( C ; Ctr ) = 61 ( -1 ; -4 ) dB

STRATIGRAFIA G

STRATIGRAFIA G

DnT,w = 59 (-1 ; -4)

f (Hz)

DnT,w = 61 (-1 ; -4)

5000

3150

2000

1250

800

500

315

20

200

20

5000

30

3150

30

2000

40

1250

40

800

50

500

50

315

60

200

60

125

70

80

70

125

DnT (dB)

80

DnT (dB)

f (Hz)

R'w

R'w

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

[dB] 31,4 35,1 38,3 47,8 44,5 49,6 54,0 53,8 51,4 49,4 52,4 56,3 59,5 60,7 65,1 66,5 67,1 67,7 66,0 64,5 60,8 60

[dB] 28,2 32,9 42,6 46,5 43,4 52,9 56,5 54,8 54,8 55,9 57,7 59,1 61,9 62,1 63,9 64,6 66,5 68,1 65,5 60,9 55,8 62

f

Ln,w

Ln,w

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

[dB] 63,8 59,3 60,4 61,6 59,1 56,1 51,6 50,5 52,8 52,0 47,5 40,4 34,2 30,1 27,6 26,4 26,8 25,8 26,0 25,2 24,3 49

[dB] 63,6 61,2 59,5 61,0 59,2 54,0 50,3 49,0 49,3 49,9 47,2 41,5 34,0 27,2 20,6 18,7 19,3 20,0 19,7 19,7 19,1 47

f

DnT,w

DnT,w

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

[dB] 30,7 34,3 37,6 47,1 43,8 48,9 53,3 53,1 50,7 48,7 51,7 55,6 58,8 60,0 64,4 65,8 66,4 67,0 65,3 63,8 60,1 59

[dB] 27,5 32,2 41,9 45,8 42,7 52,2 55,8 54,1 54,1 55,2 57,0 58,4 61,2 61,4 63,2 63,9 65,8 67,4 64,8 60,2 55,1 61

CONSTRUCTION SOLUTIONS | CLT | 21


CONSTRUCTION SOLUTIONS

CLT SOLUTION_08 06 05

04

03

02

01

20 19 18

17

16

13

23 22 21 15 14

11

08

07

09

10

FLOOR SLAB

DnT,w ( C ; Ctr ) = 62 ( -2 ; -9 ) dB R'w ( C ; Ctr ) = 62 ( -1 ; -8 ) dB FSTCASTM = 60 L'nT ( Cl ) = 47 ( 1 ) dB L'n ( Cl ) = 50 ( 1 ) dB AIICASTM = 47

01. 02. 03. 04.

Floor (s: 15mm) Concrete screed (2400 kg/m3) (s: 65 mm) BARRIER 100 Mineral wool insulation s' ≤ 10 MN/m3(110 kg/m3) (s: 30 mm)

05. 06. 07. 08. 09. 10. 11. 12.

EPS insulation (s: 50 mm) Gravel fill (s: 45 mm) CLT (s: 160 mm) Resilient plasterboard connectors (s: 60 mm) Metal structure with plasterboard (s: 50 mm) Air chamber (s: 10 mm) Low density mineral wool insulation (s: 50 mm) Plasterboard panel (s: 12,5 mm)

22 | CLT | CONSTRUCTION SOLUTIONS

12

24

WALL

DnT,w ( C ; Ctr ) = 70 ( -3 ; -9 ) dB R'w ( C ; Ctr ) = 66 ( -3 ; -9 ) dB FSTCASTM = 64

13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.

2 plasterboard panels (s: 25 mm) Metal plasterboard structure (s: 50 mm) Air chamber (s: 10 mm) Low density mineral wool insulation (s: 50 mm) CLT (s: 100 mm) High density mineral wool insulation (s: 30 mm) CLT (s: 100 mm) Low density mineral wool insulation (s: 30 mm) Air chamber (s: 10 mm) Metal plasterboard structure (s: 50 mm) 2 plasterboard panels (s: 25 mm) Fastening system 8x240 mm HBS 500 mm step WBR 100 1000 mm step


CONSTRUCTION SOLUTIONS

R'w ( C ; Ctr ) = 62 ( -1 ; -8 ) dB

f (Hz)

R’w= 66 (-3 ; -9)

5000

3150

2000

5000

3150

2000

1250

800

5000

3150

2000

1250

800

20

500

20

315

40

200

40

125

60

5000

60

3150

80

2000

80

1250

100

800

100

500

R’ (dB)

80

STRATIGRAFIA F STORA

DnT (dB)

315

500

FSTCASTM = 64

f (Hz)

DnT,w [dB] 18 18,9 21,9 37,9 41,2 45,5 49,4 51,5 53,9 56,7 68,2 69,8 74,1 78 80,7 83 84 79,9 78,9 83 87,2 62

L'nT

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

[dB] 74,3 66,5 61,9 58,7 54,3 53,1 53,4 51,6 49,8 47,6 43,7 42,1 40,8 40,3 38,9 33,4 28,7 27,5 23,5 16,1 13,8 47

f

DnT,w

STRATIGRAFIA F STORA R'w ( C ; Ctr ) = 66 ( -3 ; -9 ) dB

STRATIGRAFIA F STORA

200

315

80

STRATIGRAFIA F STORA

125

f (Hz)

L’ n= 50 (1)

f (Hz)

DnT,w ( C ; Ctr ) = 70 ( -3 ; -9 ) dB

200

20

5000

20

3150

40

2000

40

1250

60

800

60

500

80

315

80

200

100

125

100

125

STRATIGRAFIA F STORA

L’n (dB)

L’ nT = 47 (1)

f

AIICASTM = 47

L’nT (dB)

80

1250

L'n ( Cl ) = 50 ( 1 ) dB

STRATIGRAFIA F STORA

80

f (Hz)

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

STRATIGRAFIA F STORA

STRATIGRAFIA F STORA

DnT,w= 70 (-3 ; -9)

800

R’w = 62 (-1 ; -8)

f (Hz)

L'nT ( Cl ) = 47 ( 1 ) dB

500

5000

80

20

3150

20

2000

40

1250

40

800

60

500

60

315

80

200

80

125

R’ (dB) 100

80

DnT (dB)

315

STRATIGRAFIA F STORA

100

D nT,w = 62 (-2 ; -9)

f

FSTCASTM = 60

200

STRATIGRAFIA F STORA

125

DnT,w ( C ; Ctr ) = 62 ( -2 ; -9 ) dB

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

[dB] 10,4 26,2 40,1 45,4 48,7 47,5 55,6 58,5 65 69,8 72,8 76 77,9 79,9 81,6 86,1 88,4 86,5 81,1 87,1 92,2 70

R'w

[dB] 18 18,9 21,9 37,9 41,2 45,5 49,4 51,5 53,9 56,7 68,2 69,8 74,1 78 80,7 83 84 79,9 78,9 83 87,2 62

L'n

[dB] 77,7 69,8 65,2 62 57,6 56,4 56,7 54,9 53,1 50,9 47 45,4 44,1 43,7 42,2 36,7 32 30,8 26,8 19,5 17,1 50

R'w

[dB] 6,9 22,7 36,6 41,9 45,2 44 52,1 55 61,5 66,3 69,3 72,5 74,4 76,4 78,1 82,6 84,9 83 77,6 83,6 88,7 66

CONSTRUCTION SOLUTIONS | CLT | 23


CONSTRUCTION SOLUTIONS

CLT SOLUTION_09

04

11 10 09 08 07 06 05 03 02 01

f

Rw ( C ; Ctr ) = 59 ( -2 ; -7 ) dB STCASTM = 59

CONFIGURAZIONE A R (dB) 80

60

40

RW = 59 (-2 ; -7)

24 | CLT | CONSTRUCTION SOLUTIONS

5000

3150

2000

1250

800

500

315

200

20

125

Plasterboard panel (s: 12,5 mm) SILENT WALL (s: 4 mm) Plasterboard panel (s: 12,5 mm) Solid wood batten (s: 60 mm) Low density mineral wool insulation (s: 60 mm) CLT (s: 100 mm) Low density mineral wool insulation (s: 60 mm) Solid wood batten (s: 60 mm) Plasterboard panel (s: 12,5 mm) SILENT WALL (s: 4 mm) Plasterboard panel (s: 12,5 mm)

80

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11.

f (Hz)

CONFIGURAZIONE C

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

Rw

[dB] 34,9 46,1 44,5 46,0 50,2 50,2 51,3 53,4 57,1 61,8 64,5 67,8 71,0 72,3 74,6 75,0 74,9 73,3 59


CONSTRUCTION SOLUTIONS

CLT SOLUTION_10 01 02 03 04

05

Without profile Rw ( C ; Ctr ) = 44 ( -1 ; -6 ) dB STCASTM = 44

Rw ( C ; Ctr ) = 44 ( -1 ; -6 ) dB

Rw ( C ; Ctr ) = 46 ( -1 ; -5 ) dB

STCASTM = 44

STCASTM = 46

f

CONFIGURAZIONE C R (dB) 80

60

40

RW = 44 (-1 ; -6)

RW = 46 (-1 ; -5)

5000

3150

2000

1250

800

500

315

200

20

125

2 plasterboard panels (s: 25 mm) SILENT UNDERFLOOR (s: 4 mm) Solid wood batten (s: 60 mm) Low density mineral wool insulation (s: 60 mm) CLT (s: 100 mm)

80

01. 02. 03. 04 . 05.

f (Hz)

CONFIGURAZIONE D

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

Rw

[dB] 23,9 31,4 30,3 30,5 32,6 33,1 38,2 40,7 43,3 45,8 49,2 52,3 56,0 59,3 59,3 58,3 62,1 65,4 44

Rw

[dB] 25,6 32,4 35,3 34,5 34,9 36,2 38,1 40,4 44,7 47,9 50,7 53,9 56,5 60,4 61,6 59,8 63,8 67,7 46

CONSTRUCTION SOLUTIONS | CLT | 25


CONSTRUCTION SOLUTIONS

CLT SOLUTION_11

02 03

07 09 08 06 05 04 01

Without profile Rw ( C ; Ctr ) = 54 ( -2 ; -8 ) dB STCASTM = 56

Rw ( C ; Ctr ) = 54 ( -2 ; -8 ) dB

Rw ( C ; Ctr ) = 58 ( -2 ; -8 ) dB

STCASTM = 56

STCASTM = 59

f

CONFIGURAZIONE D R (dB) 80

60

40

RW = 54 (-2 ; -8)

26 | CLT | CONSTRUCTION SOLUTIONS

RW = 58 (-2 ; -8)

5000

3150

2000

1250

800

500

315

200

20

125

2 plasterboard panels (s: 25 mm) SILENT UNDERFLOOR (s: 4 mm) Solid wood batten (s: 60 mm) Low density mineral wool insulation (s: 60 mm) CLT (s: 100 mm) Low density mineral wool insulation (s: 60 mm) Solid wood batten (s: 60 mm) SILENT UNDERFLOOR (s: 4 mm) 2 plasterboard panels (s: 25 mm)

80

01. 02. 03. 04. 05. 06. 07. 08. 09.

f (Hz)

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

Rw Rw

[dB] 27,3 41,7 40,0 42,8 45,0 45,1 49,0 51,0 54,3 57,5 61,4 64,8 68,3 69,8 69,0 64,7 69,5 72,0 54

[dB] 31,7 45,9 46,9 47,0 49,0 50,7 51,2 52,6 56,6 60,8 64,1 67,0 69,6 71,6 72,6 70,1 72,3 72,0 58


CONSTRUCTION SOLUTIONS

CLT SOLUTION_12

01 02 03 04 09 05 06 07 08 10 12

11

f

Rw ( C ; Ctr ) = 58 ( -7 ; -15 ) dB STCASTM = 61

CONFIGURAZIONE E R (dB) 80

60

40

RW = 58 (-7 ; -15)

5000

3150

2000

1250

800

500

315

200

20

125

Plasterboard panel (s: 12,5 mm) Metal plasterboard structure (s: 50 mm) Air chamber (s: 10 mm) Low density mineral wool insulation (s: 60 mm) VAPOR CLT (s: 100 mm) Wood fibre insulation (s: 160 mm) TRASPIR GIPS BAND - NAIL BAND - NAIL PLASTER - GEMINI Wood ventilation batten (s: 50 mm) Wood shingle covering (s: 12,5 mm) Fastening system: pair DGZ 1 screws every 1000 mm

80

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12.

f (Hz)

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

Rw

[dB] 24,3 32,2 41,0 46,5 49,4 55,1 60,5 62,9 64,8 67,7 67,3 68,4 70,5 69,8 72,5 71,5 71,4 71,0 58

CONSTRUCTION SOLUTIONS | CLT | 27


CONSTRUCTION SOLUTIONS

CLT SOLUTION_13

01 02 03

f

Rw ( C ; Ctr ) = 37 ( -1 ; -4 ) dB STCASTM = 37

CONFIGURAZIONE F R (dB) 80

60

40

RW = 37 (-1 ; -4)

28 | CLT | CONSTRUCTION SOLUTIONS

5000

3150

2000

1250

800

500

315

200

125

20

80

01. CLT (s: 100 mm) 02. SILENT WALL (s: 4 mm) 03. Plasterboard panel (s: 12,5 mm)

f (Hz)

[Hz] 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000

Rw

[dB] 28,5 29,4 26,3 26,8 25,1 25,7 27,5 30,8 34,5 39,1 43,3 47,7 51,3 56,0 58,2 58,3 60,2 62,4 37


CONSTRUCTION SOLUTIONS

CLT EXAMPLES OF VIBRATION REDUCTION INDEX Kij (ISO 12354-1:2017) The final table provides all values to reconstruct the calculations conducted by rothoblaas. Additionally, the values of the Kij vibration reduction indices given by the presence or lack of the XYLOFON resilient profile are also provided. These values refer to the structure without further coverings or layers.

X JUNCTIONS

T JUNCTIONS

4

3 1 2

3

For the acoustic performance of additional linings ΔR, the data found in the www.dataholz.com database were used, together with experimental results known to rothoblaas. Finally, the formulas found in the international European standard EN ISO 12354 were also used.

2

1

CLT_01

STRATIGRAPHY A A

01. 02. 03. 04. 05. 06. 07.

Wood floor (15 mm) Concrete screed (50 mm) BARRIER 100 Mineral wool insulation (40 mm) EPS-lightened screed (120 mm) SILENT FLOOR EVO CLT (150 mm)

01. 02. 03. 04. 05. 06. 07.

Plaster (5 mm) High density wood fibre insulation (80 mm) High density wood fibre insulation (120 mm) CLT (100 mm) Solid wood batten (40 x 50 mm) Low density wood fibre insulation (40 mm) Plasterboard panel (12,5 mm)

B

STRATIGRAPHY B

Dnf,w = 64,0 dB LnDf,w = 7,5 dB CONSTRUCTION SOLUTIONS | CLT | 29


CONSTRUCTION SOLUTIONS

CLT_02

STRATIGRAPHY A

A

01. 02. 03. 04. 05. 06. 07.

Wood floor (15 mm) Concrete screed (50 mm) BARRIER 100 Mineral wool insulation (40 mm) EPS-lightened screed (120 mm) SILENT FLOOR EVO CLT (150 mm)

B

STRATIGRAPHY B 01. 02. 03. 04. 05. 05. 06.

Wood shingle covering (25 mm) Wood ventilation battens (40 mm) TRASPIR High density mineral wool insulation (100 mm) High density mineral wool insulation (100 mm) CLT (100 mm) Plasterboard panel (12,5 mm)

01. 02. 03. 04. 05. 06. 07.

Wood floor (15 mm) Concrete screed (50 mm) BARRIER 100 Mineral wool insulation (40 mm) EPS-lightened screed (120 mm) SILENT FLOOR EVO CLT (150 mm)

Dnf,w = 51,0 dB LnDf,w = 20,5 dB

CLT_03

STRATIGRAPHY A A

B

STRATIGRAPHY B 01. Plasterboard panel (12,5 mm) 02. CLT (100 mm) 03. Plasterboard panel (12,5 mm)

Dnf,w = 66,5 dB LnDf,w = 15,9 dB 30 | CLT | CONSTRUCTION SOLUTIONS


CONSTRUCTION SOLUTIONS

CLT_04

STRATIGRAPHY A

A

01. 02. 03. 04. 05. 06. 07.

Wood floor (15 mm) Concrete screed (50 mm) BARRIER 100 Mineral wool insulation (40 mm) EPS-lightened screed (120 mm) SILENT FLOOR EVO CLT (150 mm)

01. 02. 03. 04. 05. 06.

Plasterboard panel (12,5 mm) CLT (100 mm) Solid wood batten (50 mm) Low density mineral wool insulation (50 mm) Oriented strand board (OSB) (15 mm) Plasterboard panel (12,5 mm)

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11.

Wood floor (15 mm) Concrete screed (70 mm) BARRIER 100 Mineral wool insulation (40 mm) Compact gravel fill (50 mm) SILENT FLOOR EVO CLT (140 mm) Air chamber Solid wood batten (60 x 60 mm) Low density mineral wool insulation (70 mm) Plasterboard panel (15 mm)

B

STRATIGRAPHY B

Dnf,w = 76,9 dB LnDf,w = 14,4 dB

CLT_05 STRATIGRAPHY A A

B

STRATIGRAPHY B 01. Plasterboard panel (12,5 mm) 02. CLT (100 mm) 03. Plasterboard panel (12,5 mm)

Dnf,w = 63,6 dB LnDf,w = 27,7 dB CONSTRUCTION SOLUTIONS | CLT | 31


CONSTRUCTION SOLUTIONS

CLT_06

STRATIGRAPHY A

A

01. 02. 03. 04. 05. 06. 07.

Wood floor (15 mm) Concrete screed (50 mm) BARRIER 100 Mineral wool insulation (40 mm) EPS-lightened screed (120 mm) SILENT FLOOR EVO CLT (150 mm)

01. 02. 03. 04. 05.

CLT (80 mm) Plasterboard panel (12,5 mm) Mineral wool insulation (60 mm) Plasterboard panel (12,5 mm) CLT (80 mm)

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11.

Wood floor (15 mm) Concrete screed (70 mm) BARRIER 100 Mineral wool insulation (40 mm) Compact gravel fill (50 mm) SILENT FLOOR EVO CLT (140 mm) Air chamber Solid wood batten (60 x 60 mm) Low density mineral wool insulation (70 mm) Plasterboard panel (15 mm)

01. 02. 03. 04. 05.

Plasterboard panel (12,5 mm) CLT (100 mm) Mineral wool insulation (60 mm) CLT (100 mm) Plasterboard panel (12,5 mm)

B

STRATIGRAPHY B

Dnf,w = 56,0 dB LnDf,w = 17,4 dB

CLT_07 STRATIGRAPHY A A

B

STRATIGRAPHY B

Dnf,w = 57,3 dB LnDf,w = 39,2 dB 32 | CLT | CONSTRUCTION SOLUTIONS


CONSTRUCTION SOLUTIONS

CLT_08 STRATIGRAPHY A A

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11.

Wood floor (15 mm) Concrete screed (2200 kg/m3) (70 mm) BARRIER 100 Mineral wool insulation (40 mm) Compact gravel fill (50 mm) SILENT FLOOR EVO CLT (140 mm) Air chamber Solid wood batten (60 x 60 mm) Low density mineral wool insulation (70 mm) Plasterboard panel (15 mm)

B

STRATIGRAPHY B 01. 02. 03. 04. 05. 06. 07.

2 plasterboard panels (25 mm) Solid wood batten (60 mm) Low density mineral wool insulation (50 mm) CLT (100 mm) Low density mineral wool insulation (70 mm) Solid wood batten (60 mm) 2 plasterboard panels (25 mm)

Dnf,w = 77,0 dB LnDf,w = 31,2 dB

CLT_09

A

STRATIGRAPHY A 01. 02. 03. 04. 05. 06. 07.

Wood floor (15 mm) Concrete screed (50 mm) BARRIER 100 Mineral wool insulation (40 mm) EPS-lightened screed (120 mm) SILENT FLOOR EVO CLT (150 mm)

01. 02. 03. 04. 05. 06. 07. 08. 09.

2 plasterboard panels (25 mm) Solid wood batten (60 mm) Low density mineral wool insulation (70 mm) CLT (100 mm) Mineral wool insulation (60 mm) CLT (100 mm) Low density mineral wool insulation (70 mm) Solid wood batten (60 mm) 2 plasterboard panels (25 mm)

B

STRATIGRAPHY A

Dnf,w = 76,0 dB LnDf,w = 17,4 dB

CONSTRUCTION SOLUTIONS | CLT | 33


CONSTRUCTION SOLUTIONS

TIMBER FRAME_01 08 07

05 04 03 02 01

06 13 16 09 10 12 14 11 15 17

18

Dnf,w = 71,3 dB LnDf,w = 42,5 dB

TIMBER FRAME_02 09 08 07

06 04 03 02 01

17 10 13 14 15 12 11 16

05

Dnf,w = 61,0 dB LnDf,w = 21,5 dB 34 | TIMBER FRAME | CONSTRUCTION SOLUTIONS


CONSTRUCTION SOLUTIONS

TIMBER FRAME_03 09 07 08 06 04 03 02 01

16 10 13 12 15 14 11

05

Dnf,w = 61,0 dB LnDf,w = 21,5 dB

17

TIMBER FRAME_04 08 07 05

06 04 03 02 01

13 16 09 12 11 14 10 15 17

18

Dnf,w = 82,3 dB LnDf,w = 42,5 dB CONSTRUCTION SOLUTIONS | TIMBER FRAME | 35


CONSTRUCTION SOLUTIONS

TIMBER FRAME_01 01. 02. 03. 04. 05. 06. 07. 08.

Wood floor (20 mm) SILENT STEP High density mineral wool insulation (20 mm) Oriented strand board OSB (30 mm) I-joist beam (200 mm) Mineral wool insulation (200 mm) BARRIER 100 Plasterboard panel (12,5 mm)

09. 10. 11. 12. 13. 14. 15. 16. 17. 18.

Plasterboard panel (12,5 mm) BARRIER 100 Solid wood batten (60x60 mm) Low density mineral wool insulation (60 mm) Wood stud (80x140 mm) High density mineral wool insulation (140 mm) TRASPIR Wood ventilation batten (19x50 mm) Faรงade covering (20 mm) Resilient profile: ALADIN STRIPE

10. 11 12. 13. 14. 15. 16. 17.

Plasterboard panel (12,5 mm) Solid wood batten (60x60 mm) Air chamber (60 mm) VAPOR High density mineral wool insulation (60 mm) High density mineral wool insulation (60 mm) Oriented strand board panel OSB (12 mm) Wood stud (80x140 mm)

10. 11. 12. 13. 14. 15. 16. 17.

Plasterboard panel (12,5 mm) Solid wood batten (60 mm) Air chamber (60 mm) VAPOR High density mineral wool insulation (60+60 mm) Oriented strand board panel OSB (12 mm) Wood stud (140 mm) Resilient profile: ALADIN STRIPE

09. 10. 11. 12. 13. 14. 15. 16. 17. 18.

Plasterboard panel (12,5 mm) Solid wood batten (60x60 mm) Air chamber (60 mm) VAPOR Wood stud (80x140 mm) High density mineral wool insulation (140 mm) TRASPIR Wood ventilation batten (60x40 mm) Wood shingle covering (20mm) Resilient profile: ALADIN STRIPE

TIMBER FRAME_02

01. 02. 03. 04. 05. 06. 07. 08. 09.

Wood floor (20 mm) SILENT STEP High density mineral wool insulation (20 mm) Oriented strand board OSB (30 mm) SILENT BEAM Wood joist (200 mm) Metal structure for plasterboard (60 mm) Low density mineral wool insulation (60 mm) Plasterboard panel (12,5 mm)

TIMBER FRAME_03

01. 02. 03. 04. 05. 06. 07. 08. 09.

Wood floor (20 mm) SILENT STEP High density mineral wool insulation (20 mm) Oriented strand board OSB (30 mm) SILENT BEAM Wood joist (200 mm) Metal structure for plasterboard (60 mm) Low density mineral wool insulation (60 mm) Plasterboard panel (12,5 mm)

TIMBER FRAME_04

01. 02. 03. 04. 05. 06. 07. 08.

Wood floor (20 mm) SILENT STEP High density mineral wool insulation (20 mm) Oriented strand board OSB (30 mm) I-joist beam (200 mm) Mineral wool insulation (200 mm) Low density mineral wool insulation (60 mm) Plasterboard panel (12,5 mm)

36 | TIMBER FRAME | CONSTRUCTION SOLUTIONS


CONSTRUCTION SOLUTIONS

TIMBER FRAME EXAMPLES OF THE DIFFERENCE IN SPEED OF VIBRATIONS Dv,ij,n (ISO 12354-1:2017) Below are some construction solutions suitable for the XYLOFON profile. The final tables provide the values of the difference in vibration velocity levels averaged by the normalised direction. These values refer to the structure without further coverings or layers.

X JUNCTIONS

T JUNCTIONS

4

3 1 2

3

ISO 12354-1:2017 introduced the use of the term Dv,ij,n (difference in the vibration velocity level averaged by the normalised direction) to assess flanking transmission in "type B" structures (light frame), replacing the vibration reduction index Kij.

1

2

To use the ΔR contributions of the latter, it is possible to make use of lab test reports, or start with the formulations found in ISO 12354-1:2017 Annex D. The norms do not consider the effects of the different fastening systems.

TIMBER FRAME_05 STRATIGRAPHY A A

01. 02. 03. 04. 05. 06. 07. 08.

Wood floor (20 mm) Concrete screed (50 mm) BARRIER 100 Mineral wool insulation (50 mm) EPS-lightened screed (110 mm) SILENT FLOOR EVO Wood planking (24 mm) Wood beam (200 mm)

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.

2 plasterboard panels (25 mm) Solid wood batten (60 x 60 mm) Low density mineral wool insulation (60 mm) Oriented strand board panel OSB (12 mm) High density mineral wool insulation (140 mm) Oriented strand board panel OSB (12 mm) Air chamber (40 mm) Oriented strand board panel OSB (12 mm) High density mineral wool insulation (140 mm) Oriented strand board panel OSB (12 mm) Low density mineral wool insulation (60 mm) Solid wood batten (60 x 60 mm) 2 plasterboard panels (25 mm)

STRATIGRAPHY B B

Dnf,w = 85,3 dB Dnf,w = 86,9 dB (with sand and concrete screed) Dnf,w = 78,9 dB (without linings) LnDf,w = 36,0 dB LnDf,w = 36,0 dB (with sand and concrete screed) LnDf,w = 39,0 dB (without linings)

CONSTRUCTION SOLUTIONS | TIMBER FRAME | 37


CONSTRUCTION SOLUTIONS

TIMBER FRAME_06 STRATIGRAPHY A A

B

Dnf,w = 77,9 dB Dnf,w = 81,5 dB (with sand and concrete screed)

01. 02. 03. 04. 05. 06. 07. 08.

Wood floor (20 mm) Concrete screed (50 mm) BARRIER 100 Mineral wool insulation (50 mm) Compact gravel fill (100 mm) SILENT FLOOR EVO Wood planking (24 mm) Wood beam (200 mm)

01. 02. 03. 04. 05. 06. 07. 08. 09.

2 plasterboard panels (25 mm) Solid wood batten (60 x 60 mm) Low density mineral wool insulation (60 mm) Oriented strand board panel OSB (12 mm) High density mineral wool insulation (140 mm) Oriented strand board panel OSB (12 mm) Low density mineral wool insulation (60 mm) Solid wood batten (60 x 60 mm) 2 plasterboard panels (25 mm)

STRATIGRAPHY B

LnDf,w = 31,7 dB LnDf,w = 31,7 dB (with sand and concrete screed)

TIMBER FRAME_07 STRATIGRAPHY A A

B

Dnf,w = 91,3 dB Dnf,w = 86,3 dB (with CLT wall) LnDf,w = 22,0 dB LnDf,w = 25,5 dB (with CLT wall) 38 | TIMBER FRAME | CONSTRUCTION SOLUTIONS

01. 02. 03. 04. 05. 06. 07. 08.

Wood floor (20 mm) Concrete screed (50 mm) BARRIER 100 Mineral wool insulation (50 mm) EPS-lightened screed (110 mm) SILENT FLOOR EVO Wood planking (24 mm) Wood beam (200 mm)

01. 02. 03. 04. 05. 06. 07. 08. 09. 10.

Wood shingle covering (25 mm) Wood ventilation batten (60 x 40 mm) TRASPIR High density wood fibre insulation (60 mm) Oriented strand board panel OSB (12 mm) High density mineral wool insulation (140 mm) Oriented strand board panel OSB (12 mm) Low density mineral wool insulation (60 mm) Solid wood batten (60 x 60 mm) 2 plasterboard panels (25 mm)

STRATIGRAPHY B


CONSTRUCTION SOLUTIONS

TIMBER FRAME_08 STRATIGRAPHY A A

01. 02. 03. 04. 05. 06. 07.

Wood floor (20 mm) SILENT STEP Oriented strand board panel OSB (30 mm) Wood joist (210 mm) Low density mineral wool insulation (60 mm) Solid wood batten (60 x 60 mm) Plasterboard panel (12,5 mm)

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11.

Wood shingle covering (25 mm) Wood ventilation batten (60 x 40 mm) TRASPIR High density wood fibre insulation (60 mm) Oriented strand board panel OSB (12 mm) High density mineral wool insulation (140 mm) Oriented strand board panel OSB (12 mm) VAPOR Air chamber (60 mm) Solid wood batten (60 x 60 mm) Plasterboard panel (12,5 mm)

01. 02. 03. 04. 05. 06. 07.

Wood floor (20 mm) SILENT STEP Oriented strand board panel OSB (30 mm) Wood joist (210 mm) Low density mineral wool insulation (60 mm) Solid wood batten (60 x 60 mm) Plasterboard panel (12,5 mm)

01. 02. 03. 04. 05. 06. 07. 08.

Plasterboard panel (12,5 mm) Solid wood batten (60 x 60 mm) Air chamber (60 mm) Oriented strand board panel OSB (12 mm) High density mineral wool insulation (140 mm) Air chamber (60 mm) Solid wood batten (60 x 60 mm) Plasterboard panel (12,5 mm)

STRATIGRAPHY B B

Dnf,w = 82,3 dB LnDf,w = 42,5 dB

TIMBER FRAME_09 STRATIGRAPHY A A

STRATIGRAPHY B

B

Dnf,w = 67,5 dB LnDf,w = 19,5 dB CONSTRUCTION SOLUTIONS | TIMBER FRAME | 39


CONSTRUCTION SOLUTIONS

TIMBER FRAME_10 STRATIGRAPHY A

A

01. 02. 03. 04. 05. 06. 07. 08. 09.

Wood floor (20 mm) SILENT STEP Oriented strand board panel OSB (14 mm) Air chamber (40 mm) Solid wood batten (60 x 40 mm) High density mineral wool insulation (90 mm) Air chamber (25 mm) Solid wood batten (50 x 25 mm) Plasterboard panel (12,5 mm)

01. 02. 03. 04. 05. 06. 07. 08. 09.

2 plasterboard panels (25 mm) Solid wood batten (60 x 60 mm) High density mineral wool insulation (60 mm) Oriented strand board panel OSB (12 mm) High density mineral wool insulation (140 mm) VAPOR Low density mineral wool insulation (60 mm) Solid wood batten (60 x 60 mm) 2 plasterboard panels (25 mm)

01. 02. 03. 04.

Wood floor (20 mm) SILENT STEP I-joist beam (200 mm) Plasterboard panel (12,5 mm)

STRATIGRAPHY B

B

Dnf,w = 78,4 dB LnDf,w = 26,5 dB

TIMBER FRAME_11

A

STRATIGRAPHY A

STRATIGRAPHY B B

Dnf,w = 71,3 dB LnDf,w = 63,5 dB 40 | TIMBER FRAME | CONSTRUCTION SOLUTIONS

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12.

Wood covering (20 mm) Wood ventilation batten (60 x 40 mm) Oriented strand board panel OSB (12 mm) Air chamber (30 mm) Solid wood batten (50 x 30 mm) High density mineral wool insulation (140 mm) Air chamber (30 mm) Solid wood batten (50 x 30 mm) Oriented strand board panel OSB (12 mm) Low density mineral wool insulation (60 mm) Solid wood batten (60 x 60 mm) Plasterboard panel (12,5 mm)


CONSTRUCTION SOLUTIONS

TIMBER FRAME_12 STRATIGRAPHY A 01. 02. 03. 04. 05. 06. 07. 08. 09.

A

Wood floor (20 mm) SILENT STEP Oriented strand board panel OSB (14 mm) Air chamber (40 mm) Solid wood batten (60 x 40 mm) High density mineral wool insulation (90 mm) Air chamber (25 mm) Solid wood batten (50 x 25 mm) Plasterboard panel (12,5 mm)

STRATIGRAPHY B

B

01. 02. 03. 04. 05. 06. 07. 08. 09. 10.

Stone covering (90 mm) Metal structure for ventilation (30 mm) TRASPIR High density mineral wool insulation (30 mm) Oriented strand board panel OSB (12 mm) High density mineral wool insulation (140 mm) VAPOR Low density mineral wool insulation (60 mm) Solid wood batten (60 x 60 mm) 2 plasterboard panels (25 mm)

Dnf,w = 71,3 dB LnDf,w = 19,0 dB

TIMBER FRAME_13 STRATIGRAPHY A

A 01. 02. 03. 04. 05. 06. 07. 08. 09. 10.

Terracotta roof tiles (75 mm) BYTUM Fir wood planking (40 mm) Air chamber (40 mm) Solid wood batten (60 x 40 mm) TRASPIR High density wood fibre insulation (60 mm) Fir wood planking (120 mm) Fir wood planking (24mm) Wood beam (200 mm)

01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13.

2 plasterboard panels (25 mm) Solid wood batten (60 x 60 mm) Low density mineral wool insulation (60 mm) Oriented strand board panel OSB (12 mm) High density mineral wool insulation (140 mm) Oriented strand board panel OSB (12 mm) High density mineral wool insulation (40 mm) Oriented strand board panel OSB (12 mm) High density mineral wool insulation (140 mm) Oriented strand board panel OSB (12 mm) Low density mineral wool insulation (60 mm) Solid wood batten (60 x 60 mm) 2 plasterboard panels (25 mm)

STRATIGRAPHY B B

Dnf,w = 71,2 dB Dnf,w = 76,2 dB (with XYLOFON) Dnf,w = 83,3 dB (with XYLOFON and SILENT WALL)

CONSTRUCTION SOLUTIONS | TIMBER FRAME | 41


CONSTRUCTION SOLUTIONS

SUMMARY TABLE OF CLT CONSTRUCTION DETAILS AND ACOUSTIC INDICES ΔRw1 ΔRw2 ΔRw3 ΔRw4 ΔLw2 ΔLw3 [dB] [dB] [dB] [dB] [dB] [dB]

Rw1

Rw2

Rw3

Rw4

Lw2

Lw3

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

Kv13

Kv24

Kv23

Kv12

[dB]

[dB]

[dB]

[dB]

CLT_01

31

38

-

-

85

-

13

39

-

-

47

CLT_02

31

38

-

-

85

-

0

39

-

-

47

-

-

-

-

15

-

-

-

-

15

CLT_03

-

38

38

-

-

85

-

0

39

-

-

47

-

-

23

-

CLT_04

-

31

38

-

-

85

-

10

39

CLT_05

-

38

38

-

-

85

-

13

13

-

-

47

-

-

18

-

-

-

27

-

-

23

-

CLT_06

-

31

38

-

-

85

-

10

CLT_07

-

31

38

-

-

85

-

13

39

-

-

47

-

-

15

-

13

-

-

27

-

-

15

-

CLT_08

-

31

38

-

-

85

-

CLT_09

-

31

38

-

-

85

-

13

13

-

-

27

-

-

23

-

10

39

-

-

47

-

-

15

-

SUMMARY TABLE OF TIMBER FRAME CONSTRUCTION DETAILS AND ACOUSTIC INDICES Lw3 ΔRw1 ΔRw2 ΔRw3 ΔRw4 ΔLw2 ΔLw3 Dv13n Dv23n Dv24n Dv12n [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB]

Rw1

Rw2

Rw3

Rw4

Lw2

[dB]

[dB]

[dB]

[dB]

[dB]

TIMBER FRAME_01

42

38

42

-

55

-

7

-

7

-

-

-

34

29

-

29

TIMBER FRAME_02

65

32

65

32

-

54

0

7

0

7

-

-

36

18

22

-

[dB]

TIMBER FRAME_03

65

32

65

32

-

54

0

7

0

7

-

-

36

18

22

-

TIMBER FRAME_04

42

65

42

-

54

-

7

-

7

-

-

-

30

30

-

18

TIMBER FRAME_05

38

62

38

62

-

92

19

3

19

3

-

28

35,7

27

26,7 26,7

TIMBER FRAME_05 with sand and concrete screed

38

62

38

62

-

92

28

3

28

3

-

28

35,7

27

31,7 22,7

TIMBER FRAME_05 without linings

38

62

38

62

-

92

19

0

19

0

-

28

35,7

27

26,7 22,7

TIMBER FRAME_06

38

42

38

42

-

92

19

7

19

7

-

28

20,3 25,3 34,7 25,3

TIMBER FRAME_06 with sand and concrete screed

38

42

38

42

-

92

28

7

28

7

-

28

20,3 25,3 34,7 25,3

TIMBER FRAME_07

42

38

42

-

92

-

7

28

7

-

28

-

36,7

34

-

35

TIMBER FRAME_07 with CLT wall

37

38

37

-

92

-

7

28

7

-

28

-

36,7

34

-

34

TIMBER FRAME_08

42

65

42

-

54

-

7

-

7

-

0

-

30

30

-

18

TIMBER FRAME_09

65

32

62

32

-

54

0

7

0

10

-

0

20

20

30

20

TIMBER FRAME_10

42

53

42

-

55

-

7

-

7

-

0

-

34

29

-

29

TIMBER FRAME_11

42

38

42

-

92

-

7

-

7

-

-

-

34

29

-

29

TIMBER FRAME_12

42

38

42

-

55

-

7

-

7

-

0

-

34

29

-

29

TIMBER FRAME_13

36

62

36

-

-

-

0

3

0

-

-

-

36,7 36,7

-

-

TIMBER FRAME_13 with XYLOFON

36

62

36

-

-

-

0

3

0

-

-

-

41,7 41,7

-

-

TIMBER FRAME_13 with XYLOFON and SILENT WALL

43

72

43

-

-

-

0

3

0

-

-

-

41,7 41,7

-

-

DIMENSIONS USED IN THE CALCULATION

Ss

[m2] 10

S1

[m2] 12

S2

[m2] 10

S3

[m2] 12

X JUNCTIONS

T JUNCTIONS

Lf

[m] 85 4

3 1 2

3

1

42 | ACOUSTIC DATA AND INDICES | CONSTRUCTION SOLUTIONS

2


FLANKSOUND PROJECT


FLANKSOUND PROJECT


FLANKSOUND PROJECT Wall - wall junctions L junction - detail 01 - 04

54

T junction - detail 05 - 11

55

X junction - detail 12 - 15

57

Wall - floor junctions L junction - detail 16 - 35

59

T junction - detail 36 - 41

65

X junction - detail 42 - 46

67

X-RAD junctions T vertical junction - detail 47

70

X vertical junction - detail 48

70

L horizontal junction - detail 49 - 50

71

T horizontal junction - detail 51 - 52

71

X horizontal junction - detail 53 - 54

72


FLANKSOUND PROJECT

THE FLANKSOUND PROJECT EXPERIMENTAL MEASUREMENTS OF K ij FOR CLT JUNCTIONS Rothoblaas has funded a research aimed at measuring the vibration reduction index Kij for a variety of junctions between CLT panels, with the twofold aim of providing specific experimental data suitable for the acoustic design of CLT buildings and of contributing to development of the calculation methods. L, T and X junctions were tested during the measurement project. CLT panels were provided by seven different manufacturers and therefore underwent different production processes, showing different characteristics such as the number and thickness of the planks, the side gluing of the layers, and whether there are anti-shrinkage cuts in the core. Different kinds of screws and connectors were tested, as well as different resilient layers at the wall-floor junction.

HIGHLIGHTS 7 different CLT manufacturers L, T, X vertical and horizontal junctions influence of type and number of screws influence of type and number of angle brackets influence of type and number of holddowns use of resilient layers

The test set-up was arranged in the warehouse at Rothoblaas headquarters in Cortaccia (prov. Bolzano).

The vibration reduction index measurements were carried out in compliance with EN ISO 10848.

FASTENING HBS countersunk screw

TITAN F angle bracket for shear stresses on frame walls

VGZ total thread connector with cylindrical head

WHT angle bracket for tensile loads

TITAN N angle bracket for shear loads in solid walls

46 | FLANKSOUND PROJECT


FLANKSOUND PROJECT

MEASUREMENT CONFIGURATION THE MEASURING CHAIN: TOOLS AND DATA PROCESSING The vibration reduction index Kij is calculated as:

where Dv,ij (Dv,ji) is the difference in vibration velocity between the elements i and j (j and i) when element i (j) is excited (dB) Lij is the length of the junction shared between the elements i and j and a; are the equivalent absorption lengths elements of i and j, expressed as a function of panel surface S, frequency f and structural reverberation time Ts:

The source consisted of an electrodynamic shaker with sinusoidal peak force of 200 N, which was mounted on a heavyweight base and screwed to the CLT panels using a plate.

The velocity levels were measured using a pink noise source signal, filtered at 30 Hz in order to get reliable results from 50 Hz onwards. Structural reverberation times were calculated from impulse responses acquired using ESS test signals. The accelerometers were fixed to the panels using magnets. Eyelets were screwed to the panels with screws whose length was at least half of the thickness of the panels, in order to reach the innermost layer of the panel. The vibration reduction indices are reported in the one-third octave bands ranging from 100 to 3150 Hz, together with the value averaged over the one-third octave bands from 200 to 1250 Hz.

SOUNDPROOFING

X-RAD

XYLOFON high performance resilient profile

X-ONE universal connector for CLT panels

ALADIN STRIPE resilient profile

X-PLATE complete range of connection plates

CONSTRUCTION SEALING airtight profile

FLANKSOUND PROJECT | MEASUREMENT CONFIGURATION | 47


FLANKSOUND PROJECT

THE SIMPLIFIED METHOD A calculation example using EN ISO 12354

INPUT DATA As anticipated, the EN ISO 12354 series provides two methods to calculate the acoustic performance of a partition: the detailed method and the simplified method. Regarding airborne sound insulation, the simplified calculation model predicts the apparent sound energy as a single value based on the acoustic performance of the elements involved in the junction. Below is an example of a calculation evaluating the apparent sound reduction index between two adjacent rooms. In order to determine the acoustic performance of a partition from the acoustic performance of its components, it is important to determine for every junction element: The acoustic properties of the partition (Rw) The coupling between structural elements (Kij) The characteristics of each layer composing the partition

400 cm

400 cm

1

2

4

5

6

INTERNAL WALLS (1) 12,5 mm gypsum fibreboard 78 mm CLT 12,5 mm gypsum fibreboard

EXTERNAL WALLS (3, 4) 6 mm plaster 60 mm wood fibre panel 160 mm mineral wool 90 mm CLT 70 mm fir panels 50 mm mineral wool 15 mm plasterboard 25 mm plasterboard

320 cm

3

SEPARATING WALL (S) 25 mm plasterboard 50 mm mineral wool 75 mm CLT 50 mm mineral wool 25 mm plasterboard

INTERNAL WALLS (2) 75 mm CLT 50 mm mineral wool 25 mm plasterboard

The geometry of the partition (S)

PLAN

PARTITION CHARACTERISTICS

FLOORS (5, 6, 7, 8) 70 mm concrete screed 0.2 mm PE membrane 30 mm anti-footstep noise 50 mm backfill (loose) 140 mm CLT 60 mm mineral wool 15 mm plasterboard

SECTION

270 cm

7

8

400 cm

400 cm

48 | THE SIMPLIFIED METHOD | FLANKSOUND PROJECT

The data relative to the acoustic characterisation of the partitions was taken from DataHolz. www.dataholz.com


FLANKSOUND PROJECT

CALCULATION OF DIRECT AND FLANKING TRANSMISSION COMPONENTS The apparent sound reduction index is obtained from the contribution of the direct component and the flanking transmission paths, based on the following equation:

Considering only the first order transmission, there are three flanking transmission paths for each combination of partitions i-j, for a total of 12 Rij calculated using the equation:

ACOUSTIC CHARACTERISTICS OF THE PARTITIONS Path of transmission S 1 2 3 4 5 6 7

S [m2] 8,64 10,8 10,8 10,8 10,8 12,8 12,8 12,8

Rw [dB] 53 38 49 55 55 63 63 63

m‘ [kg/m2] 69 68 57 94 94 268 268 268

8

12,8

63

268

CHARACTERISATION OF THE JUNCTIONS JUNCTION 1-2-S X junction detail 12 (page 57)

DETERMINING THE APPARENT SOUND REDUCTION INDEX The simplified model has the unquestioned advantage of providing an easy-to-use tool to predict sound insulation. On the other hand, its application is quite delicate for CLT structures because the damping of each structural element is strongly affected by the assembly. It really deserves a dedicated modelling approach. Moreover, CLT panels provide poor insulation at low frequencies, thus the use of frequency weighted indices might return results which do not provide an accurate representation of actual behaviour in the low frequency region. Therefore the use of the detailed method is advised for accurate predictive analysis.

In the example provided, sound insulation for direct transmission gives Rw of 53 dB, if the contributions of flanking transmission are considered, R'w decreases to 51 dB.

R‘w = 51 dB

Rw = 53 dB

JUNCTION 3-4-S T JUNCTION detail 5 (page 55) JUNCTION 5-6-S X junction with resilient profile detail 43 (page 68) JUNCTION 7-8-S X junction with resilient profile detail 43 (page 68)

CALCULATING Rij Path of transmission 1-S 3-S 5-S 7-S S-2 S-4

Rij [dB] 60 68 83 75 66 68

Path of transmission S-6 S-8 1-2 3-4 5-6 7-8

Rij [dB] 83 75 64 77 75 75

FLANKSOUND PROJECT | THE SIMPLIFIED METHOD | 49


FLANKSOUND PROJECT

EXPRESSING THE RESULTS WALL - WALL JUNCTIONS L JUNCTIONS

2

T JUNCTIONS

X JUNCTIONS

1

1

4

3

3 1

4

K12 = K21

2

K14 = K41 K13 = K31

K43 = K34

K14 = K41 K12 = K21

K13 = K31 K42 = K24

WALL - FLOOR JUNCTIONS L JUNCTIONS

L JUNCTIONS

T JUNCTIONS

3

2 2

1

2

1 1

K12 = K21

K12 = K21

X JUNCTIONS

4 1

3 2

K13 = K31 K42 = K24

K23 = K32 K34 = K34

50 | EXPRESSING THE RESULTS | FLANKSOUND PROJECT

K13 = K31 K12 = K21

K23 = K32


FLANKSOUND PROJECT

The following pages report the results of the experimental measurement campaign for a selection of junctions. For each junction, the vibration reduction indices relative to the transmission paths involved are reported in 1/3 octave bands in the 100-3150 Hz range. Additionally, an average value (200-1250 Hz) is provided, which can be used for the simplified method, being careful to remember the limitations of using this method. Most of the data were directly measured. The results reported here are generally not based on a single measurement, but are averages obtained from a combination of measurements made for the same fastening system. One example is given by the vertical X junctions. It was observed that there are slight differences between transmission paths 1-2 and 2-3 due to the fact that the screws inserted in panel 2 also reach panel 3. In any case, given the uncertainties related to installation, difficult to control on site, this catalogue offers an average value between paths 1-2 (K12) and between 2-3 (K23).

EXPERIMENTAL MEASUREMENTS OF Kij

Another example involves the analysis of the panels obtained by seven different manufacturers. Given the discrepancies between the Kij values measured using the same fastening system but with panels from different manufacturers, the values provided in this catalogue represent an average value obtained from the various tests. This choice was made in order to return stable data that can take into account mounting tolerances and other variable factors, given that the goal of the catalogue is to serve as an acoustic design tool.

X-RAD SYSTEM JUNCTIONS T VERTICAL JUNCTIONS

X VERTICAL JUNCTIONS

3

1

2

4

L HORIZONTAL JUNCTIONS

2

3

2

1

1

K1-2 = K2-1 K1-3 = K3-1

K12 = K21 K13 = K31

T HORIZONTAL JUNCTIONS

K24 = K42

K1-2 = K2-1

X HORIZONTAL JUNCTIONS

4

3

4

3

1 2

K43 = K34 K24 = K24

2

K13 = K31 K24 = K42

K34 = K43

FLANKSOUND PROJECT | EXPRESSING THE RESULTS | 51


FLANKSOUND PROJECT

SYNOPTIC TABLE SOUNDPROOFING SOLUTION

DETAIL

HBS

VGZ

WHT

TITAN

LVB

WBR

CONSTRUCTION SEALING

XYLOFON

ALADIN STRIPE

TITAN SILENT

WALL - FLOOR JUNCTIONS

WALL - WALL JUNCTIONS

FASTENING SYSTEM

01

HBS8240 p: 200

-

-

-

-

-

-

-

-

-

02

HBS8240 p:400

-

-

-

-

-

-

-

-

-

3

-

VGZ7260 p:600

-

-

-

-

-

-

-

-

4

-

VGZ9400 p:300

-

-

-

-

-

-

-

-

5

HBS8240 p:400

-

-

-

-

-

-

-

-

-

6

HBS8240 p:400

-

-

-

-

-

-

-

-

7

-

VGZ7260 p:400

-

-

-

-

-

-

-

8

-

VGZ7260 p:400

-

-

-

-

-

-

-

9

HBS8240 p:400

-

-

TTF200 p:600

-

-

-

-

-

-

10

-

VGZ7260 p:600

-

TTF200 p:600

-

-

-

-

-

-

11

HBS8200 p:400

-

-

-

-

-

-

-

-

-

12

HBS8240 p:400

-

-

-

-

-

-

-

-

-

13

HBS8240 p:400

-

-

-

-

-

-

-

-

14

-

VGZ7260 p:400

-

-

-

-

-

-

-

15

-

VGZ7260 p:400

-

-

-

-

-

-

-

16

-

-

-

TTN240 p:1000

-

-

-

-

-

-

17

-

-

-

TTF200 p:1200

-

-

-

-

-

-

18

HBS8240 p:300

-

-

-

-

-

-

-

-

-

19

HBS8240 p:300

-

-

-

-

-

-

-

-

20

-

VGZ9400 p:600

-

-

-

-

-

-

-

21

-

VGZ9400 p:600

-

-

-

-

-

-

-

22

-

-

-

TCN240+TCW240

-

-

-

-

-

-

23

-

-

WHT340

-

-

-

-

-

-

-

24

-

-

WHT620

-

-

-

-

-

-

-

25

-

-

WHT620

-

-

-

-

-

-

-

26

HBS8240 p:300

-

WHT440

-

-

-

-

-

-

-

27

HBS8240 p:300

-

WHT440

TTN240 p:800

-

-

-

-

-

-

28

HBS8240 p:300

-

WHT440

TTN240 p:800

-

-

-

-

-

29

HBS8240 p:300

-

WHT440

TTN240 p:800

-

-

-

-

30

HBS8240 p:300

-

WHT440

TTN240 p:800

-

-

-

-

-

31

HBS8240 p:300

-

WHT440

TTN240 p:800

-

-

-

-

-

32

HBS8240 p:300

-

WHT440

TTN240 p:800

-

-

-

-

33

-

VGZ9400 p:600

WHT440

-

-

-

-

-

-

-

34

-

VGZ9400 p:600

WHT440

TTN240 p:800

-

-

-

-

-

-

35

-

VGZ9400 p:600

WHT440

TTN240 p:800

-

-

-

-

-

52 | SYNOPTIC TABLE | FLANKSOUND PROJECT

p:1400

-

-

-


FLANKSOUND PROJECT

VGZ

WHT

TITAN

LVB

WBR

CONSTRUCTION SEALING

-

WHT440

TTN240 p:800

-

-

-

-

37

HBS8240 p:300

-

WHT440

TTN240 p:800

-

-

-

-

38

-

-

WHT440

TTN240 p:800

-

-

-

39

-

-

WHT440

TTN240 p:800

-

-

-

40

HBS8240 p:300

-

-

TTN240 p:800

PF703065

-

-

41

HBS8240 p:300

-

-

TTN240 p:800

PF703065

-

-

42

HBS8240 p:300

-

WHT440

TTN240 p:800

-

-

-

43

HBS8240 p:300

-

WHT440

TTN240 p:800

-

-

-

44

-

-

WHT440

TTN240 p:800

-

-

-

45

-

-

WHT440

TTN240 p:800

-

-

-

-

46

HBS8240 p:500

-

-

-

-

WBR100

-

-

-

-

-

-

-

-

-

-

-

-

-

shape X level TOP

shape O level TOP

shape O level MID

CONSTRUCTION SEALING

XYLOFON

ALADIN STRIPE

TITAN SILENT

shape T level TOP

DETAIL

X-RAD

-

SOUNDPROOFING SOLUTION

FASTENING SYSTEM

47

-

ALADIN STRIPE

HBS HBS8240 p:300

XYLOFON

DETAIL

WALL - FLOOR JUNCTIONS

36

TITAN SILENT

SOUNDPROOFING SOLUTION

FASTENING SYSTEM

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

48

-

49

-

-

-

-

50

-

-

-

-

51

-

-

-

-

52

-

-

-

-

53

-

-

-

-

54

-

-

-

-

-

-

-

-

-

-

-

-

-

-

LEGEND: p Step FLANKSOUND PROJECT | SYNOPTIC TABLE | 53


WALL - WALL JUNCTIONS

01. L JUNCTION 100

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 200 mm

2

200

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

K12 (dB)

12,8

9,4

3,9

2,3

2,3

0,2

3,7

4,6

6,6

8,1

1000 1250 1600 2000 2500 3150 9,6

11,7

15,0

15,4

15,9

16,8

AVG 200-1250 5,5

02. L JUNCTION FASTENING SYSTEM

100

Screws HBS Ø8 X 240 mm (HBS8240) step 400 mm

2

400

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

11,4

9,8

2,9

2,1

2,7

1,8

6,3

8,3

10,1

12,6

12,9

16,1

18,3

16,9

19,6

22,2

AVG 200-1250 8,1

03. L JUNCTION FASTENING SYSTEM

100

Screws VGZ Ø7 X 260 mm (VGZ7260) step 600 mm

2

600

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

16,5

15,1

6,4

11,5

11,3

9,8

11,7

12,8

15,0

15,5

16,0

54 | WALL - WALL JUNCTIONS | FLANKSOUND PROJECT

19,7

18,8

19,8

22,5

23,0

AVG 200-1250 13,7


WALL - WALL JUNCTIONS

04. L JUNCTION FASTENING SYSTEM

100

Screws VGZ Ø9 X 400 mm (VGZ9400) step 300 mm

2

300

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

19,0

16,7

9,6

14,5

12,0

10,8

8,7

11,2

10,2

13,9

14,3

16,1

17,9

17,7

18,5

19,9

AVG 200-1250 12,4

05. T JUNCTION FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 400 mm

100 1

3 400

RESILIENT PROFILE

NO

4 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

K14 | K34 (dB)

6,9

7,6

5,9

5,5

5,9

5,9

7,3

8,0

11,0

10,8

12,8

12,6

14,6

16,0

18,2

19,2

8,9

K13 (dB)

8,6

9,2

7,2

7,7

10,3

9,8

12,6

16,0

20,9

21,2

25,6

28,1

29,6

33,4

34,9

37,8

16,9

06. T JUNCTION FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 400 mm

100 1

3 400

RESILIENT PROFILE

CONSTRUCTION SEALING 4 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

K14 | K34 (dB)

4,4

4,3

3,5

5,8

7,4

3,7

7,6

12,4

12,0

15,9

16,7

18,4

19,1

20,5

24,3

26,2

11,1

K13 (dB)

10,3

8,2

2,6

3,3

9,8

7,3

15,0

18,6

18,3

27,9

25,9

30,6

30,7

37,4

39,7

41,2

17,4

FLANKSOUND PROJECT | WALL - WALL JUNCTIONS | 55


WALL - WALL JUNCTIONS

07. T JUNCTION FASTENING SYSTEM

Screws VGZ Ø7 X 260 mm (VGZ7260) step 400 mm

100 1

3 400

RESILIENT PROFILE

NO

4 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

K14 | K43 (dB)

1,3

4,7

4,2

5,1

5,8

1,3

9,5

9,5

12,0

12,9

14,8

16,5

16,5

20,8

24,0

25,6

9,7

K13 (dB)

3,7

4,3

7,5

5,2

5,6

4,3

14,9

15,4

17,6

19,5

26,4

27,8

27,8

34,2

38,8

43,8

15,2

08. T JUNCTION FASTENING SYSTEM

Screws VGZ Ø7 X 260 mm (VGZ7260) step 400 mm

100 1

3 400

RESILIENT PROFILE

CONSTRUCTION SEALING

4 100

f (Hz)

100

125

160

200

250

315

400

500

630

K14 | K43 (dB)

4,6

2,6

2,0

4,3

4,8

4,1

K13 (dB)

7,3

5,1

3,3

6,7

6,9

7,2

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

10,2

11,0

13,2

15,3

15,3

17,4

17,2

21,7

24,7

25,8

10,6

14,5

18,0

17,9

20,2

25,6

30,8

31,4

37,4

39,3

41,1

16,4

09. T JUNCTION FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 400 mm Angle brackets TITAN (TTF200) step 600 mm

100 1

400

3

600

RESILIENT PROFILE

NO

4 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K14 (dB)

8,1

12,6

6,2

8,7

11,0

8,4

10,0

13,2

18,9

16,7

16,2

13,4

16,2

K13 (dB)

4,4

-0,2

2,9

7,9

14,6

13,4

9,4

13,7

16,5

14,7

16,7

20,0

K34 (dB)

3,2

-1,7

-2,0

0,4

3,8

2,7

0,9

6,7

7,4

6,4

6,1

10,5

56 | WALL - WALL JUNCTIONS | FLANKSOUND PROJECT

AVG 200-1250

24,5

23,5

28,3

12,9

23,4

27,1

28,4

29,6

14,1

10,7

10,8

11,3

13,3

5,0


WALL - WALL JUNCTIONS

10. T JUNCTION FASTENING SYSTEM

Screws VGZ Ø7 X 260 (VGZ7260) mm step 600 mm Angle brackets TITAN (TTF200) step 600 mm

100 1

3 600 600

RESILIENT PROFILE

NO

4 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

K14 (dB)

6,3

9,3

9,6

9,9

9,8

5,7

8,7

11,5

12,6

12,1

14,5

15,1

15,2

20,1

24,1

22,6

11,1

K13 (dB)

7,4

9,8

12,1

11,9

13,4

9,9

14,5

15,4

16,1

18,5

22,2

21,0

21,8

26,2

28,7

29,2

15,9

K34 (dB)

7,9

12,0

7,3

6,6

8,2

4,3

6,3

7,8

8,4

9,4

11,2

11,0

11,2

14,9

16,0

15,5

8,1

11. T JUNCTION FASTENING SYSTEM

Screws HBS Ø8 X 200 (HBS8200) mm step 400 mm

100 1

3 400

RESILIENT PROFILE

NO

4 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K14 (dB)

11,1

7,2

6,7

8,0

7,7

10,7

8,1

7,3

8,4

8,8

9,4

10,0

10,0

13,3

13,5

13,2

8,7

K13 (dB)

11,3

7,5

4,6

3,4

4,4

6,5

8,7

8,1

6,3

4,3

4,9

2,6

2,9

4,8

4,5

4,1

5,5

12. X JUNCTION

AVG 200-1250

100

FASTENING SYSTEM

4

Screws HBS Ø8 X 240 mm (HBS8240) step 400 mm

100

RESILIENT PROFILE

1

NO

3

2

f (Hz)

100

125

160

200

250

315

400

500

630

K14 (dB) K12 (dB)

800

1000 1250 1600 2000 2500 3150

13,1

12,4

13,7

10,8

13,2

12,2

12,8

14,4

9,9

10,4

8,7

8,0

9,8

7,7

8,4

9,4

AVG 200-1250

15,9

17,0

19,7

21,2

25,0

27,9

29,7

32,6

15,2

11,2

10,1

11,5

12,3

15,0

16,8

18,0

21,2

9,8

K13 (dB)

12,5

12,1

12,7

12,3

14,6

13,3

11,9

14,0

16,8

16,8

20,5

21,7

23,9

27,5

28,3

31,6

15,8

K42 (dB)

12,9

11,2

11,6

9,8

12,7

12,5

11,6

11,9

13,8

12,6

13,4

13,9

16,8

18,6

20,7

22,9

12,5

FLANKSOUND PROJECT | WALL - WALL JUNCTIONS | 57


WALL - WALL JUNCTIONS

13. X JUNCTION

100

FASTENING SYSTEM

4

Screws HBS Ø8 X 240 mm (HBS8240) step 400 mm

100

RESILIENT PROFILE

1

CONSTRUCTION SEALING

3

2

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K14 (dB)

11,4

8,5

6,9

10,1

14,1

10,9

K12 (dB)

5,9

6,3

7,3

6,3

8,4

6,1

K13 (dB)

13,4

12,3

11,0

12,9

15,5

14,6

K42 (dB)

9,5

8,1

9,0

8,2

12,7

11,5

14,6

17,1

16,9

20,9

22,0

22,8

28,7

33,4

37,2

39,3

16,6

8,5

11,6

12,2

13,6

12,8

16,5

17,6

19,6

23,6

25,1

10,7

17,0

17,5

19,7

26,4

25,1

28,1

27,4

35,4

39,9

39,6

19,6

14,3

13,3

17,1

18,5

17,3

20,5

23,9

24,4

29,2

32,8

14,8

14. X JUNCTION

AVG 200-1250

100

FASTENING SYSTEM

4

Screws VGZ Ø7 X 260 mm (VGZ7260) step 400 mm

100

RESILIENT PROFILE

1

NO

3

2

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K14 (dB)

11,0

8,6

8,9

9,7

10,1

7,1

12,3

13,4

15,1

17,8

19,8

23,3

24,9

30,8

33,7

AVG 200-1250

37,3

14,3

K12 (dB)

7,8

8,7

7,1

6,5

6,7

3,3

8,7

10,0

13,1

12,5

16,1

17,0

17,2

21,2

20,2

24,3

10,4

K13 (dB)

9,8

9,6

13,6

12,0

9,5

8,7

15,9

17,5

18,7

20,8

26,7

28,2

27,9

35,7

36,4

42,6

17,5

K42 (dB)

13,0

9,8

5,5

5,6

7,8

8,0

11,8

9,6

13,6

17,6

18,3

20,8

19,8

27,4

30,3

29,1

12,6

15. X JUNCTION

100

FASTENING SYSTEM

4

Screws VGZ Ø7 X 260 mm (VGZ7260) step 400 mm 100

RESILIENT PROFILE

1

CONSTRUCTION SEALING

3

2

f (Hz)

100

125

160

200

250

K14 (dB) K12 (dB)

315

400

500

630

800

1000 1250 1600 2000 2500 3150

10,5

7,2

5,1

6,0

7,4

5,1

1,7

4,3

K13 (dB)

10,2

9,9

2,5

K42 (dB)

10,1

7,9

9,0

9,9

8,1

11,5

14,3

16,8

18,4

22,0

25,1

27,5

33,5

36,1

36,4

14,7

5,1

4,4

9,8

11,8

12,9

14,2

15,8

17,5

16,9

22,2

26,1

25,4

10,7

9,9

12,2

10,1

14,1

18,5

19,8

21,8

26,1

31,8

31,9

38,6

42,7

42,0

18,3

5,7

11,0

11,1

15,1

16,5

19,4

19,2

21,7

23,8

24,4

32,7

34,7

35,3

15,9

58 | WALL - WALL JUNCTIONS | FLANKSOUND PROJECT

AVG 200-1250


WALL - FLOOR JUNCTIONS

16. L JUNCTION FASTENING SYSTEM

100 2

Angle brackets TITAN (TTN240) step 1000 mm

1000

RESILIENT PROFILE

NO

1 160

f (Hz)

100

125

160

200

250

315

400

500

630

800

K12 (dB)

9,7

8,0

11,8

7,5

10,0

7,6

11,4

11,1

10,4

10,0

1000 1250 1600 2000 2500 3150 9,8

12,3

15,9

16,5

17,4

13,3

AVG 200-1250 10,0

17. L JUNCTION FASTENING SYSTEM

100 2

Angle brackets TITAN (TTF200) step 1200 mm

1200

RESILIENT PROFILE

NO

1 160

f (Hz)

100

125

160

200

250

315

400

500

630

800

K12 (dB)

8,4

10,0

12,1

6,5

11,3

6,0

10,3

10,1

8,6

7,7

1000 1250 1600 2000 2500 3150 8,3

11,3

15,2

15,9

16,4

14,2

AVG 200-1250 8,9

18. L JUNCTION 300

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm

160 2

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

K12 (dB)

11,7

15,6

12,1

9,4

11,9

10,1

9,5

11,0

7,0

10,1

1000 1250 1600 2000 2500 3150 9,9

12,8

14,8

15,4

17,3

18,6

AVG 200-1250 10,2

FLANKSOUND PROJECT | WALL - FLOOR JUNCTIONS | 59


WALL - FLOOR JUNCTIONS

19. L JUNCTION 300

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm

160 2

RESILIENT PROFILE

XYLOFON

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

12,6

10,8

13,6

11,1

9,2

13,3

11,3

16,5

10,2

14,6

14,9

20. L JUNCTION

17,4

19,6

25,0

28,5

25,1

AVG 200-1250 13,2

600

FASTENING SYSTEM

Screws VGZ Ø9 X 400 mm (VGZ9400) step 600 mm

160 2

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

K12 (dB)

18,5

10,8

12,3

11,5

12,8

10,1

12,0

12,9

10,4

10,0

1000 1250 1600 2000 2500 3150 8,7

21. L JUNCTION

14,8

16,9

21,3

21,2

23,2

AVG 200-1250 11,5

600

FASTENING SYSTEM

Screws VGZ Ø9 X 400 mm (VGZ9400) step 600 mm

160 2

RESILIENT PROFILE

XYLOFON

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

15,3

11,2

10,6

9,5

11,7

11,5

13,8

15,1

12,0

14,5

13,0

60 | WALL - FLOOR JUNCTIONS | FLANKSOUND PROJECT

18,6

21,6

22,0

20,8

23,7

AVG 200-1250 13,3


WALL - FLOOR JUNCTIONS

22. L JUNCTION (1) FASTENING SYSTEM

100 2

Angle brackets TITAN (TCN240 with TCW240) step 1400 mm

RESILIENT PROFILE

1200

NO

1 160

f (Hz)

100

125

160

200

250

315

400

500

630

800

K12 (dB)

8,6

11,6

11,5

6,8

9,9

6,8

9,7

10,0

9,0

10,5

1000 1250 1600 2000 2500 3150 9,8

11,4

14,1

17,0

18,5

15,5

AVG 200-1250 9,3

23. L JUNCTION (1) FASTENING SYSTEM

100 2

WHT Angle bracket (WHT340)

RESILIENT PROFILE

NO

1 160

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

9,0

11,5

13,7

9,3

9,3

8,5

9,7

8,7

10,6

11,0

11,3

11,9

12,8

14,3

15,0

16,5

AVG 200-1250 10,0

24. L JUNCTION (1) FASTENING SYSTEM

100 2

WHT Angle bracket (WHT620) * partial fastening (33 screws) ** total fastening (55 screws)

RESILIENT PROFILE

NO

1 160

f (Hz)

100

125

160

200

K12 (dB) *

9,1

K12 (dB) **

15,6

250

315

15,8

9,4

9,3

9,2

7,1

11,7

12,4

8,7

10,2

8,0

400

500

630

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

14,7

11,5

13,5

10,7

13,4

11,7

14,4

14,4

16,8

18,2

11,3

13,2

12,5

9,2

10,8

10,3

12,5

13,8

14,6

15,1

16,7

10,6

FLANKSOUND PROJECT | WALL - FLOOR JUNCTIONS | 61


WALL - FLOOR JUNCTIONS

25. L JUNCTION (1) FASTENING SYSTEM

100 2

2 WHT Angle brackets (WHT620)

RESILIENT PROFILE

NO

1 160

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

12,3

11,6

10,1

8,4

7,9

7,2

10,0

8,8

9,4

11,1

11,9

11,8

13,7

13,5

16,7

15,4

AVG 200-1250 9,6

26. L JUNCTION (1) 300

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm WHT Angle bracket (WHT440)

160 2

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

8,4

15,5

9,8

9,2

9,6

9,3

6,2

7,3

7,2

10,4

11,5

12,1

14,6

14,2

18,9

17,3

AVG 200-1250 9,2

27. L JUNCTION (1) 300

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm Angle brackets TITAN (TTN240) step 800 mm WHT Angle bracket (WHT440)

160 2 800

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

10,6

14,2

10,0

10,3

9,9

7,8

8,5

8,3

8,7

10,5

10,6

62 | WALL - FLOOR JUNCTIONS | FLANKSOUND PROJECT

12,1

13,1

12,6

14,4

15,6

AVG 200-1250 9,6


WALL - FLOOR JUNCTIONS

28. L JUNCTION (1) 300

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm Angle brackets TITAN (TTN240) step 800 mm WHT Angle bracket (WHT440)

160 2 800

RESILIENT PROFILE

XYLOFON

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

10,9

8,9

7,1

10,6

7,4

9,6

10,2

12,5

11,8

14,1

14,8

15,3

17,1

17,4

21,5

21,2

AVG 200-1250 11,8

29. L JUNCTION (1) 300

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm Angle brackets TITAN (TTN240) step 800 mm WHT Angle bracket (WHT440)

160 2 800

RESILIENT PROFILE

XYLOFON + TITAN SILENT 1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

11,6

9,4

11,6

12,0

7,2

11,0

10,3

13,7

11,9

15,1

15,6

16,7

17,9

22,2

25,6

22,1

AVG 200-1250 12,6

30. L JUNCTION (1) 300

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm Angle brackets TITAN (TTN240) step 800 mm WHT Angle bracket (WHT440)

160 2 800

RESILIENT PROFILE ALADIN STRIPE

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

8,7

14,4

8,7

10,0

10,7

9,5

6,1

9,8

9,4

14,1

16,1

18,1

18,1

17,8

21,3

19,1

AVG 200-1250 11,5

FLANKSOUND PROJECT | WALL - FLOOR JUNCTIONS | 63


WALL - FLOOR JUNCTIONS

31. L JUNCTION (1) 300

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm Angle brackets TITAN (TTN240) step 800 mm WHT Angle bracket (WHT440)

160 2 800

RESILIENT PROFILE

ALADIN STRIPE with static load 2 kN/m 1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

9,5

13,6

8,7

11,8

9,0

10,1

7,2

8,7

10,4

14,2

17,0

16,5

18,4

20,0

23,1

19,7

AVG 200-1250 11,7

32. L JUNCTION (1) 300

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm Angle brackets TITAN (TTN240) step 800 mm WHT Angle bracket (WHT440)

160 2 800

RESILIENT PROFILE

ALADIN STRIPE + TITAN SILENT 1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

9,7

15,3

9,0

11,2

9,2

9,3

6,6

10,6

9,7

14,0

16,3

15,8

16,7

17,8

22,1

21,8

AVG 200-1250 11,4

33. L JUNCTION (1) 600

FASTENING SYSTEM

Screws VGZ Ø9 X 400 mm (VGZ9400) step 600 mm WHT Angle bracket (WHT440)

160 2

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

15,2

10,6

10,1

11,2

10,5

9,3

8,7

9,2

10,6

10,3

10,3

64 | WALL - FLOOR JUNCTIONS | FLANKSOUND PROJECT

14,1

16,7

20,2

22,8

21,9

AVG 200-1250 10,5


WALL - FLOOR JUNCTIONS

34. L JUNCTION (1) 600

FASTENING SYSTEM

Screws VGZ Ø9 X 400 mm (VGZ9400) step 600 mm Angle brackets TITAN (TTN240) step 800 mm WHT Angle bracket (WHT440)

160 2 800

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

13,8

14,6

10,6

11,5

10,4

7,0

5,9

7,7

9,7

9,7

10,0

12,6

15,2

18,0

21,2

18,2

AVG 200-1250 9,4

35. L JUNCTION (1) 600

FASTENING SYSTEM

Screws VGZ Ø9 X 400 mm (VGZ9400) step 600 mm Angle brackets TITAN (TTN240) step 800 mm WHT Angle bracket (WHT440)

160 2 800

RESILIENT PROFILE XYLOFON

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

10,6

15,0

8,8

9,6

9,2

8,4

7,7

10,0

11,3

14,3

14,2

36. T JUNCTION (2)

16,3

20,0

18,6

20,8

18,7

AVG 200-1250 11,2

3

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm Angle brackets TITAN (TTN240) step 800 mm WHT Angle bracket (WHT440)

800 300 160 2

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

16,8

19,9

9,6

14,5

14,5

10,8

8,1

11,4

17,6

18,5

18,3

17,8

20,5

27,9

K13, (dB)

23,8

26,9

16,6

21,5

21,5

17,8

15,1

18,4

24,6

25,5

25,3

24,8

27,5

34,9

K23 (dB)

11,9

5,6

1,4

6,3

7,2

5,0

-1,0

4,9

6,0

8,2

8,2

14,9

15,1

14,2

28,1

AVG 200-1250

35,1

14,6

35,1

42,1

21,6

15,9

20,2

6,6

FLANKSOUND PROJECT | WALL - FLOOR JUNCTIONS | 65


WALL - FLOOR JUNCTIONS

37. T JUNCTION (2)

3

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm Angle brackets TITAN (TTN240) step 800 mm WHT Angle bracket (WHT440)

800 300 160 2

RESILIENT PROFILE

XYLOFON + TITAN SILENT 1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

17,4

14,8

9,0

15,5

11,9

13,2

9,9

16,2

20,6

22,5

22,9

21,7

24,9

35,1

37,3

41,2

17,2

K13, (dB)

24,4

21,8

16,0

22,5

18,9

20,2

16,9

23,2

27,6

29,5

29,9

28,7

31,9

42,1

44,3

48,2

24,2

K23 (dB)

12,5

0,5

0,7

7,2

4,6

7,5

0,7

9,7

9,1

12,3

12,8

18,8

19,5

21,3

25,1

26,3

9,2

38. T JUNCTION (2)

AVG 200-1250

3

FASTENING SYSTEM

Angle brackets TITAN (TTN240) step 800 mm WHT Angle bracket (WHT440)

800

160 2

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K13 (dB)

26,9

26,7

18,3

20,6

19,1

12,9

8,8

12,4

15,1

17,5

19,7

22,8

24,6

30,7

34,3

32,0

16,5

K12 | K23 (dB)

19,9

19,7

11,3

13,6

12,1

5,9

1,8

5,4

8,1

10,5

12,7

15,8

17,6

23,7

27,3

25,0

9,5

39. T JUNCTION (2)

AVG 200-1250

3

FASTENING SYSTEM

Angle brackets TITAN (TTN240) step 800 mm WHT Angle bracket (WHT440)

800

160 2

RESILIENT PROFILE

XYLOFON + TITAN SILENT 1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K13 (dB) K12 | K23 (dB)

23,6

27,1

16,5

18,7

18,0

14,2

10,6

14,6

16,7

22,0

24,0

26,6

29,4

31,4

34,0

32,5

18,4

16,6

20,1

9,5

11,7

11,0

7,2

3,6

7,6

9,7

15,0

17,0

19,6

22,4

24,4

27,0

25,5

11,4

66 | WALL - FLOOR JUNCTIONS | FLANKSOUND PROJECT

AVG 200-1250


WALL - FLOOR JUNCTIONS

40. T JUNCTION (2)

3

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm Angle brackets TITAN (TTN240) step 800 mm Perforated plate LBV (PF703065)

800 300 160 2

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K12 (dB)

13,6

14,9

4,4

9,4

11,4

7,0

8,9

9,0

14,5

18,2

17,4

20,2

K13 (dB)

22,5

25,3

15,7

16,5

15,0

12,6

13,4

15,8

21,1

18,6

19,3

K23 (dB)

4,8

- 1,3

- 4,1

4,7

5,7

1,2

- 3,7

2,2

6,5

8,5

9,0

41. T JUNCTION (2)

AVG 200-1250

21,9

28,9

28,3

36,7

12,9

18,8

23,5

29,0

27,5

32,3

16,8

17,5

16,0

16,6

17,3

22,7

5,7

3

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm Angle brackets TITAN (TTN240) step 800 mm Perforated plate LBV (PF703065)

800 300 160 2

RESILIENT PROFILE

XYLOFON + TITAN SILENT 1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

K12 (dB)

17,4

13,1

7,0

11,1

10,8

11,5

10,5

15,6

20,4

22,4

21,9

24,7

24,5

38,4

38,6

41,0

16,6

K13 (dB)

23,9

24,5

18,3

20,6

16,3

18,2

19,4

19,6

25,7

27,2

25,6

21,9

24,5

41,7

44,9

49,0

21,6

K23 (dB)

7,1

- 3,1

- 2,5

6,2

6,0

6,4

0,7

9,7

9,5

12,5

12,7

19,3

16,8

21,8

25,2

27,2

9,2

42. X JUNCTION (2)

4

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm Angle brackets TITAN (TTN240) step 800 mm WHT Angle bracket (WHT440)

800 300

1 160 3

RESILIENT PROFILE

NO

2 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K23 (dB)

19,8

22,9

12,6

K34 (dB)

14,9

8,6

4,4

K24 (dB)

24,8

27,9

K31 (dB)

10,3

10,0

AVG 200-1250

17,5

17,5

13,8

11,1

14,4

20,6

21,5

21,3

20,8

23,5

30,9

31,1

38,1

17,6

9,3

10,2

8,0

2,0

7,9

9,0

11,2

11,2

17,9

18,1

17,2

18,9

23,2

9,6

17,6

22,5

22,5

18,8

16,1

19,4

25,6

26,5

26,3

25,8

28,5

35,9

36,1

43,1

22,6

9,6

9,3

9,0

8,6

8,3

8,0

7,6

7,3

7,0

6,7

6,3

6,0

5,7

5,3

8,0

FLANKSOUND PROJECT | WALL - FLOOR JUNCTIONS | 67


WALL - FLOOR JUNCTIONS

43. X JUNCTION (2)

4

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 300 mm Angle brackets TITAN (TTN240) step 800 mm Angle bracket WHT (WHT440)

800 300

1 160 3

RESILIENT PROFILE

XYLOFON + TITAN SILENT 2 100

f (Hz)

100

125

160

200

250

K23 (dB)

20,4

17,8

K34 (dB)

15,5

3,5

K24 (dB)

25,4

K31 (dB)

10,3

315

400

500

630

800

1000 1250 1600 2000 2500 3150

12,0

18,5

3,7

10,2

22,8

17,0

10,0

9,6

14,9

16,2

12,9

19,2

23,6

25,5

25,9

24,7

27,9

38,1

40,3

44,2

20,2

7,6

10,5

3,7

12,7

12,1

15,3

15,8

21,8

22,5

24,3

28,1

29,3

12,2

23,5

19,9

21,2

17,9

24,2

28,6

30,5

30,9

29,7

32,9

43,1

45,3

49,2

25,2

9,3

9,0

8,6

8,3

8,0

7,6

7,3

7,0

6,7

6,3

6,0

5,7

5,3

8,0

44. X JUNCTION (2)

AVG 200-1250

4

FASTENING SYSTEM

Angle brackets TITAN (TTN240) step 800 mm Angle bracket WHT (WHT440)

800 1 160 3

RESILIENT PROFILE

NO

2 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

K24 (dB)

27,9

27,7

19,3

21,6

20,1

13,9

9,8

13,4

16,1

18,5

20,7

23,8

25,6

31,7

35,3

33,0

17,5

K23 | K34 (dB)

22,9

22,7

14,3

16,6

15,1

8,9

4,8

8,4

11,1

13,5

15,7

18,8

20,6

26,7

30,3

28,0

12,5

K31 (dB)

10,3

10,0

9,6

9,3

9,0

8,6

8,3

8,0

7,6

7,3

7,0

6,7

6,3

6,0

5,7

5,3

8,0

45. X JUNCTION (2)

4

FASTENING SYSTEM

Angle brackets TITAN (TTN240) step 800 mm Angle bracket WHT (WHT440)

800 1 160 3

RESILIENT PROFILE

XYLOFON + TITAN SILENT 2 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

K24 (dB)

24,6

28,1

17,5

19,7

19,0

15,2

11,6

15,6

17,7

23,0

25,0

27,6

30,4

32,4

35,0

33,5

19,4

K23 | K34 (dB)

19,6

23,1

12,5

14,7

14,0

10,2

6,6

10,6

12,7

18,0

20,0

22,6

25,4

27,4

30,0

28,5

14,4

K31 (dB)

10,3

10,0

9,6

9,3

9,0

8,6

8,3

8,0

7,6

7,3

7,0

6,7

6,3

6,0

5,7

5,3

8,0

68 | WALL - FLOOR JUNCTIONS | FLANKSOUND PROJECT


WALL - FLOOR JUNCTIONS

46. X JUNCTION

4

FASTENING SYSTEM

Screws HBS Ø8 X 240 mm (HBS8240) step 500 mm Angle brackets WBR (WBR100) step 1000 mm

1000 1 160 3

RESILIENT PROFILE XYLOFON

500 2 100

f (Hz)

100

125

160

200

250

K23 (dB) K24 (dB)

20,9

17,1

13,8

14,9

16,4

18,4

13,6

15,1

14,2

16,8

315

400

500

630

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

15,5

13,8

15,9

15,5

16,1

12,9

14,1

11,3

14,5

14,8

16,8

15,0

18,3

18,4

17,2

20,2

21,9

23,3

24,9

21,4

25,1

23,0

20,7

19,5

K13 (dB)

6,9

5,4

3,5

5,1

6,8

4,9

3,5

3,8

0,9

2,0

0,2

0,6

0,7

-0,9

-0,6

0,3

3,1

K41 (dB)

17,6

13,7

12,8

13,1

14,3

16,6

17,8

17,5

16,8

18,7

20,1

20,2

18,9

17,0

14,0

15,1

17,3

NOTES:

(1) Additional configurations tested for acoustic purposes, with little structural relevance. (2) Data estimated based on experimental measurements.

FLANKSOUND PROJECT | WALL - FLOOR JUNCTIONS | 69


X-RAD: WALL - WALL JUNCTIONS

47. T VERTICAL JUNCTION FASTENING SYSTEM

X-RAD shape T level TOP 100

1

3

RESILIENT PROFILE

NO

2 100

f (Hz)

100

K21 | K23 (dB)

10,2

K31 (dB)

15,7

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

7,0

8,1

6,4

6,4

5,1

6,7

7,6

7,3

7,9

8,2

9,7

12,7

12,9

12,6

15,5

7,3

16,0

13,6

6,5

6,4

8,8

9,5

15,2

18,4

17,7

20,2

18,9

24,7

24,7

23,4

28,5

13,5

48. X VERTICAL JUNCTION

AVG 200-1250

100

FASTENING SYSTEM

4

X-RAD shape X level TOP

100

1

RESILIENT PROFILE

3

NO

2

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

K21 | K23 (dB)

12,7

11,4

10,2

8,5

8,5

7,0

8,1

10,7

11,5

9,5

11,1

12,5

15,8

17,5

17,5

21,6

9,7

K31 (dB)

18,9

12,0

13,3

9,7

8,7

8,8

6,6

11,1

13,1

11,7

13,4

12,6

13,8

14,4

12,4

16,9

10,6

K24 (dB)

15,0

13,7

13,6

12,0

11,8

9,3

8,2

12,6

15,4

13,3

12,6

13,2

19,0

21,6

24,0

31,4

12,0

70 | X-RAD: WALL - WALL JUNCTIONS | FLANKSOUND PROJECT


X-RAD: WALL - FLOOR JUNCTIONS

49. L HORIZONTAL JUNCTION FASTENING SYSTEM

160

X-RAD shape O level TOP 2

RESILIENT PROFILE

NO

1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

K12 (dB)

13,1

13,8

14,2

10,6

11,6

12,8

12,2

10,6

12,2

9,7

1000 1250 1600 2000 2500 3150 8,1

11,2

9,9

10,2

11,2

13,5

AVG 200-1250 11,0

50. L HORIZONTAL JUNCTION FASTENING SYSTEM

160

X-RAD shape O level TOP 2

RESILIENT PROFILE

XYLOFON*, ALADIN STRIPE** 1 100

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

K12 (dB)*

12,0

14,6

11,8

13,2

12,8

15,2

15,9

14,9

15,7

15,9

13,9

12,6

16,2

18,5

17,8

17,5

14,4

K12 (dB)**

16,3

13,7

14,4

13,8

13,4

12,7

11,4

10,0

13,3

14,3

13,3

14,3

15,9

13,9

16,2

21,9

13,0

51. T HORIZONTAL JUNCTION 100

FASTENING SYSTEM

4

X-RAD shape O level MID

160

3

RESILIENT PROFILE

NO

2

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

K43 | K23 (dB)

17,2

13,0

13,1

10,4

9,5

7,1

7,7

7,6

8,3

9,9

11,3

13,7

17,8

18,9

19,6

23,5

9,5

K42 (dB)

24,2

20,0

20,1

17,4

16,5

14,1

14,7

14,6

15,3

16,9

18,3

20,7

24,8

25,9

26,6

30,5

16,5

FLANKSOUND PROJECT | X-RAD: WALL - FLOOR JUNCTIONS | 71


X-RAD: WALL - FLOOR JUNCTIONS

52. T HORIZONTAL JUNCTION

100

FASTENING SYSTEM

4

X-RAD shape O level MID

160

3

RESILIENT PROFILE

XYLOFON

2

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

AVG 200-1250

K43 | K23 (dB)

16,0

13,8

10,7

13,0

10,6

9,5

11,4

11,9

11,9

16,1

17,1

15,0

24,1

27,2

26,3

27,4

12,9

K42 (dB)

23,0

20,8

17,7

20,0

17,6

16,5

18,4

18,9

18,9

23,1

24,1

22,0

31,1

34,2

33,3

34,4

19,9

53. X HORIZONTAL JUNCTION

100

FASTENING SYSTEM

4

X-RAD shape O level MID

160

1

3

RESILIENT PROFILE

NO

2

f (Hz)

100

125

160

200

250

315

K43 | K23 (dB)

19,7

17,4

K13 (dB)

13,0

11,7

K42 (dB)

19,9

13,0

400

500

630

800

15,1

12,4

11,5

9,0

9,1

11,5

10,0

9,7

7,2

6,2

14,3

10,7

9,7

9,8

7,6

12,1

1000 1250 1600 2000 2500 3150

10,7

12,5

11,6

14,1

16,5

20,8

23,5

24,5

29,6

11,9

10,6

13,4

11,3

10,6

11,1

17,0

19,6

22,0

29,3

10,0

14,1

12,7

14,4

13,6

14,8

15,4

13,4

17,9

11,6

54. X HORIZONTAL JUNCTION

AVG 200-1250

100

FASTENING SYSTEM

4

X-RAD shape O level MID

160

1

RESILIENT PROFILE

3

XYLOFON

2

f (Hz)

100

125

160

200

250

315

400

500

630

800

1000 1250 1600 2000 2500 3150

K43 | K23 (dB)

18,6

18,2

12,7

15,1

12,7

11,4

12,8

15,1

16,0

17,8

19,9

17,8

27,1

AVG 200-1250

31,8

31,1

33,5

15,4

K13 (dB)

13,0

11,7

11,5

10,0

9,7

7,2

6,2

10,6

13,4

11,3

10,6

11,1

17,0

19,6

22,0

29,3

10,0

K42 (dB)

18,8

13,8

11,9

13,4

10,8

12,2

11,3

16,4

17,7

18,9

20,2

15,0

21,2

23,7

20,1

21,8

15,1

72 | X-RAD: WALL - FLOOR JUNCTIONS | FLANKSOUND PROJECT


REALIZE HOW TO INTUITIVELY, FASTLY AND EASILY DESIGN MY PROJECT is the practical and trustworthy software application for wood-structure design professionals: from the check of metal connections to the thermo-hygrometric analyses of opaque components, up to the design of the most suitable acoustic solution.

+ + + + + +

Modules for calculation and check of metal connections Module for thermo-hygrometric checks (THERMAL) Acoustic module for soundproofing calculation and related solutions Option to export the project in CAD format Declaration of performance accesseible from the interface Personalised calculation report

Discover the new Acoustics module ›


MY PROJECT Sound proofing: resilient profiles and lateral transmission

• Designing of the soundproofing solutions within different project frequencies • Calculation of the vibration reduction index to the EN ISO 12354 standard • Calculation of the resilient profile (XYLOFON and ALADIN STRIPE) and its projection on a printable plan to allow correct installation • Possibility for calculation of both timber frame and CLT structures • Import of .dxf files with automatic retrievement of wall and dimension data • Print of complete technical computation report and performance graphs

1

Choose the building system, input the data for wall and slab loads and conclude with the project specifications.


2

Import the .dxf file of the surface where XYLOFON will be placed and compute the analysis of the Kij parameter (vibration reduction index).

3

The software recognises the dimension of vertical elements: once the permanent load of walls has been integrated within, the software suggests the correct resilient profile to be used.

4

At this point the software displays the mechanical characterisation graphs, evaluating both the transmissibility of the material and its vibration softening.

5

6

The software carries over the various profiles into the drawing marking them with different colours, so to make the on-site laying extremely easy.

Choose the settings of the connection systems and those of the automatic estimate of the Kij vibration reduction index from both the experimental method “Rothoblaas Flanksound Project� and the EN ISO 12354 standard.


MY PROJECT

Download and test it. Realize how easy it can be to calculate the sound absorbtion, to identify the best performing solutions and to obtain a complete and personalized evaluation report.

› www.rothoblaas.com/software


SOUNDPROOFING SOLUTIONS WOOD, STEEL AND MASONRY STRUCTURES


CONSTRUCTION SOLUTIONS

FLANKSOUND PROJECT

CLT

13

Wall - wall junctions

54

TIMBER FRAME

34

Wall - floor junctions

59

X-RAD

70

L junction

54

T junction

55

X junction

57

L junction

59

T junction

65

X junction

67

T vertical junction

70

X vertical junction

70

L horizontal junction

71

from page

011

T horizontal junction

71

X horizontal junction

72

from page

043 SOLUTIONS FOR STAIRS

from page

CONTENTS

175


RESILIENT PROFILES High-performance structural

90

Structural

110

For beams

120

For indoor use

124

XYLOFON XYLOFON WASHER XYLOFON WASHER TITAN SILENT

90 104 105 106

CORK ALADIN STRIPE TRACK GRANULO

110 112 118 119

SILENT BEAM SILENT UNDERFLOOR TIE-BEAM STRIPE CONSTRUCTION SEALING

120 121 122 123

SILENT GIPS GIPS BAND SILENT EDGE

124 125 126

SOUNDPROOFING FOILS

SEALING PRODUCTS

Underscreed

134

Foams

160

Foils for walls

140

Expanding tapes

162

Membranes for roofs

144

Plasterable tapes

166

Under floor

149

SILENT FLOOR SOFT

134

HERMETIC FOAM

160

SILENT FLOOR

136

SILENT FLOOR EVO

138

SILENT WALL MASS

140

SILENT WALL

142

TRASPIR METAL

144

SILENT STEP SOFT

149

SILENT STEP

150

SILENT STEP ALU

151

SILENT STEP UNI

152

FRAME BAND

162

KOMPRI BAND

164

PLASTER BAND IN

166

PLASTER BAND OUT

166

from page

153

from page

127

from page

081

COMPLEMENTARY PRODUCTS Membranes

170

Acrylic tapes

171

BARRIER 100

170

ALU BAND

171

FLEXI BAND

172

SPEEDY BAND

173

DOUBLE BAND

174

from page

167


DID YOU KNOW...?

ACOUSTIC DESIGN OF BUILDINGS Acoustic comfort can be achieved by controlling noise transmission. It is important for achieving a high quality of life in our homes and offices. This is why it is important to care about acoustics from the early stage of the design to the final realisation of the work, so that good acoustic design can translate into the best living experience.


RESILIENT PROFILES


RESILIENT PROFILES


RESILIENT PROFILES High-performance structural XYLOFON

high-performance resilient soundproofing profile

XYLOFON WASHER

separating washer for screws for wood

XYLOFON WASHER

separating washer for WHT angle brackets

TITAN SILENT

angle bracket for shear stresses with resilient profile

90 104 105 106

Structural CORK

ecological soundproofing panel

ALADIN STRIPE

resilient soundproofing profile

TRACK

resilient soundproofing profile

GRANULO

resilient soundproofing granular rubber profile

110 112 118 119

For beams SILENT BEAM

resilient profile for floor battens with dry system

SILENT UNDERFLOOR

resilient strip for floor underbattens and supporting walls

TIE-BEAM STRIPE

tie beam sealing profile

CONSTRUCTION SEALING

compressible sealing gasket for regular junctions

120 121 122 123

For indoor use SILENT GIPS

pre-cut thermo-acoustic tape and high density detaching self-adhesive

GIPS BAND

nail point self-adhesive sealing tape for profiles

SILENT EDGE

self-adhesive strip for perimeter separation

124 125 126


MATERIAL SELECTION

PRODUCT SELECTION AND DETERMINING THE VIBRATION REDUCTION INDEX Kij RESILIENT PROFILE SELECTION Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. Below are indications on how to assess the product. To properly evaluate the product using MyProject, simply follow the step-by-step instructions provided by the software. For the subsequent two methods, it is advisable to add the permanent load value at 50% of the characteristic value of the accidental load.

DECISION METHODS The resilient band can be selected in 3 different ways: Using MyProject software, which can be downloaded free of charge after registering at www.rothoblaas.com;

Qlinear = qgk + 0,5 qvk

Using the table of use provided in the technical datasheet of the materials;

It is necessary to focus on the operating conditions and not the ultimate limit state conditions. This is because the goal is to insulate the building from noise during normal operating conditions and not during an earthquake or other loads that could change the structural dimensions.

Analysing the mechanical characterisation graphs for the products ALADIN STRIPE and XYLOFON.

METHOD 1 Once the load acting upon the vertical elements with the table of use (see the table below, for example, relative to the XYLOFON product), the proper profile is selected.

XYLOFON 35 SHORE TABLE OF USE Code

APPLICABLE LINEAR LOAD [kN/m] from

to

XYL35080

2,16

22,00

XYL35100

2,70

27,50

XYL35120

3,24

33,00

XYL35140

3,78

38,50

In the table of use, Rothoblaas indicates load ranges calculated starting from certain basic conditions (see "starting considerations and conditions" to the right), based on its experience acquired over the years in the wood construction sector.

METHOD 2.a Once the loads have been identified, it is necessary to determine the project frequency - that is the stimulating frequency for the element from which the structure needs to be isolated. Below is an example, to make the explanation easier and more simple to understand.

84 | MATERIAL SELECTION | RESILIENT PROFILES

STARTING CONSIDERATIONS AND CONDITIONS 1. The static behaviour of the material under compressed conditions is assessed, considering the effect of friction that prevents lateral deformation. This is because a building does not present significant movement phenomena, nor dynamic deformation. Hence, deformation due to loads is considered to be static. 2. Consider a resonance frequency in the floor-XYLOFON-wall system between 20 and 30 Hz, with 12% maximum vertical deformation. Rothoblaas prefers not to excessively increase deformation to avoid differential movements in materials included in the final coverings of the building.


MATERIAL SELECTION

Natural frequency [Hz]

1 mm OF DEFORMATION?

100

Another way to design the anti-vibration system is to start from deformation. Every material has its own mechanical characteristics and responds differently to deformation. This means that setting standard deformation for any product on the market can be misleading.

22 Hz 10

0,1

0,01

0,2 N/mm2

1

Load [N/mm2]

Suppose there is a load of 0,2 N/mm2 acting on the profile. In this case, we used the XYLOFON 35 product, because the load is not particularly high. Reading the graph, it can be seen that the profile has a resonance frequency of around 22 Hz.

METHOD 2.b At this point, the degree of transmission for the product under these load conditions can be calculated, referring to the project frequency of 50 Hz.

Below we offer some examples, in which it can be observed that if 1 mm of deformation is set for both products, different natural frequencies are obtained. This is because the other fundamental parameter is not considered: the load. If the same starting figures are assumed relative to load and frequency, in this case deformation of 15% can be set. The graph below provides the resonance frequency of the product for the deformation set.

Transmission = f/f0 = 2,27 Then the transmission graph is used, placing the value 2,27 obtained on the x-axis and intersecting the degree of the transmission curve. Deformation [%]

Transmission [dB]

15% 10

10

0

-7 dB -10

-20 10

17 Hz

100

Natural frequency [Hz]

-30

0,1

1

2,27

10

100

f / f0

It follows that the transmission of the material is negative i.e. that the material is able to insulate around -7 dB. TRANSMISSION IS POSITIVE WHEN THE MATERIAL TRANSMITS AND IS NEGATIVE WHEN THE PROFILE BEGINS TO INSULATE. This means this figure shows that the product, loaded in this way, insulates 7 dB at a reference frequency of 50 Hz. The same thing can be done using the attenuation graph. The percentage of vibration attenuated at the initial project frequency is obtained.

The graph below instead provides the load to be placed on the project to obtain the set deformation of 1 mm. Below the transmission or attenuation is calculated, as discussed in the previous paragraphs. Deformation [%] 20

15%

10

0,01

0,1

17 Hz

1

Load [N/mm2]

Essentially, the same result is obtained with two different inputs, but when deformation is set, the starting point is the mechanical performance, not the acoustic one. In the light of this fact, ROTHOBLAAS ALWAYS RECOMMENDS STARTING WITH THE PROJECT FREQUENCY AND THE LOADS TO OPTIMISE THE MATERIAL BASED ON THE REAL CONDITIONS.

It can be immediately seen that this process develops in a direction opposite to that which occurs in reality: that is it starts from a mechanical and not an acoustic deformation, which in these products is heavily influenced by the load.

RESILIENT PROFILES | MATERIAL SELECTION | 85


MATERIAL SELECTION

DETERMINING THE VIBRATION REDUCTION INDEX Kij IN WOOD STRUCTURES

METHOD 1 - CALCULATING Kijrigid Solution 1 - T JUNCTION K13= 5,7 + 14,1 M + 5,7 M2 dB K12= 5,7 + 5,7 M2 = K23 dB 1

INTERPOSITION OF RESILIENT LAYERS LIKE XYLOFON, CORK AND ALADIN STRIPE The MYPROJECT software can also be used in this design stage, or follow one of the methods below, extrapolated from internationally valid standards.

3

2

Solution 2 - T JUNCTION with resilient layer interposition K23= 5,7 + 14,1 M + 5,7 M2 dB K12= 5,7 + 5,7 M2 = K23 dB

METHOD 1 BASED ON EN ISO 12354:2017 FOR HOMOGENEOUS STRUCTURES So far this formula has also been considered for lightweight wood structures, i.e. considering the connections between the elements, which are always rigid and homogeneous. For CLT structures this is certainly an approximation. Kij depends on the shape of the junction and the type of elements composing it, especially their surface mass. In case of T or X junctions, use the following expressions, shown on the side. For both cases:

1

3

2

Solution 3 - X JUNCTION K13= 8,7 + 17,1 M + 5,7 M2 dB K12= 8,7 + 5,7 M2 = K23 dB K24= 3,7 + 14,1 M + 5,7 M2 dB 0 ≤ K24 ≤ -4 dB 4

Kij = Kijrigid + ∆L

if the flanking transmission path goes through a junction

Kij = Kijrigid + 2∆L

if the flanking transmission path goes through two junctions

1

M=10log(mi⊥/mi) where: mi⊥

is the mass of one of the elements, the one placed perpendicular to the other.

Therefore, this transmitted vibration reduction value is obtained:

∆Lw = 10log(1/ft) for loads exceeding 750 kN/m2 on a resilient layer with ∆Lmin = 5 dB

ft = ((G/ti)(√ρ1 ρ2))1,5

where: G

is the Young tangential module (MN/m2)

ti

is the thickness of the resilient material (m)

ρ1 and ρ 2 are, respectively, the density of connected elements 1 and 2

METHOD 2 F.3 EMPIRICAL DATA FOR JUNCTIONS  CHARACTERISED BY Kij ISO 12354-1:2017

2

METHOD 2 - CALCULATING K ijrigid

Solution 1 - T JUNCTION K13= 22 + 3,3log(f⁄fk) fk=500 Hz K23= 15 + 3,3log(f⁄fk) 1

86 | MATERIAL SELECTION | RESILIENT PROFILES

3

2

Solution 1 - X JUNCTION K13= 10 - 3,3log(f⁄fk) + 10 M K24= 23 - 3,3log(f⁄fk) fk=500 Hz K14= 18 - 3,3log(f⁄fk)

CLT construction elements are elements in which the structural reverberation time is, in most cases, mainly determined by the connecting elements. In the case of CLT structures weakly bound together, the side transmission contribution can be determined according to the following relations, valid if 0,5 < (m1/m2) < 2

3

4

1

3

2


SURVEY TEST

MECHANICAL INTERACTION AND FRICTION For Rothoblaas, identifying the mechanical behaviour of solutions used in wood structures is a subject that doesn’t allow for compromise. In this light, two research projects were developed in cooperation with two Austrian universities: Technische Universität Graz in Graz and Fakultät für Technische Wissenschaften in Innsbruck.

XYLOFON WOOD FRICTION With the University of Graz, the goal was to characterise the static friction coefficient between wood and XYLOFON. In particular, all XYLOFON profiles were tested in various shores, combining two different wood types. The test set-up staggered CLT elements (5 layers with 20 mm thick planks) made of spruce, classified as a soft wood, and of birch, in the family of semi-hard wood. In addition to investigating the various wood types, an attempt was also made to understand how wood humidity influences the friction coefficient. Below are some example values obtained from the tests performed on XYLOFON70. An additional variable was then considered, representing the vertical load acting upon the acoustic profiles, reproduced in the test through a pre-load induced on the CLT panel system being evaluated.

MECHANICAL INTERACTION XYLOFON AND HBS PARTIAL THREAD SCREWS Since the influence of the resilient profile on the mechanical resistances of shear angle brackets (TITAN) had been the object of a previous investigation, there was a desire to investigate this behaviour for partial thread screws as well (HBS). This test serves to complete the mechanical characterisation of the configurations already investigated in terms of acoustics with the Flanksound Project. The image below shows the test set-up used for the research. It was decided to investigate various XYLOFON shores, also in order to understand how much the hardness of the material affects the variation in the resistance and stiffness to shearing of the connection with partial thread screws.

FRICTION COEFFICIENT Fn = 5 kN

0,65

Fn = 25 kN

Fn = 40 kN

0,60 0,55 0,50 0,45 0,40

12

16

µmean = 0,514

12

µmean = 0,492

16

µmean = 0,556

12

µmean = 0,542

16

µmean = 0,476

µmean = 0,492

WOOD HUMIDITY [%]

For each configuration, graphs demonstrating the movement/friction coefficient µ were prepared, to understand to what degree it is useful to consider the contribution of friction for static purposes.

Initial results indicated that it is necessary to consider a decrease in the stiffness of the connection. As a basic principle, as the thickness of the interposed elastic layer increases (XYLOFON), the stiffness of the connection decreases. The XYLOFON profile has an optimised thickness of 6 mm, which ensures perfect noise insulation with an acceptable reduction in the sliding module.

FRICTION COEFFICIENT 1.0

0,91729 18000

0.8

16000 14000

0.6

12000 80000

0.4

20000 60000

0.2

40000 20000

0.0 1

0.0

5

10

15

20

25

30

35

40

2

3

4

5

6

7

8

9 10 11 12 13 14 15

WITH XYLOFON WITHOUT XYLOFON

RESILIENT PROFILES | SURVEY TEST | 87


SURVEY TEST

XYLOFON AND FIRE Over the last few years, an architectural need to keep CLT visible for aesthetic reasons has developed. In this case, the XYLOFON product should be placed slightly set back from the wood surface, creating a shadow effect. In this configuration, XYLOFON contributes to the structure's fire resistance. To test this feature, tests were performed to characterise its airtightness and fire insulation behaviour (EI) at ETH ZĂźrich and the Institute of Structural Engineering (IBK) & Swiss Timber Solutions AG.

TEST SAMPLES XYLOFON

XYLOFON SEALANT 1

TEST SET-UP

XYLOFON SEALANT 2

It was decided to test both XYLOFON on its own and the product with two different flame retardant sealants. The sample was prepared by dividing a laminated panel into 4 pieces, so as to create 3 openings to accommodate the 3 different configurations: XYLOFON

XYLOFON + SEALANT 2 During assembly, thermocouples were inserted to record the change in temperatures at various depths of the sample during the fire phase. Once the fire was started, the data was registered and the trend in the thermal change was tracked on a temperature/time graph, which was also compared to the standardised EN ISO curve. The graph at the right shows the temperatures recorded on the PT1, PT2, PT3, PT4 and PT5 thermocouples.

T [°C]

XYLOFON + SEALANT 1

1200 1000 800 600 400 200

10 PT1 PT2 PT3

CONSIDERATIONS The test was stopped after 60 minutes of exposure to fire, based on the EN ISO standard. For all configurations tested, the temperature of the surface not exposed to fire remained approximately room temperature, not showing any colour alteration. The opening which contained solely 100 mm XYLOFON, as predicted, showed the greatest loss of thickness due to carbonisation. The junctions with 20 mm of sealant 1 or sealant 2, together with the 100 mm XYLOFON strip showed similar temperature gradients.

88 | SURVEY TEST | RESILIENT PROFILES

20

30

40

PT4 PT5 EN/ISO

50

60 t [min]

RESULTS it can be stated that the solution with 100 XYLOFON CAN ACHIEVE EI 60 without the need for additional flame retardant protection.


SURVEY TEST

INFLUENCE OF MECHANICAL FASTENING USING STAPLES This test had the aim of determining the influence of the staples used to temporary fasten the XYLOFON product onto CLT panels during construction. Tests were carried out by the University of Bologna - Industrial Engineering Department, completing the tests begun during the first edition of the Flanksound Project.

200 120

40

40

120

TEST SET-UP The measurement system consisted of a horizontal CLT panel to which two vertical panels were applied, as in the diagram (figure 1). Each panel was connected with 6 vertical HBS 8x240 screws and 2 TITAN SILENT TTF220 plates with LBS 5x50 screws per side (figure 2).

FIG. 1 200 40

120

40

5 20

A strip of XYLOFON 35 resilient material was applied on the contact surface of both panels.

120

On the left panel, the XYLOFON was fastened with staples applied in pairs stepped 20 cm, while they were not used on the panel on the right.

70

20 5

FIG. 2

CONSIDERATIONS Given the smaller size of the panels, it was decided to use Dv,ij,n as the index, given that only geometric dimensions are used to average out the difference in vibration speed levels. Precisely due to the small size, use of Kij as the comparison parameter is not recommended, given the effect of internal resonance between the panels.

Dvi,jn (125-1000Hz) 7,8 dB

Dvi,jn (125-1000Hz) 8,5 dB

The values were averaged between 125 and 1000 Hz. It is also worth remembering that the uncertainty associated with the testing method used is ±2 dB, as indicated in ISO/FDIS 12354-1:2017.

LEFT PANEL WITH STAPLES Dvi,jn (125-1000Hz)

7,8 dB

RIGHT PANEL WITHOUT STAPLES Dvi,jn (125-1000Hz)

RESULTS

8,5 dB

The results show that use of STAPLES FOR PRE-FASTENING of the resilient strip DOES NOT INVOLVE A SUBSTANTIAL DIFFERENCE IN Dv,ij,n values when the panel fastening systems are the same.

RESILIENT PROFILES | SURVEY TEST | 89


FLANKSOUND

XYLOFON

EN ISO 10848

HIGH-PERFORMANCE RESILIENT SOUNDPROOFING PROFILE PERFORMANCE It significantly reduces the transmission of airborne and structural noise (from 5 dB to over 15 dB).

6 mm The low thickness of the 5 versions supports a wide load range (up to 6 N/mm2) without affecting design choices. Also appropriate for LVL.

MONOLITHIC The monolithic structure of the polyurethane ensures stability, watertightness and the absence of subsidence over time.

CODES AND DIMENSIONS code

B [mm]

L [m]

s [mm]

pcs.

XYL35080

80

3,66

6,0

1

XYL35100

100

3,66

6,0

1

120

3,66

6,0

1

XYL35140

140

3,66

6,0

1

XYL50080

80

3,66

6,0

1

100

3,66

6,0

1

120

3,66

6,0

1

XYL50140

140

3,66

6,0

1

XYL70080

80

3,66

6,0

1

100

3,66

6,0

1

120

3,66

6,0

1

XYL70140

140

3,66

6,0

1

XYL80080

80

3,66

6,0

1

100

3,66

6,0

1

XYL35120

XYL50100 XYL50120

XYL70100 XYL70120

XYL80100 XYL80120

Shore

35

50

70

80

120

3,66

6,0

1

140

3,66

6,0

1

XYL90080

80

3,66

6,0

1

XYL90100

100

3,66

6,0

1

120

3,66

6,0

1

140

3,66

6,0

1

XYL80140

XYL90120 XYL90140

90

NOISE REDUCTION Tested and certified for use as a desolidarisation and mechanical interruption layer between building materials. Allows deformation up to 1 mm of thickness.

CERTIFIED VALUES Tested in the FLANKSOUND PROJECT by the Industrial Research Centre of the University of Bologna in accordance with EN ISO 10848. Values starting from a frequency of 15 Hz.

90 | XYLOFON | RESILIENT PROFILES


35 SHORE

50 SHORE

70 SHORE

80 SHORE 90 SHORE

INSTALLATION The profiles are easily processed and installed using the most common site tools; their reliability over time is guaranteed by the homogeneity of polyurethane, a stable and waterproof material.

MATERIAL AND DURABILITY Polyurethane mixture between 35 and 90 shore. Product free of VOCs and harmful substances. Extremely chemically stable and without deformations over time.

RESILIENT PROFILES | XYLOFON | 91


TECHNICAL ASPECTS

XYLOFON 35 SHORE TABLE OF USE (1) Code

APPLICABLE COMPRESSION [N/mm2] from to

DEFORMATION [mm] min

max

XYL35080 XYL35100 XYL35120

APPLICABLE LINEAR LOAD [kN/m] from to 2,16

0,027

0,275

0,06

0,60

XYL35140

22,00

2,70

27,50

3,24

33,00

3,78

38,50

XYLOFON 50 SHORE TABLE OF USE (1) Code

APPLICABLE COMPRESSION [N/mm2] from to

DEFORMATION [mm] min

max

XYL50080 XYL50100 XYL50120

0,180

0,605

0,16

0,62

XYL50140

APPLICABLE LINEAR LOAD [kN/m] from to 14,40

48,40

18,00

60,50

21,60

72,60

25,20

84,70

XYLOFON 70 SHORE TABLE OF USE (1) Code

APPLICABLE COMPRESSION [N/mm2] from to

DEFORMATION [mm] min

max

APPLICABLE LINEAR LOAD [kN/m] from to

XYL70080

36,40

120,00

XYL70100

45,50

150,00

54,60

180,00

63,70

210,00

XYL70120

0,455

1,500

0,13

0,44

XYL70140

XYLOFON 80 SHORE TABLE OF USE (1) Code

APPLICABLE COMPRESSION [N/mm2] from to

DEFORMATION [mm] min

max

XYL80080 XYL80100 XYL80120

APPLICABLE LINEAR LOAD [kN/m] from to 104,00

1,300

2,400

0,32

0,59

XYL80140

192,00

130,00

240,00

156,00

288,00

182,00

336,00

XYLOFON 90 SHORE TABLE OF USE (1) Code

APPLICABLE COMPRESSION [N/mm2] from to

DEFORMATION [mm] min

max

XYL90080 XYL90100 XYL90120

2,200

XYL90140

92 | XYLOFON | RESILIENT PROFILES

4,500

0,30

0,62

APPLICABLE LINEAR LOAD [kN/m] from to 176,00

360,00

220,00

450,00

264,00

540,00

308,00

630,00


TECHNICAL ASPECTS

TECHNICAL SPECIFICATIONS Property

Standard

Value

Value

Value

Value

Value

Hardness

-

35 shore

50 shore

70 shore

80 shore

90 shore

Elastic modulus at 10% (compression)

ISO 604

2,74 MPa

6,74 MPa

20,5 MPa

24,3 MPa

43,5 MPa

Dynamic stiffness s' (2)

ISO 9052

1262 MN/m3

1455 MN/m3

1822 MN/m3

2157 MN/m3

> 2200 MN/m3

Creep (3)

EN 1606

< 0,5 %

< 0,5 %

< 0,5 %

< 0,5 %

< 0,5 %

Compression deformation DVR (4)

ISO 1856

1,5 %

0,5 %

0,3 %

0,9 %

3,7 %

Dynamic elastic modulus E’, 10 Hz (DMTA)

ISO 4664

2,16 MPa

3,53 MPa

10,1 MPa

19 MPa

43 MPa

Dynamic shear modulus G’, 10 Hz (DMTA)

ISO 4664

1,13 MPa

1,18 MPa

3,24 MPa

6,5 MPa

16,7 MPa

Damping factor Tan δ

ISO 4664

0,177

0,132

0,101

0,134

0,230

Max processing temperature (TGA)

-

200 °C

> 200 °C

> 200 °C

> 200 °C

> 200 °C

Reaction to fire

EN 13501-1

class E

class E

class E

class E

class E

Thermal conductivity (λ)

-

0,2 W/mK

0,2 W/mK

0,2 W/mK

0,2 W/mK

0,2 W/mK

APPLICATION INSTRUCTIONS

40-60 cm

01

02

03

04

(1) The load ranges reported here are optimised with respect to the static behaviour of the material assessed under compression, considering the effect of friction and the NOTES:  system resonance frequency, which falls between 20 and 30 Hz, with a maximum deformation of 12%. For further information on use and calculation, please see page 86. (2) s‘ = s‘ (t) the air contribution is not calculated, because the product is infinitely airtight (extremely high flow resistivity values). (3) Data from 30 days of observation. (4) Measurements performed on material with nominal thickness of 30 mm.

RESILIENT PROFILES | XYLOFON | 93


TECHNICAL ASPECTS

35 SHORE STRESS | DEFORMATION

CREEP

Stress [MPa]

Relative deformation [% reduction in sample thickness]

COMPRESSION

COMPRESSION

0,9

16,0

0,8

14,0

0,7

12,0

0,6 0,5

10,0

0,4

8,0

0,3

6,0

0,2

4,0

0,1

2,0

10

5

20

15

30

25

20.000

40.000

60.000

Deformation [%]

DYNAMIC ELASTIC MODULUS E'

TAN δ UNDER STRESS

E’ [MPa]

Loss factor

DMTA

80.000

Load period [h]

DMTA

0,5

2,0

0,4 1,5 0,3

1,0 0,2 0,5

0,1

30

40

50

60

70

80

30

40

50

60

70

Temperature [°C]

DYNAMIC ELASTIC MODULUS G'

TAN δ SHEAR

G’ [MPa]

Loss factor

DMTA

80

Temperature [°C]

DMTA

1,2

0,5

1,0

0,4

0,8

0,3

0,6

0,2 0,4 0,1

0,2

30

40

50

60

70

80

Temperature [°C] 94 | XYLOFON | RESILIENT PROFILES

30

40

50

60

70

80

Temperature [°C]


TECHNICAL ASPECTS

NATURAL FREQUENCY AND LOAD

DEFORMATION AND LOAD

Natural frequency [Hz]

Deformation [%]

100 20

10

10

0,01

0,1

1

1

0,1

0,01

Load [N/mm2]

Load [N/mm2]

DEFORMATION AND NATURAL FREQUENCY

TRANSMISSIBILITY

Deformation [%]

Transmission [dB]

10

10

0 -10

-20 -30

100

10

0,1

1

10

Natural frequency [Hz]

100

f / f0 Normalised with respect to the resonance frequency with f = 40 Hz. Elastic module measured from compression and deformation tests at 10%.

ATTENUATION Attenuation [%] 100 90

80 70

60 50

40

1,0 Hz/MPa

30

5,0 Hz/MPa

20

10,0 Hz/MPa

10

20,0 Hz/MPa 1

10

100

f / f0

33,3 Hz/MPa 50,0 Hz/MPa RESILIENT PROFILES | XYLOFON | 95


TECHNICAL ASPECTS

50 SHORE STRESS | DEFORMATION

CREEP

Stress [MPa]

Relative deformation [% reduction in sample thickness]

COMPRESSION

COMPRESSION

1,8

16,0

1,6

14,0

1,4

12,0

1,2 1,0

10,0

0,8

8,0

0,6

6,0

0,4

4,0

0,2

2,0

10

5

20

15

30

25

20.000

40.000

60.000

Deformation [%]

DYNAMIC ELASTIC MODULUS E'

TAN δ UNDER STRESS

E’ [MPa]

Loss factor

DMTA

80.000

Load period [h]

DMTA

3,5

0,10

3,0 0,08

2,5

2,0

0,06

1,5

0,04

1,0 0,02

0,5

30

40

50

60

70

80

30

40

50

60

70

Temperature [°C]

DYNAMIC ELASTIC MODULUS G'

TAN δ SHEAR

G’ [MPa]

Loss factor

DMTA

80

Temperature [°C]

DMTA

0,12

1,2

0,10

1,0

0,08

0,8 0,6

0,06

0,4

0,04

0,2

0,02

30

40

50

60

70

80

Temperature [°C] 96 | XYLOFON | RESILIENT PROFILES

30

40

50

60

70

80

Temperature [°C]


TECHNICAL ASPECTS

NATURAL FREQUENCY AND LOAD

DEFORMATION AND LOAD

Natural frequency [Hz]

Deformation [%]

100 20

10

10

0,01

0,1

1

0,1

0,01

1

Load [N/mm2]

Load [N/mm2]

DEFORMATION AND NATURAL FREQUENCY

TRANSMISSIBILITY

Deformation [%]

Transmission [dB]

10

0

10

-10

-20 -30

100

10

0,1

1

10

Natural frequency [Hz]

100

f / f0 Normalised with respect to the resonance frequency with f = 40 Hz. Elastic module measured from compression and deformation tests at 10%.

ATTENUATION Attenuation [%] 100 90

80 70

60 50

40

1,0 Hz/MPa

30

5,0 Hz/MPa

20

10,0 Hz/MPa

10

20,0 Hz/MPa 1

10

100

f / f0

33,3 Hz/MPa 50,0 Hz/MPa RESILIENT PROFILES | XYLOFON | 97


TECHNICAL ASPECTS

70 SHORE STRESS | DEFORMATION

CREEP

Stress [MPa]

Relative deformation [% reduction in sample thickness]

COMPRESSION

COMPRESSION

6,0

16,0 14,0

5,0

12,0

4,0

10,0

3,0

8,0 6,0

2,0

4,0 1,0

2,0

10

5

20

15

30

25

20.000

40.000

60.000

Deformation [%]

DYNAMIC ELASTIC MODULUS E'

TAN δ UNDER STRESS

E’ [MPa]

Loss factor

DMTA

80.000

Load period [h]

DMTA

0,16

10,0

0,14

8,0

0,12 0,10

6,0

0,08 4,0

0,06

0,04 2,0 0,02

30

40

50

60

70

80

30

40

50

60

70

Temperature [°C]

DYNAMIC ELASTIC MODULUS G'

TAN δ SHEAR

G’ [MPa]

Loss factor

DMTA

80

Temperature [°C]

DMTA

0,18

3,5

0,16 3,0

0,14

2,5

0,12

2,0

0,10

0,08 1,5

0,06

1,0

0,04

0,5

0,02

30

40

50

60

70

80

Temperature [°C] 98 | XYLOFON | RESILIENT PROFILES

30

40

50

60

70

80

Temperature [°C]


TECHNICAL ASPECTS

NATURAL FREQUENCY AND LOAD

DEFORMATION AND LOAD

Natural frequency [Hz]

Deformation [%]

100

15

10

10

0,1

1

10

1

0,1

10

Load [N/mm2]

Load [N/mm2]

DEFORMATION AND NATURAL FREQUENCY

TRANSMISSIBILITY

Deformation [%]

Transmission [dB]

10

10

0 -10

-20 -30

100

10

0,1

1

10

Natural frequency [Hz]

100

f / f0 Normalised with respect to the resonance frequency with f = 40 Hz. Elastic module measured from compression and deformation tests at 10%.

ATTENUATION Attenuation [%] 100 90

80 70

60 50

40

1,0 Hz/MPa

30

5,0 Hz/MPa

20

10,0 Hz/MPa

10

20,0 Hz/MPa 1

10

100

f / f0

33,3 Hz/MPa 50,0 Hz/MPa RESILIENT PROFILES | XYLOFON | 99


TECHNICAL ASPECTS

80 SHORE STRESS | DEFORMATION

CREEP

Stress [MPa]

Relative deformation [% reduction in sample thickness]

COMPRESSION

COMPRESSION

8,0

16,0

7,0

14,0

6,0

12,0

5,0

10,0

4,0

8,0

3,0

6,0

2,0

4,0

1,0

2,0

10

5

20

15

30

25

20.000

40.000

60.000

Deformation [%]

DYNAMIC ELASTIC MODULUS E'

TAN δ UNDER STRESS

E’ [MPa]

Loss factor

DMTA

80.000

Load period [h]

DMTA

0,30

20,0

0,25 15,0

0,20 0,15

10,0

0,10 5,0 0,05

30

40

50

60

70

80

30

40

50

60

70

Temperature [°C]

DYNAMIC ELASTIC MODULUS G'

TAN δ SHEAR

G’ [MPa]

Loss factor

DMTA

80

Temperature [°C]

DMTA

0,35

8,0 7,0

0,30

6,0

0,25

5,0

0,20

4,0

0,15

3,0

0,10

2,0

0,05

1,0

30

40

50

60

70

80

Temperature [°C] 100 | XYLOFON | RESILIENT PROFILES

30

40

50

60

70

80

Temperature [°C]


TECHNICAL ASPECTS

NATURAL FREQUENCY AND LOAD

DEFORMATION AND LOAD

Natural frequency [Hz]

Deformation [%]

100

15

10

10

0,1

1

10

1

0,1

10

Load [N/mm2]

Load [N/mm2]

DEFORMATION AND NATURAL FREQUENCY

TRANSMISSIBILITY

Deformation [%]

Transmission [dB]

10

10

0 -10

-20 -30

100

10

0,1

1

10

Natural frequency [Hz]

100

f / f0 Normalised with respect to the resonance frequency with f = 40 Hz. Elastic module measured from compression and deformation tests at 10%.

ATTENUATION Attenuation [%] 100 90

80 70

60 50

40

1,0 Hz/MPa

30

5,0 Hz/MPa

20

10,0 Hz/MPa

10

20,0 Hz/MPa 1

10

100

f / f0

33,3 Hz/MPa 50,0 Hz/MPa RESILIENT PROFILES | XYLOFON | 101


TECHNICAL ASPECTS

90 SHORE STRESS | DEFORMATION

CREEP

Stress [MPa]

Relative deformation [% reduction in sample thickness]

12,0

16,0

COMPRESSION

COMPRESSION

1,4

14,0

10,0

12,0

8,0

10,0

6,0

8,0 6,0

4,0

4,0 2,0

2,0 5

10

20

15

30

25

20.000

40.000

60.000

Deformation [%]

DYNAMIC ELASTIC MODULUS E'

TAN δ UNDER STRESS

E’ [MPa]

Loss factor

DMTA

DMTA

50,0

0,5

40,0

0,4

30,0

0,3

20,0

0,2

10,0

0,1

30

40

50

60

80.000

Load period [h]

70

80

30

40

50

60

70

Temperature [°C]

DYNAMIC ELASTIC MODULUS G'

TAN δ SHEAR

G’ [MPa]

Loss factor

DMTA

80

Temperature [°C]

DMTA

0,6 20,0

0,5

0,4

15,0

0,3

10,0 0,2 5,0 0,1

30

40

50

60

70

80

Temperature [°C] 102 | XYLOFON | RESILIENT PROFILES

30

40

50

60

70

80

Temperature [°C]


TECHNICAL ASPECTS

NATURAL FREQUENCY AND LOAD

DEFORMATION AND LOAD

Natural frequency [Hz]

Deformation [%]

100

15

10

10

0,1

1

10

1

0,1

10

Load [N/mm2]

Load [N/mm2]

DEFORMATION AND NATURAL FREQUENCY

TRANSMISSIBILITY

Deformation [%]

Transmission [dB]

10

10

0 -10

-20 -30

100

10

0,1

1

10

Natural frequency [Hz]

100

f / f0 Normalised with respect to the resonance frequency with f = 40 Hz. Elastic module measured from compression and deformation tests at 10%.

ATTENUATION Attenuation [%] 100 90

80 70

60 50

40

1,0 Hz/MPa

30

5,0 Hz/MPa

20

10,0 Hz/MPa

10

20,0 Hz/MPa 1

10

100

f / f0

33,3 Hz/MPa 50,0 Hz/MPa RESILIENT PROFILES | XYLOFON | 103


XYLOFON WASHER SEPARATING WASHER FOR SCREWS FOR WOOD

CODES AND DIMENSIONS XYLOFON WASHER code

Øscrew

XYLW803811

dext [mm] dint [mm]

Ø8 - Ø10

38

s [mm]

pcs.

6,0

50

s [mm]

pcs.

3,0

200

11

ULS 440 - WASHER code ULS11343

Øscrew

dext [mm] dint [mm]

Ø8 - Ø10

34

11

HBS - WOOD SCREW(1) code

Ø HBS

L [mm]

pcs.

HBS8180

8

180

100

HBS8200

8

200

100

HBS10220

10

220

50

HBS10240

10

240

50

NOTES:

(1) complete range at www.rothoblaas.com

MATERIAL AND DURABILITY Polyurethane mixture (80 shore). Product free of VOCs and harmful substances. Extremely chemically stable and without deformations over time.

FIELD OF USE Mechanical desolidarisation of shear wood wood junctions built with screws

104 | XYLOFON WASHER | RESILIENT PROFILES


XYLOFON WASHER SEPARATING WASHER FOR WHT ANGLE BRACKET

CODES AND DIMENSIONS XYLOFON WASHER code

Code WHT Ø [mm] P [mm] B [mm] s [mm]

XYLW808080

WHT340 WHT440 WHT540 WHT620

XYLW8080140

WHT740

XYLW806060

pcs.

23

60

60

6,0

10

27

80

80

6,0

10

30

80

140

6,0

1

WHT - ANGLE BRACKET FOR TENSILE STRESS code

Code ULS

H [mm] Ø [mm] n Ø5 [pcs] s [mm]

WHT340

ULS505610

340

WHT440

ULS505610

WHT540

ULS505610L

WHT620

ULS707720L

WHT740

ULS1307740

3,0

pcs.

17

20

10

440

17

30

3,0

10

540

22

45

3,0

10

620

26

55

3,0

10

740

29

75

3,0

1

MATERIAL AND DURABILITY Polyurethane mixture (80 shore). Product free of VOCs and harmful substances. Extremely chemically stable and without deformations over time.

FIELD OF USE Mechanical desolidarisation of tensile wood - wood junctions achieved with WHT

RESILIENT PROFILES | XYLOFON WASHER | 105


FLANKSOUND

TITAN SILENT

ETA 11/0496

EN ISO 10848

ANGLE BRACKET FOR SHEAR STRESSES WITH RESILIENT PROFILE SOUND INSULATION Significant reduction of vibrations from footsteps and attenuation of the transmitted noise, for excellent acoustic comfort.

ACOUSTIC BRIDGES The excellent shear resistance of the angular bracket and the soundproofing of the profile limit acoustic bridges.

TESTED VALUES Abatement values for vibrations and shear mechanical strength tested in both academic and industrial environments.

CODES AND DIMENSIONS TITAN code

B [mm] P [mm] H [mm] n Ø5 [pcs]

fastenings

s [mm] pcs.

TTF200

200

71

71

60

LBAØ4 - LBSØ5 3,0

10

TTN240

240

93

120

72

LBAØ4 - LBSØ5 3,0

10

TTS240

240

130

130

28

(2)

HBS+ Ø8

3,0

10

XYLOFON code

TITAN

XYLPLATE

B [mm] P [mm] s [mm]

TTF200

200

70

6,0

pcs. 10

XYL35120240

TTN240 - TTS240

240

120

6,0

10

XYL35100200

TCF200 - TCN200

200

100

6,0

10

ALADIN STRIPE code ALADIN95 ALADIN115 NOTES:

Version SOFT EXTRA SOFT

P [mm] 95 115

L [m]

s [mm]

pcs.

50

(1)

5,0

1

50

(1)

7,0

1

(1) to be cut on site (2) Ø11 openings

TWO VERSIONS Resilient structural profiles for TITAN: XYLOFON ready to use and ALADIN STRIPE to be cut on site.

ACOUSTIC/STATIC XYLOFON PLATE and ALADIN STRIPE for an excellent compromise between acoustic performance and mechanical resistance.

106 | TITAN SILENT | RESILIENT PROFILES


TTF200 + XYLPLATE

TTN240 + ALADIN95

TTS240 + XYL35120240

MATERIAL AND DURABILITY XYLOFON: 35 shore polyurethane mixture, free from VOC and harmful substances. ALADIN STRIPE: Extruded compact EPDM (soft version) and compact EPDM foam (extra soft version). High chemical stability, VOC-free. TITAN: DX51D carbon steel with Z275 zinc coating. Application in service class 1 and 2 (EN 1995:2008).

FIELD OF USE Wood-wood shear connections with reduction of acoustic bridges

RESILIENT PROFILES | TITAN SILENT | 107


TECHNICAL ASPECTS

INTERACTION STRUCTURAL BEVAHIOUR As part of the Seismic Rev project, in cooperation with the University of Trento and CNR IVALSA, preliminary assessment was done of the mechanical behaviour of the TITAN product when paired with various soundproofing profiles.

EXPERIMENTAL STAGE During the experimental stage, monotone tests were carried out using linear load procedures with displacement control, aimed at assessing the change in ultimate resistance and stiffness offered by the connection. The test set-up was designed so as to highlight the behaviour of the wall-wall and wall-floor connections subject to the forces which must be absorbed during use.

TEST SAMPLES CLT panels (Cross Laminated Timber) resistance class C24 TITAN TTF200 angle bracket fastened with 60 anker nails LBA Ă&#x2DC;4x60 mm

NUMERIC MODELLING The results of the preliminary investigation highlighted the importance of performing more detailed analysis on the influence of the sound-insulating profiles on the mechanical behaviour of TITAN angle brackets. This led to the decision to carry out further assessments using finite elements numeric modelling. In the case under study, the effect on mechanical behaviour caused by the three different resilient profiles was analysed: XYLOFON 35 (6 mm), ALADIN STRIPE SOFT (5 mm) and ALADIN STRIPE EXTRA SOFT (7 mm).

Displacement Tx [mm] for displacement induced by the steel plate equal to 8 mm

In the initial stage, advanced numeric analysis was carried out to assess the influence of the acoustic profiles, placed between the steel plate and the wood, on the behaviour of a single 4x60 mm LBA nail.

In the second stage, two types of TITAN connections were analysed, to investigate the influence of the acoustic profiles on the resistance value and global stiffness of the devices themselves.

108 | TITAN SILENT | RESILIENT PROFILES

Displacement Tx [mm] for displacement induced equal to 10 mm


TECHNICAL ASPECTS

VARIATION IN MECHANICAL SHEAR RESISTANCE BASED ON THE SOUNDPROOFING PROFILE Comparison of the results relative to the different configurations analysed is reported in terms of the variation in the force at 15 mm of displacement (F15 mm) and elastic stiffness at 5 mm (K5 mm).

TITAN TTF200 Configurations

F [kN] sp F15 mm ΔF15 mm K5 mm ∆K5 mm [mm] [kN] [kN/mm]

80 70

TTF200

-

68,4

-

9,55

-

TTF200 + ALADIN STRIPE SOFT red.*

3

59,0

-14 %

8,58

-10 %

TTF200 + ALADIN STRIPE EXTRA SOFT red.*

4

56,4

-18 %

8,25

-14 %

TTF200 + ALADIN STRIPE SOFT

5

55,0

-20 %

7,98

-16 %

30

20

TTF200 + XYLOFON PLATE

6

54,3

-21 %

7,79

-18 %

TTF200 + ALADIN STRIPE EXTRA SOFT

7

47,0

-31 %

7,30

-24 %

60 50

40

10

*reduced thickness: profile height reduced due to the corrugated section and consequent crushing induced by the nail head during use.

TITAN TTN240 Configurations TTN240

5

10

15

20

d [mm]

5

10

15

20

d [mm]

F [kN] sp F15 mm ΔF15 mm K5 mm ∆K5 mm [mm] [kN] [kN/mm] -

71,9

-

9,16

-

80 70

60

TTN2400 + ALADIN STRIPE SOFT red.*

3

64,0

-11 %

8,40

-8 %

TTN240 + ALADIN STRIPE EXTRA SOFT red.*

4

61,0

-15 %

8,17

-11 %

TTN240 + ALADIN STRIPE SOFT

5

59,0

-18 %

8,00

-13 %

30

TTN240 + XYLOFON PLATE

6

58,0

-19 %

7,81

-15 %

20

TTN240 + ALADIN STRIPE EXTRA SOFT

7

53,5

-26 %

7,47

-18 %

*reduced thickness: profile height reduced due to the corrugated section and consequent crushing induced by the nail head during use.

The results obtained indicate a reduction in the resistance and stiffness of the devices following the insertion of the sound-insulating profiles. This change is heavily dependent on the thickness of the profile. To limit the reduction in force and stiffness to around 20%, profiles must be selected with real thicknesses less than or equal to 6 mm, approximately.

50

40

10

EXPERIMENTAL

RESULTS

NOTES: TITAN: Mechanical resistance values and installation methods are shown in the product technical sheets (www.rothoblaas.com). XYLOFON: Mechanical resistance values and installation methods can be found on page 92 of the present catalogue, or in the product technical sheets (www.rothoblaas.com). ALADIN STRIPE: Mechanical resistance values and installation methods can be found on page 114 of the present catalogue, or in the product technical sheets (www.rothoblaas.com).

RESILIENT PROFILES | TITAN SILENT | 109


CORK

ECO

ECOLOGICAL PANEL FOR ACOUSTIC INSULATION SUSTAINABLE BUILDING It significantly reduces the transmission of airborne and structural noise. Natural VOC-free cork is ideal for structures where the goal is to minimise environmental impacts during construction.

PACKAGING Sold in 50x100 cm panels easily shaped in strips; usable as profiles for walls or as layers in floors.

TESTED Natural cork agglomerate mechanically tested by the Industrial Research Centre of the University of Bologna.

CODES AND DIMENSIONS code

Version

B [mm]

L [m]

s [mm]

pcs.

CORK410

SOFT

CORK850

HARD

500

1

5,0

1

500

1

5,0

1

LIVING COMFORT The compactness of the cork agglomerate makes it waterproof, so it can be used both on cement and masonry for protection against rising damp and as a wall barrier.

110 | CORK | RESILIENT PROFILES


TECHNICAL ASPECTS

TECHNICAL SPECIFICATIONS Property

Standard

CORK410 [SOFT]

CORK850 [HARD]

-

approx. 410 kg/m3

approx. 850 kg/m3

Static permanent load

-

0,2 N/mm2

1,0 N/mm2

Permissible load

UNI 29052

0,75 N/mm2

6,5 N/mm2

Dynamic stiffness s' (1)

-

246 MN/m3

1211 MN/m3

Density

Max processing temperature

-

> 100 °C

> 100 °C

Thermal conductivity

EN 13501-1

0,091 W/mK

0,091 W/mK

Reaction to fire

EN 13501-1

class E

class E

TABLE OF USE Version

L (2) [mm]

CORK410

100

CORK850

100

APPLICABLE COMPRESSION [N/mm2] from to 0,20 0,75 0,75

3,00

LOWERING [mm] min 0,25

max 1

0,25

1

APPLICABLE LINEAR LOAD (2) [kN/m] from to 20 75 75

300

MATERIAL AND DURABILITY Cork agglomerate resistant to moisture and ageing, including under load. CORK SOFT: version with lower density and larger granules. CORK HARD: version with higher density and smaller granules.

APPLICATION INSTRUCTIONS

50 cm 100 cm 40 - 60 cm

01

NOTES:

02

03

04

(1) s‘ = s‘ (t) the air contribution is not calculated, because the product is infinitely airtight (extremely high flow resistance values). (2) The product is supplied in slabs. A standard width of 100 mm is shown as it is the most common case. For different widths, data can be deduced starting from

"applicable compression". Complete reports on mechanical-acoustic characterisation of the material are available from the Rothoblaas technical department. For further information on use and calculation, please see page 86.

RESILIENT PROFILES | CORK | 111


FLANKSOUND

ALADIN STRIPE

EN ISO 10848

RESILIENT SOUNDPROOFING PROFILE

CERTIFIED Tested by the Industrial Research Centre of the University of Bologna in accordance with EN ISO 10848.

PERFORMANCE Soundproofing up to 4 dB in accordance with EN ISO 140-7, thanks to the innovative composition of the mixture; reduced application thickness (between 3 and 5 mm).

TESTED Footstep noise reduction verified and approved experimentally by Holzforschung Austria.

s B

SOFT

s B

EXTRA SOFT

CODES AND DIMENSIONS code

Version

B [mm]

L [m]

s [mm]

pcs.

ALADIN95

SOFT

95

50

5,0

1

ALADIN115

EXTRA SOFT

115

50

7,0

1

PRACTICAL Precut to obtain 4 different widths from only two versions. Dry installation with mechanical fastening.

EPDM Extruded EPDM foam mix to optimise soundproofing based on typical wood structure loads.

112 | ALADIN STRIPE | RESILIENT PROFILES


MATERIAL AND DURABILITY ALADIN STRIPE SOFT: compact extruded EPDM ALADIN STRIPE EXTRA SOFT: expanded EPDM. High chemical stability, VOC-free.

ELASTIC Thanks to the EPDM mix, the product can compensate for the expansion of wood or of materials in general.

RESILIENT PROFILES | ALADIN STRIPE | 113


TECHNICAL ASPECTS

TECHNICAL SPECIFICATIONS Property

Standard

ALADIN95 [SOFT]

ALADIN115 [EXTRA SOFT]

Composition

-

Extruded EPDM

expanded EPDM

Density

ASTM D 297

1,1 ± 0,02 g/cm3

0,50 ± 0,06 g/cm3

Hardness

EN ISO 868

50 ± 5 shore

-

Dynamic stiffness s' (airtight condition) (1)

UNI 29052

221 MN/m3

76 MN/m3

Dynamic stiffness s‘ (non-airtight condition) (1)

UNI 29052

115 MN/m3

23 MN/m3

Tear strength

EN ISO 37

≥ 9 Mpa

-

Elongation at break point

EN ISO 37

≥ 500 %

-

+23 °C

EN ISO 815

-

≤ 25 %

+40 °C

EN ISO 815

-

≤ 35 %

+70 °C

EN ISO 815

-

-

+100 °C

EN ISO 815

≥ 50 %

-

-

> 100 °C

> 100 °C

Compression deformation 22h:

Max processing temperature

TABLE OF USE Code

L

TYPE

[mm]

APPLICABLE COMPRESSION [N/mm2] from to 0,189 0,316

LOWERING

min 0,5

max 1,5

[mm]

APPLICABLE LINEAR LOAD [kN/m] from to 9 15

ACOUSTIC LOWERING L’nt,w [dB] (2)

ALADIN95

47,5

soft - divided

ALADIN95

95,0

soft

0,189

0,316

0,5

1,5

18

30

≤3

ALADIN115

57,5

extra soft - divided

0,035

0,157

0,7

2,0

2

9

≤4

ALADIN115

115,0

extra soft

0,035

0,157

0,7

2,0

4

18

≤4

APPLICATION INSTRUCTIONS

40-60 cm

01

02

03

04

NOTES:

(1) s‘ = s‘ (t) the air contribution is not calculated, because the product is infinitely airtight (extremely high flow resistance values). (2) Results guaranteed without the use of brackets and/or fastening systems between floor and wall.

Valid for design and package corresponding to the test set-up described on page 18. Complete reports on mechanical-acoustic characterisation of the material are available from the Rothoblaas technical department. For further information on use and calculation, please see page 86.

114 | ALADIN STRIPE | RESILIENT PROFILES

≤3


TECHNICAL ASPECTS

ALADIN STRIPE EXTRA SOFT NATURAL FREQUENCY AND LOAD

DEFORMATION AND LOAD

Natural frequency [Hz]

Deformation [%] 30

100

20

10

10

0,01

0,1

0,1

0,01

1

1

Load [N/mm2]

Load [N/mm2]

DEFORMATION AND NATURAL FREQUENCY

TRANSMISSIBILITY

Deformation [%]

Transmission [dB] 10 5

0 10

-5

-10 -15

-20 -25

-30 -35

100

10

0,1

1

10

Natural frequency [Hz] Normalised with respect to the resonance frequency. Elastic module measured from compression and real deformation tests

ATTENUATION Attenuation [%] 100 90

80 70

60 50

40 30

20 10 1

10

100

f / f0 116 | ALADIN STRIPE | RESILIENT PROFILES

100

f / f0


TECHNICAL ASPECTS

ALADIN STRIPE SOFT NATURAL FREQUENCY AND LOAD

DEFORMATION AND LOAD

Natural frequency [Hz]

Deformation [%]

100

30 20

10 10

0,01

0,1

Load

0,1

0,01

1

1

[N/mm2]

Load [N/mm2]

DEFORMATION AND NATURAL FREQUENCY

TRANSMISSIBILITY

Deformation [%]

Transmission [dB] 10 5

0 10

-5

-10 -15

-20 -25

-30 -35

100

10

0,1

1

10

Natural frequency [Hz]

100

f / f0 Normalised with respect to the resonance frequency. Elastic module measured from compression and real deformation tests

ATTENUATION Attenuation [%] 100 90

80 70

60 50

40 30

20 10 1

10

100

f / f0 RESILIENT PROFILES | ALADIN STRIPE | 117


TRACK RESILIENT SOUNDPROOFING PROFILE

COST/PERFORMANCE Composition of the mixture optimised to provide both good performance and low cost.

FUNCTIONAL Reduces flanking transmission of vibrations and improves airtightness.

PRACTICAL Easily divided into two parts thanks to the central pre-cut.

CODES AND DIMENSIONS code

B [mm]

L [m]

s [mm]

pcs.

85

50

4,5

1

TRACK85

TECHNICAL SPECIFICATIONS

STABLE

Property

Standard

Value

Composition

-

Extruded EPDM

Density

ASTM D 297

1,2 ± 0,02 g/cm3

Hardness

EN ISO 868

65 ± 5 Shore A

Tear strength

EN ISO 37

≥ 8 MPa

Elongation at break point

EN ISO 37

≥ 250 %

+23 °C

EN ISO 815

-

+40 °C

EN ISO 815

-

+70 °C

EN ISO 815

≤ 40 %

-

- 35 / +70 °C

Compression deformation 22h:

Processing temperature 118 | TRACK | RESILIENT PROFILES

Long-term resistance thanks to the solid EPDM mixture. Not sensitive to chemical attacks.

MATERIAL Synthetic rubber: compact extruded EPDM. High chemical stability, free from harmful substances.


GRANULO RESILIENT GRANULAR RUBBER SOUNDPROOFING PROFILE ANTI-VIBRATION The thermal-bound rubber granules dampen vibrations and insulate footstep noise.

WALL BARRIER Resilient strip to decouple vertical walls from floors.

100% RECYCLABLE Resistance to chemical interaction, it maintains its characteristics over time and is 100% recyclable.

CODES AND DIMENSIONS GRANULO STRIPE code GRANULO100

B [mm]

L [m]

s [mm]

pcs.

100

15

4,0

1

GRANULO UNDERSTRUCTURE code

former code

B [mm]

L [m]

s [mm]

pcs.

GRANULOPAD

NAG808010

80

0,08

10,0

20

GRANULOROLL

FE010350

80

6

8,0

1

GRANULOMAT

FE010355

1250

10

6,0

1

TECHNICAL SPECIFICATIONS Property

Standard

Value

Hardness

-

50 shore A

Density

-

750 kg/m3

Apparent dynamic stiffness s't Theoretical estimate of footstep attenuation level ∆Lw (1) System resonance frequency f0 (1)

ISO 29052-1

66 MN/m3

ISO 12354-2

22,6 dB

ISO 12354-2

116,3 Hz

10% deformation

-

21 kPa

25% deformation

-

145 kPa

Elongation at break point

-

27 %

Thermal conductivity λ

UNI EN 12667

0,033 W/mK

MULTIFUNCTIONAL Also available in other formats, ideal for use externally as structural foundations (PAD, ROLL and MAT).

Deformation force under compression

NOTES:

MATERIAL Mix of natural and synthetic elastomers bound by polymerised polyurethane.

(1) Consider a load condition, with m'=125 kg/m2.

RESILIENT PROFILES | GRANULE | 119


SILENT BEAM RESILIENT PROFILE FOR FLOOR BATTENS WITH DRY SYSTEM. LOW FREQUENCIES Thanks to the special viscoelastic mixture, the product is able to insulate at very low frequencies, even with low loads.

SOUND INSULATION Based on the different loads acting upon the profile, excellent soundproofing values are achieved, even on light floors with little mass.

CODES AND DIMENSIONS code

B [mm]

L [m]

s [mm]

pcs.

45

2

12,5

1

SILENTBEAM45

TECHNICAL SPECIFICATIONS Property Static elastic modulus at 10% (compression) Dynamic elastic modulus E'

Standard

Value

DIN 53513

0,048 MPa

DIN 53513

0,144 MPa

Mechanical loss factor

DIN 53513

0,25

Maximum temperature for use

-

120 °C

Tear strength

DIN 53455

≥ 0,35 MPa

Elongation at break point

DIN 53455

≥ 400 %

RELIABLE

Reaction to fire

EN 13501-1

class E

Thermal conductivity (λ)

-

0,05 W/mK

Polyurethane ensures elastic behaviour over time, keeping its ability to deform under dynamic stresses unchanged.

TABLE OF USE APPLICABLE COMPRESSION DEFORMATION

NATURAL FREQUENCY

ELASTIC MODULUS E

[N/mm2] 0,005

[mm] 0,5

[Hz] 9

STATIC [N/mm2] 0,14

AT 10 Hz [N/mm2] 0,23

AT 30 Hz [N/mm2] 0,28

0,010

1

18

0,05

0,15

0,19

0,015

2,5

2

0,04

0,18

0,22

0,020

3,5

4

0,07

0,25

0,32

120 | SILENT BEAM | RESILIENT PROFILES

MATERIAL Open cell polyurethane foam mix. Chemically stable and free of harmful substances.


SILENT UNDERFLOOR RESILIENT STRIP FOR FLOOR UNDERBATTENS AND SUPPORTING WALLS ADHESIVE Easy to apply adhesive profile, also with the aid of LIZARD unwinder

SOUND INSULATION Anti-vibration for the ribs of the floor package.

SUPPORTING WALLS Also ideal as a nail point for substructures of supporting walls.

CODES AND DIMENSIONS code

B [mm]

L [m]

s [mm]

pcs.

50

30

4,0

5

Property

Standard

Value

Density

ISO 845-95

140 kg/m3

Water absorption Ageing with heat and permanent deformation Tear strength

ASTM D1056-00

max 10 %

167 h at 70 째C

pass

ISO 1798-7

400 kN/m2

Elongation at break point

ISO 1798-7

> 180 %

ASTM D1056-00

40 kPa

50% compression

ASTM D1056-00

105 kPa

50% 22 h: +20 째C

-

35 %

MATERIAL

continuous

-

- 40 / +85 째C

intermittent

-

100 째C

EPDM foam with acrylic glue and silicone-impregnated paper liner. Does not contain harmful substances.

Air resistance + UV

-

excellent

SILENTUNDER50

TECHNICAL SPECIFICATIONS

LONG-LASTING Thanks to its mixture, it is stable over time. Not sensitive to chemical attacks and watertight.

Compression resistance: 25% compression

Max temperature for use:

RESILIENT PROFILES | SILENT UNDERFLOOR | 121


TIE-BEAM STRIPE TIE BEAM SEALING PROFILE

ADAPTABLE Flexible profile, easy to work with thanks to soft and malleable mixture.

NOISE REDUCTION Resilient profile for the tie beam and masonry/concrete connection.

AIRTIGHTNESS Thanks to its thickness and side profiles, the product works as an excellent hermetic seal.

s B

CODES AND DIMENSIONS code

B [mm]

L [m]

s [mm]

pcs.

71

50

9

1

TIEBEAM71

TECHNICAL SPECIFICATIONS

WALL BARRIER

Property

Standard

Value

Hardness

EN ISO 868

50 shore A

Density

ASTM D 297

1,1 g/cm3

Breaking load

EN ISO 37

≥ 9 MPa

Elongation at break point Compression deformation 22h: +100 °C Processing temperature

EN ISO 37

≥ 500 %

EN ISO 815

< 50 %

-

-40 / +90 °C

Storage temperature

-

+5 / +25 °C

Presence of solvents

-

NO

VOC emissions

-

< 0,02 % (class A+)

122 | TIE-BEAM STRIPE | RESILIENT PROFILES

Usable on concrete and masonry for protection against rising humidity.

MATERIAL Synthetic rubber: compact extruded EPDM. High chemical stability, free from harmful substances.


CONSTRUCTION SEALING COMPRESSIBLE SEAL FOR REGULAR JUNCTIONS PRACTICAL Can be applied on site or during prefabrication to seal wood-wood junctions.

STABLE Long-term resistance thanks to the solid EPDM mixture. Not sensitive to chemical attacks.

CERTIFIED Tested by the Industrial Research Centre of the University of Bologna in accordance with EN ISO 10848.

CODES AND DIMENSIONS code

B [mm]

L [m]

s [mm]

pcs.

46

25

3

4

CONSTRU4625

LONG-LASTING The EPDM mixture offers high chemical stability and durability over time.

TECHNICAL SPECIFICATIONS Property

Standard

Value

Density

DIN EN 12311/1

approx. 0,48 g/cm3

+23 °C

EN ISO 815

< 25 %

+40 °C

EN ISO 815

< 35 %

Temperature resistance

-

-35 / +100 °C

Storage temperature

-

+5 / +25 °C

Presence of solvents

-

NO

VOC emissions

-

< 0,02 % (class A+)

Compression deformation 22h:

MATERIAL Synthetic rubber: expanded EPDM. High chemical stability, free from harmful substances.

RESILIENT PROFILES | CONSTRUCTION SEALING | 123


SILENT GIPS PRE-CUT DETACHING SELF-ADHESIVE HIGH DENSITY THERMO-ACOUSTIC STRIP DECOUPLING Allows for complete removal of the plasterboard wall, avoiding transmission of vibrations to structural elements.

PRE-CUT The pre-cut means the product can adapt to various plasterboard wall configurations.

DOUBLE-SIDED ADHESIVE Installation on a metal frame is fast and easy, without the need for additional adhesives.

CODES AND DIMENSIONS code

Liner [mm]

B [mm]

L [m]

s [mm]

pcs.

SILENTGIPS

12 / 76 / 12

100

30

3,3

1

CLOSED CELL TECHNICAL SPECIFICATIONS Property

Standard

Value

Thickness

-

3,3 mm

Density (internal - external)

-

100 - 150 kg/m3

Dynamic stiffness s' Estimated soundproofing power of an individual profile Crushing (load 6,5 kPa)

EN 29052

60 MN/m3

-

10 - 13 dB

ISO 7214

0,3 mm

Thermal conductivity (λ) Temperature resistance

EN 12667

0,04 W/mK

ISO 6946

0,08 m2K / W

124 | SILENT GIPS | RESILIENT PROFILES

Thanks to the grid of closed cell polyethylene, the product cannot be irreversibly crushed and remains effective over time.

MATERIAL Closed cell polyethylene with acrylic glue and silicone film liner. Does not contain harmful substances.


GIPS BAND NAIL POINT SELF-ADHESIVE SEALING TAPE FOR PROFILES INTUITIVE Simple to apply adhesive strip, even using the unwinder LIZARD.

SOUND INSULATION Vibration damper for the ribs of the supporting wall structure.

HERMETIC Thanks to the closed cell structure, it is watertight and airtight, even if trimmed or drilled.

CODES AND DIMENSIONS code GIPSBAND50

B [mm]

L [m]

s [mm]

pcs.

50

30

3,0

10

TECHNICAL SPECIFICATIONS Property

Standard

Value

Temperature resistance

-

-30 / +80 °C

Density

ISO 845

approx. 25 kg/m3

Tear strength | MD/CD

ISO 1926

325 / 220 kPa

MD/CD elongation

ISO 1926

125 / 115 %

10%

ISO 3386/1

2 kPa

25%

ISO 3386/1

3 kPa

50%

ISO 3386/1

5 kPa

Compression resistance:

Reaction to fire

DIN 4102 / EN 13501 class B2/E

Water-absorbency

ISO 2896

<2 % vol

Thermal conductivity

-

0,04 W/mK (at +10 °C)

Storage temperature

-

+5 / +25 °C

Presence of solvents

-

NO

VOC emissions

-

< 0,02 % (class A+)

SAFE Stable over time, thanks to its special mixture. Not susceptible to chemical substances.

MATERIAL Support film and closed cell polyethylene (PE) foam profile with acrylic glue

RESILIENT PROFILES | GIPS BAND | 125


SILENT EDGE SELF-ADHESIVE STRIP FOR PERIMETER SEPARATION PRACTICAL Thanks to the self-adhesive support and the pre-cut, application is fast and precise.

COOPERATIVE Together with SILENT FLOOR, it creates a highly soundproof screed.

VERSATILE Ideal as a perimeter band in floors undergoing structural renovation and in new buildings.

CODES AND DIMENSIONS code SILENTEDGE150

B [mm]

L [m]

s [mm]

pcs.

150

50

4,0

5

TECHNICAL SPECIFICATIONS Property

Standard

Value

Thickness

-

4 mm

Maximum processing temperature

-

-20 / +80 °C

Foam colour

-

grey

Density Insulation against footsteps ΔLw calculated in the laboratory

-

22 - 25 kg/m3

UNI EN ISO 140/6

20 - 25 dB

Insulation against footsteps L’n,w on site

-

58 - 59 dB

Compression stress at 10% deformation

UNI EN 826

13,002 kPa

+10 °C

-

0,035 W/mK

+40 °C

-

0,039 W/mK

-

43 MN/m3

Thermal conductivity:

Dynamic stiffness

126 | SILENT EDGE | RESILIENT PROFILES

WATERPROOF Thanks to the closed cell structure, it is airtight and waterproof even if cut or trimmed after application.

MATERIAL Closed cell polyethylene with acrylic glue and silicone film liner. Does not contain harmful substances.


SOUNDPROOFING FOILS


SOUNDPROOFING FOILS


SOUNDPROOFING FOILS Underscreed SILENT FLOOR SOFT

resilient underscreed foil made of closed cell PE

SILENT FLOOR

resilient underscreed foil made of bitumen and polyester felt

134 136

SILENT FLOOR EVO

resilient high performance underscreed foil made of recycled polymers

138

Foils for walls SILENT WALL MASS

soundproofing and waterproofing bituminous foil

140

SILENT WALL

soundproofing and waterproofing self-adhesive bituminous foil

142

Membranes for roofs TRASPIR METAL

3D mats for metal roofs

144

Under floor SILENT STEP SOFT

substrate made of closed cell PE

149

SILENT STEP

substrate made of high density NPE polyethylene with PE film serving as a vapour barrier

150

SILENT STEP ALU

substrate of a high density polymer mix covered in aluminium serving as a vapour barrier

151

SILENT STEP UNI

high density polyurethane substrate with excellent compression resistance

152


IMPACT SOUND INSULATION

IMPACT SOUND INSULATION Lnw : CHOOSE THE RIGHT PRODUCT The dynamic stiffness s’ [MN/m3] expresses the elastic deformation capacity of a impact sound insulation product subject to dynamic stress and is measured in the lab based on EN ISO 29052-1. This parameter includes the elastic and damping characteristics of the material, including those of the air enclosed within it.

MATERIAL A

200 kg/m2

> 40 MN/m2

MASS SYSTEM - SPRING - MASS

MATERIAL B

200 kg/m2

Every material has a different dynamic stiffness value and can be outlined like a mass system - spring - mass. A floating mass system can be associated with this type of system, in which the structural floor or system sub-floor represents the base mass, the impact sound insulation product is the spring and the supporting mass and flooring constitute the upper mass. In this context, the element that serves as the spring is defined as the "resilient layer" and is attributed the "dynamic stiffness s' [MN/m3]".

from 15 MN/m2 to 40 MN/m2 MATERIAL C

200 kg/m2

< 15 MN/m2

DYNAMIC STIFFNESS AND AIR INSIDE THE MATERIALS One element that can influence this behaviour is the air contained inside the materials. In fact, dynamic stiffness is the sum of two factors:

s’ = s’t + s’a

where: s’ real dynamic stiffness s’t apparent dynamic stiffness s’a dynamic stiffness for surface unit of the gas contained inside the material

OPEN CELL MATERIALS Fibrous and open cell materials allow for air to pass within them. In general, for these it is necessary to always consider the real dynamic stiffness value, which includes the contribution of the air.

CLOSED CELL MATERIALS Closed cell materials or homogeneous and isotropic materials are considered impermeable to air, and therefore airflow can be ignored, obtaining s' = s't [MN/m3].

130 | IMPACT SOUND INSULATION | SOUNDPROOFING FOILS

Taking a fibrous material for example, when it is crushed, the air exits the structure of the material, and it loses its damping factor. The dynamic stiffness of air s’a must be added if the flow resistivity r of the material is between:

10 kPa(s/m2) < r < 100 kPa (s/m2) Flow resistivity is assessed using EN ISO 29053:93.


IMPACT SOUND INSULATION

DYNAMIC STIFFNESS AND ACOUSTIC PERFORMANCE ∆LW

LOAD (m’), DYNAMIC STIFFNESS AND ATTENUATION

EN ISO 12354-2 makes it possible to obtain the ∆Lw value of impact sound insulation products, starting from the dynamic stiffness value which is fundamental for this theoretical calculation phase.

∆Lw = 30log ( f / f0 ) + 3

(dB)

EN ISO 12354-2 contains graphs which demonstrate the relationship between load (m'), dynamic stiffness and attenuation in dB. Observing the graph below, it is clear that the relationship can be simplified to a linear trend, which provides immediate guidance in selecting the proper product for the specific case.

where:

f reference frequency, equal to 500 Hz f0 the system resonance frequency, calculated from f0 = 160 √ (s'/m') (Hz)

As an alternative to the above formula, the following one can be used directly:

∆Lw = 13log ( m'2 ) - 14,2log ( s' ) + 20,8

(dB)

(this formula is used in example 2 in the following pages) 35

The formulas are also valid for calculating attenuation of the frequency, eliminating the final term:

∆Lw = 30log ( f / f0 )

with f f0

from 50 Hz to 5000 Hz 500 Hz

30

(dB)

25

60 40

20

From this formula, it can be observed that for equal loads (m'), the acoustic attenuation increases proportionally to the decrease in dynamic stiffness.

15 10

15 15

20

30

40 50

Example graph for a cement or dry screed.

Therefore, at equal dynamic stiffness, it is necessary to select the most appropriate load to ensure that the system operates at a resonance frequency that is advantageous in an elastic regime.

Below is an abacus/table that shows how the attenuation in dB (∆Lw) of our materials varies with the load, or the surface mass of the layer on which the product is loaded.

SILENT FLOOR EVO S'

load

DLw

[MN/m3] [kg/m2] [dB]

f0

100

125

160

200

250

315

400

500

630

800

[Hz]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

1000 1250 1600 2000 2500 3150 [dB]

[dB]

[dB]

[dB]

[dB]

[dB]

11

50

28,3 75,0

3,7

6,6

9,9

12,8

15,7

18,7

21,8

24,7

27,7

30,8

33,7

36,6

39,9

42,8

45,7

48,7

11

75

30,6 61,3

6,4

9,3

12,5

15,4

18,3

21,3

24,4

27,4

30,4

33,5

36,4

39,3

42,5

45,4

48,3

51,3

11

100

32,2 53,1

8,3

11,2

14,4

17,3

20,2

23,2

26,3

29,2

32,2

35,3

38,3

41,2

44,4

47,3

50,2

53,2

11

125

33,5 47,5

9,7

12,6

15,8

18,7

21,6

24,7

27,8

30,7

33,7

36,8

39,7

42,6

45,8

48,7

51,6

54,7

11

150

34,5 43,3

10,9

13,8

17,0

19,9

22,8

25,8

29,0

31,9

34,9

38,0

40,9

43,8

47,0

49,9

52,8

55,8

11

175

35,4 40,1

11,9

14,8

18,0

20,9

23,8

26,9

30,0

32,9

35,9

39,0

41,9

44,8

48,0

50,9

53,8

56,9

SOUNDPROOFING FOILS | IMPACT SOUND INSULATION | 131


IMPACT SOUND INSULATION

SILENT FLOOR S'

load

DLw

[MN/m3] [kg/m2] [dB]

f0

100

125

160

200

250

315

400

500

630

800

[Hz]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

1000 1250 1600 2000 2500 3150 [dB]

[dB]

[dB]

[dB]

[dB]

[dB]

27

50

22,8 117,6

-2,1

0,8

4,0

6,9

9,8

12,8

16,0

18,9

21,9

25,0

27,9

30,8

34,0

36,9

39,8

42,8

27

75

25,1 96,0

0,5

3,4

6,7

9,6

12,5

15,5

18,6

21,5

24,5

27,6

30,5

33,4

36,7

39,6

42,5

45,5

27

100

26,8 83,1

2,4

5,3

8,5

11,4

14,3

17,4

20,5

23,4

26,4

29,5

32,4

35,3

38,5

41,4

44,3

47,4

27

125

28,0 74,4

3,9

6,8

10,0

12,9

15,8

18,8

21,9

24,8

27,8

31,0

33,9

36,8

40,0

42,9

45,8

48,8

27

150

29,1 67,9

5,0

8,0

11,2

14,1

17,0

20,0

23,1

26,0

29,0

32,1

35,0

38,0

41,2

44,1

47,0

50,0

27

175

29,9 62,8

6,1

9,0

12,2

15,1

18,0

21,0

24,1

27,0

30,0

33,1

36,1

39,0

42,2

45,1

48,0

51,0

1000 1250 1600 2000 2500 3150

SILENT FLOOR SOFT S'

load

DLw

[MN/m3] [kg/m2] [dB]

f0

100

125

160

200

250

315

400

500

630

800

[Hz]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

[dB]

45

50

19,7 151,8 -5,4

-2,5

0,7

3,6

6,5

9,5

12,6

15,5

18,5

21,7

24,6

27,5

30,7

33,6

36,5

39,5

45

75

22,0 123,9 -2,8

0,1

3,3

6,2

9,1

12,2

15,3

18,2

21,2

24,3

27,2

30,1

33,3

36,2

39,1

42,2

45

100

23,7 107,3 -0,9

2,0

5,2

8,1

11,0

14,0

17,1

20,0

23,1

26,2

29,1

32,0

35,2

38,1

41,0

44,0

45

125

24,9 96,0

0,5

3,4

6,7

9,6

12,5

15,5

18,6

21,5

24,5

27,6

30,5

33,4

36,7

39,6

42,5

45,5

45

150

25,9 87,6

1,7

4,6

7,8

10,8

13,7

16,7

19,8

22,7

25,7

28,8

31,7

34,6

37,8

40,8

43,7

46,7

45

175

26,8 81,1

2,7

5,6

8,8

11,8

14,7

17,7

20,8

23,7

26,7

29,8

32,7

35,6

38,8

41,8

44,7

47,7

EXAMPLE 1. CALCULATION OF THE NORMALISED IMPACT SOUND INSULATION LEVEL FOR LIGHTWEIGHT WOOD FLOORS Lightweight wooden floor in which the only significant flanking transmission is between the floor and lightweight wooden walls of the receiving room below..

FLOOR COMPOSITION

Floor and wall acoustic properties (1) Ln (500Hz) floor R (500Hz) floor ∆Li (500Hz) floating screed ∆Li (500Hz) false ceiling R (500Hz) wall Dvijn floor wall

97,0 dB 22,0 dB 19,0 dB 25,2 dB 28,9 dB 18,0 dB

dry floating system

2

OSB layer (18 mm)

3 4 5

CALCULATIONS with Dv,n floor wall = 18 + 3,3log(f ⁄ fk) = 18 + 3,3log(500 ⁄ 500) = 18 dB fk = 500 Hz LnDd = 97 – 19 – 25,2 = 52,8 dB

LnDf

= Lnsol- ∆Li + ((Rsol-Rpar)/2) - ∆Ri - Dvijn - 10log(S/(L0Liisol)

= 97 - 19 + ((22 - 28,9)/2 ) - 18 - 10log(20/4)

= 49,6 db n

L'n,w(500Hz)

= 10log ∑ j=110(Lnij /10)

= 10log(10(LnDa/10)+(10(LnDf/10))

1

= 10log(10(52,8/10)+(10(49,6/10)) = 54,5 dB

132 | IMPACT SOUND INSULATION | SOUNDPROOFING FOILS

45 x 220 mm beams spaced every 40 cm cavity filled with 10 mm of rock wool plasterboard slab (13+13 mm) fastened to a metal structure

WALL COMPOSITION 1

plasterboard slab (13 mm)

2

OSB layer (16 mm)

3

frame structure (45 x 95 mm) with uprights spaced every 60 cm

4

cavity filled with 10 cm of rock wool

5

floor surface 20 m2 (S) junction length 4 m


IMPACT SOUND INSULATION

EXAMPLE 2. ESTIMATE CALCULATION OF IMPACT SOUND INSULATION LEVEL ON SITE FOR REINFORCED CONCRETE FLOORS(2) 20+4 Concrete floor (m1’=300 kg/m2) covered on top by a lightened layer (m2’=300 kg/m2 and thickness 10 cm) for installing systems and with floating screed in cement sand with interposition of a resilient material. Total surface mass = 330 kg/m2 Dynamic stiffness resilient layer s’= 27 MN/m3

FLOOR COMPOSITION

Use the following formula to calculate the sound pressure level transmitted by the structure without resilient material:

1

= 160 - 35log(m1' / (1kg/m2)) = 71,8 dB

2

The reduction of noise from footsteps, given by the resilient material can be calculated by:

3

Lnweq

∆Lw

= 13log(m2‘ ) - 14,2log(s‘) + 20,8 dB

= 13log(100) - 14,2log(27) + 20,8 dB

= 26 - 20,3 + 20,8 = 26,5 dB

20+4 concrete floor (m1’=300 kg/m2) lightened screed for systems (m2’=300 kg/m2 and thickness of 10 cm) floating sand and concrete screed with interposition of a resilient material.

The direct transmission through the floor Lnd can be calculated with: Lnd

= Lnweq - ∆Lw = 71,8 - 26,5 = 45,8 dB

The final value of the impact noise insulation index L’nw can be calculated by adding the flanking transmission contributions to Lnd with the formula: L‘nw

= (10log(10

(Lndw/10)

n

+ ∑ j=110

(Lnijw /10)

))

Where: The term Lwij depends on the flanking structure connected to the floor and is assessed case by case.

NOTES:

(1) The  values can be found in various databases or test reports supplied by manufacturers/producers.

All calculations will be carried out by way of example at the frequency of 500 Hz. The calculation must be carried out for all frequencies for third octave band between 100 and 3150 Hz, pursuant to Standard EN 12354-2. (2) EN ISO 18012354-2:2017

SOUNDPROOFING FOILS | IMPACT SOUND INSULATION | 133


SILENT FLOOR SOFT RESILIENT UNDERSCREED FOIL MADE OF CLOSED CELL PE CLOSED CELL Thanks to the grid of closed cell polyethylene, the product cannot be irreversibly crushed and remains effective over time.

STABLE The grid of polyethylene foam is durable and does not suffer from issues associated with chemical actions or incompatibility of materials.

COST/PERFORMANCE Composition of the mixture optimised to provide both good performance and low cost.

CODES AND DIMENSIONS code SILENTFLOORS

g/m2

H x L [m]

s [mm]

150

1,55 x 50

5,0

A [m2] pcs. / b 77,5

18

VERSATILE The format and composition offer various uses in the construction field, also as under floor.

MATERIAL Closed cell polyethylene foam foil. Does not contain harmful substances.

134 | SILENT FLOOR SOFT | SOUNDPROOFING FOILS


TECHNICAL ASPECTS

TECHNICAL SPECIFICATIONS Property

Standard

Value

Thickness

-

5 mm

Mass per unit area

-

0,15 kg/m2

-

> 45 MN/m3

ISO 12354-2

24,9 dB

Dynamic stiffness s' Theoretical estimate of impact sound attenuation level ∆Lw System resonance frequency f0

(1)

(1)

ISO 12354-2

96 Hz

Crushing (screed mass 140 kg/m2)

-

0,05 mm

10% deformation force under compression

EN 826

13 kPa

Thermal conductivity (λ) Water vapour transmission (Sd)

-

0,035 W/mK

-

approx. 10 m

Thermal resistance R

ISO 6946

0,14 m2K/W

APPLICATION INSTRUCTIONS

01

02

03

04

NOTES:

(1) Consider a load condition, with m'=125 kg/m2. For other load configurations, please see the table on page 132.

SOUNDPROOFING FOILS | SILENT FLOOR SOFT | 135


SILENT FLOOR RESILIENT UNDERSCREED FOIL MADE OF BITUMEN AND POLYESTER FELT EFFECTIVE The special structure absorbs vibrations from impact noise up to 26 dB.

HERMETIC Thanks to the bituminous mixture the product tends to close around the fastening system, ensuring watertightness

STRUCTURAL RESTORATION Ideal for applying wood-cement connectors. Protects the substrates without the risk of concrete percolation.

CODES AND DIMENSIONS code

g/m2

H x L [m]

s [mm]

SILENTFLOOR

1500

1,05 x 10

5,0

A [m2] pcs. / b 10,5

20

LONG-LASTING Stable over time, thanks to the bituminous mixture. Also highly compatible with fresh concrete.

MATERIAL Elastoplastomeric bitumen coupled with resilient polyester felt. Does not contain harmful substances.

136 | SILENT FLOOR | SOUNDPROOFING FOILS


TECHNICAL ASPECTS

TECHNICAL SPECIFICATIONS Property

Standard

Value

Thickness (foil + felt)

UNI 9947

5 (2+3) mm

Mass per unit area

-

1,5 kg/m2

Apparent dynamic stiffness s't

-

7 MN/m3

Dynamic stiffness s'

-

27 MN/m3

Resistance to airflow r

ISO 29053

> 10 kPas/m2

ISO 12354-2

28 dB

Theoretical estimate of impact sound attenuation level ∆Lw (1) System resonance frequency f0

(1)

ISO 12354-2

74,4 Hz

Creep (2 kPa)

EN 1606

≤ 1 mm

Compressibility

EN 12431

≤ 2 mm

static

EN 12730

35 kg

dynamic

EN 12691

20 cm

Thermal conductivity (λ) Water vapour transmission (Sd)

-

0,17 W/mK

-

> 100 m

Water vapour resistance factor μ (bituminous foil)

-

100000

Thermal resistance R

ISO 6946

0,13 m2K/W

Watertightness

EN 1928

1 kPa

Resistance to punching:

APPLICATION INSTRUCTIONS

01

02

03

04

NOTES:

(1) Consider a load condition, with m'=125 kg/m2. For other load configurations, please see the table on page 132.

SOUNDPROOFING FOILS | SILENT FLOOR | 137


SILENT FLOOR EVO RESILIENT HIGH PERFORMANCE UNDERSCREED FOIL MADE OF RECYCLED POLYMERS CERTIFIED The effectiveness of the product has been demonstrated in the labs of the Centre for Industrial Research of the University of Bologna.

PERFORMANCE The special mixture offers excellent elasticity, reaching attenuation values over 30 dB.

SUSTAINABLE Thanks to the high percentage of recycled polyurethane it contains, the product satisfies the most common environmental protection standards.

CODES AND DIMENSIONS code

g/m2

H x L [m]

s [mm]

SILENTFLOORE

1100

1,5 x 10

10,0

A [m2] pcs. / b 15

6

LONG-LASTING Polyurethane is a noble polymer that maintains elasticity over time, without subsidence or changes in performance.

MATERIAL Impermeable membrane coupled with a resilient component obtained from recycled latex and foam rubber. Does not contain harmful substances.

138 | SILENT FLOOR EVO | SOUNDPROOFING FOILS


TECHNICAL ASPECTS

TECHNICAL SPECIFICATIONS Property

Standard

Value

Thickness

IM/AL 2014

10 mm

Mass per unit area

IM/AL 2014

1,1 kg/m2

Apparent dynamic stiffness s't

ISO 29052-1

11 MN/m3

Dynamic stiffness s'

ISO 29052-1

11 MN/m3

Resistance to airflow r

ISO 29053

< 10 kPas/m2

ISO 12354-2

33,5 dB

Theoretical estimate of impact sound attenuation level ∆Lw (1) System resonance frequency f0

(1)

ISO 12354-2

47,5 Hz

Creep (1,50 kPa)

EN 1606

≤ 0,7 mm

Compressibility

EN 12431

≤ 2 mm

Deformation force under compression

ISO 3386/1

17 kPa

Elongation at break point

ISO 1798

40 %

Thermal conductivity (λ) Water vapour transmission (Sd)

ISO 8302

0,035 W/mK

EN 12086

> 100 m

Thermal resistance R

ISO 6946

0,46 m2K/W

APPLICATION INSTRUCTIONS

01

02

03

04

NOTES:

(1) Consider a load condition, with m'=125 kg/m2. For other load configurations, please see the table on page 131.

SOUNDPROOFING FOILS | SILENT FLOOR EVO | 139


SILENT WALL MASS SOUNDPROOFING AND WATERPROOFING BITUMINOUS FOIL MASS Thanks to its high density (6 kg/m2), excellent reduction of airborne noise can be achieved with minimal thicknesses.

PRACTICAL Through mechanical fastening, the product can be applied to any surface, compensating for irregularities.

COST/PERFORMANCE Composition of the mixture optimised to provide both good performance and low cost.

CODES AND DIMENSIONS code

g/m2

H x L [m]

s [mm]

SILENTWALLM

6000

1,2 x 6

4,0

A [m2] pcs. / b 7,2

24

VERSATILE The format and composition allow to use this product in all situations that require an increase in the mass of surfaces.

MATERIAL Single-layer elastoplastomeric bitumen, covered on both sides with a polypropylene non-woven fabric. Does not contain harmful substances.

140 | SILENT WALL MASS | SOUNDPROOFING FOILS


TECHNICAL ASPECTS

TECHNICAL SPECIFICATIONS Property

Standard

Value

Thickness

-

4 mm

Mass per unit area

-

6 kg/m2

Apparent dynamic stiffness s't

-

60 MN/m3

Theoretical estimate of the soundproofing power of a single sheet

-

24 dB

Compressibility

EN 12341

≤ 2 mm

Thermal conductivity (λ) Water vapour transmission (Sd)

-

0,04 W/mK

-

80 m

Water vapour resistance factor (μ)

-

20000

Temperature resistance

ISO 6946

0,1 m2K/W

APPLICATION INSTRUCTIONS

40-60cm

01

02

03

04

05

06

SOUNDPROOFING FOILS | SILENT WALL MASS | 141


SILENT WALL SOUNDPROOFING AND WATERPROOFING SELF-ADHESIVE BITUMINOUS FOIL NOISE REDUCTION Thanks to its mass and high resistance, the product attenuates up to 27 dB.

PRACTICAL Thanks to the self-adhesive bitumen, product application is fast and precise. Without nails that can interfere with acoustic performance.

SELF-ADHESIVE Ideal for application on flat and vertical surfaces thanks to its self-adhesive properties.

CODES AND DIMENSIONS code

g/m2

H x L [m]

s [mm]

SILENTWALL

5000

1,0 x 8,5

4,0

A [m2] pcs. / b 8,5

24

HERMETIC Watertight and airtight, thanks to the special elastoplastomeric bitumen it does not require the use of nail points in case of drilling.

MATERIAL Single layer of self-adhesive elastoplastomeric bitumen, covered on one side with polypropylene non-woven fabric and silicone film. Does not contain harmful substances.

142 | SILENT WALL | SOUNDPROOFING FOILS


TECHNICAL ASPECTS

TECHNICAL SPECIFICATIONS Property

Standard

Value

Thickness

-

4 mm

Mass per unit area

-

5 kg/m2

Theoretical estimate of the soundproofing power of a single sheet

-

27 dB

Thermal conductivity (λ) Water vapour transmission (Sd)

-

0,17 W/mK

-

80 m

Water vapour resistance factor (μ)

-

100000

Thermal resistance

-

0,02 m2K/W

Reaction to fire (1)

UNI 9177

Class 1

APPLICATION INSTRUCTIONS

01

02

03

04

05

06

NOTES:

(1) Certified by Istituto Giordano

SOUNDPROOFING FOILS | SILENT WALL | 143


TRASPIR METAL 3D MATS FOR METAL ROOFS

CERTIFIED ACOUSTIC INSULATION Acoustic attenuation and reduction of noise from rainfall certified by the Istituto Giordano. (page 19)

COMPLETE RANGE Available with lower breathable impermeable membrane and with upper TNT draining layer.

SMART The top felt prevents impurities from getting into the mat and improves resistance to treading, preventing water stagnation.

CODES AND DIMENSIONS tape

g/m2

H x L [m]

A [m2]

pcs. / b

TTMET580

T

585

1,5 x 25

37,5

4

TMET580

-

585

1,5 x 25

37,5

4

3DNET

-

350

1,4 x 25

35

6

code

DURABILITY Installed on continuous support it improves the micro-ventilation of metal roofs, impeding corrosion.

MATERIAL Highly breathable membrane paired with a 3D mat and protective felt.

144 | TRASPIR METAL | SOUNDPROOFING FOILS


TECHNICAL ASPECTS

TECHNICAL SPECIFICATIONS EN 1849-2

TRASPIR 3D COAT [TTMET580] 585 (300) g/m2

3D NET [3DNET] 350 g/m2

EN 9863-1

8,5 mm

7,5 mm

Thickness at 10 kPa

EN 9863-1

7,75 mm

6,75 mm

Straightness

EN 1848-2

compliant

-

Water vapour transmission (Sd)

EN 1931 / EN ISO 12572

0,02 m

-

MD/CD tensile strength

EN 12311-1

325 / 225 N/50 mm

-

MD/CD elongation

EN 12311-1

45 / 70 %

-

MD/CD resistance to nail tearing

EN 12310-1

185 / 195 N

-

NET MD/CD tensile strength

EN 12311-1

-

1,3 / 0,5 kN/50 mm

NET MD/CD Elongation

EN 12311-1

-

95 / 65 %

Watertightness

EN 1928

class W1

-

Water column

EN 20811

> 250 cm

-

UV stability

EN 13859-1

3 months

3 months

Temperature resistance

-

-40 / +80 °C

-40 / +80 °C

Reaction to fire

EN 13501-1

class E

class E

EN 12114

< 0,02 m3/m2h50Pa

0 m3/m2h50Pa

MD/CD tensile strength

EN 13859-1

285 / 195 N/50 mm

-

watertightness

EN 13859-1

class W1

-

MD/CD elongation

Property

Standard

Mass per unit area Thickness at 2 kPa

Resistance to air penetration After ageing:

EN 13859-1

35 / 30 %

-

Flexibility at low temperature

EN 1109

-30 °C

-

Dimensional stability

EN 1107-2

< 2 %

-

Thermal conductivity (λ)

-

0,3 W/mK

approx. 0,3 W/mK

Specific heat

-

1800 J/kgK

1800 J/kgK

Density

-

approx. 65 kg/m3

approx. 35 kg/m3

Water vapour resistance factor (μ)

-

approx. 33

-

Recommended pitch

-

> 5°

> 5°

Void ratio

-

95 %

95 %

Impact sound attenuation index ΔLw

UNI EN ISO 140-8:1999 UNI EN ISO 10140-2:2010 UNI EN ISO 717-1:2013

28 (-3;+3) dB

28 (-3;+3) dB

approx. 1 dB

approx. 1 dB

UNI EN ISO 140-18:2007

approx. 4 dB

approx. 4 dB

-

< 0,02 % (class A+)

< 0,02 % (class A+)

Evaluation index of soundproofing power Rw Global level change of A-weighted sound intensity from sound of rainfall LiA VOC emissions

COMPOSITION TRASPIR 3D COAT protective layer:

PP non-woven fabric

surface:

3D PP mat

upper layer:

PP non-woven fabric

reinforcement:

breathable PP film

lower layer:

PP non-woven fabric

3D NET

NOTES:

3D PP mat

For more information, consult "MEMBRANES AND TAPES FOR WOODEN BUILDINGS"

SOUNDPROOFING FOILS | TRASPIR METAL | 145


FLOATING INSTALLATION

THE RIGHT PRODUCT FOR EVERY FLOOR Today, installation of floors involves the following standards and guidelines: CEN/TS 16354: European Commission document outlining the assessment criteria and measurement methods for the characteristics of the screed with floating installation. EPLF technical notebook MMFA technical notebook

DID YOU KNOW...? The two technical notebooks issued by MMFA and EPLF precisely define the minimum limits that a product used in floating installation must comply with, indicating the optimal limit for the specific function.

Below are the properties of floor sub-layers, followed by the recommended limits.

ACOUSTIC REQUIREMENTS: IS, RWS

IS

IMPACT SOUND NOISE INSULATION

Assessed through laboratory testing, the evaluation of the impact noise insulation consists of measuring the impact noise transmitted by a structure before and after the screed is inserted. The index ΔLw expresses the difference in decibels between the two tests. The greater the value of ΔLw, the lower the transmission of noises to the underlying room.

RWS

REFLECTED WALKING SOUND

The noise of footsteps heard inside the source room can be defined as reverberation, which can be significantly reduced through the use of an appropriate screed. The "drum sound" indicates the level of reflected noise generated by a floating floor, when an impact source (like steps) acts upon the surface. The drum sound is measured in sones. The lower the value expressed in sones, the better the acoustic performance of the acoustic layer.

Characteristic

EPLF LAMINATE Minimum requirement

IS

Impact sound noise insulation

RWS Reflected walking sound

Higher standard

LVT MMFA Minimum requirement

Higher standard

IS ≥ 14 dB

IS ≥ 18 dB

IS ≥ 10 dB

IS ≥ 18 dB

NOT AVAILABLE

NOT AVAILABLE

NOT AVAILABLE

NOT AVAILABLE

146 | FLOATING INSTALLATION | SOUNDPROOFING FOILS


FLOATING INSTALLATION

CONSTRUCTION REQUIREMENTS: PC, SD, Rλ ,B , Rλ

PC

CONFORMABILITY

Ability of the screed to compensate for any small irregularities in the foundation. In general, the softer the screed, the greater the material conformability. This property is very important, especially when working with existing constructions, or when thin floors are used which could be damaged by a harder sub-layer.

SD

PROTECTION FROM RISING DAMP

In the case of mineral foundations, protection against humidity is fundamental to prevent damage to the floor due to rising damp. This capacity is expressed with the Sd index (water vapour permeability) and is measured in metres. The greater the Sd value, the lower the permeability to humidity.

Rλ,B IN-FLOOR COOLING OR HEATING SYSTEM In general, floating floors are appropriate for use with in-floor cooling or heating systems. For both of these to work, the screed must have the lowest possible thermal insulation value to avoid blocking heat transfer. Hence, the total sum of the screed and laminate floor (R λ,B) must be as low as possible.

THERMAL INSULATION

In general, floors have limited thermal insulation capacity. In the case of an unheated substrate, screeds with high thermal resistance (R λ) can increase the thermal insulation characteristics of the floor system. In this way, the surface temperature increases, reducing the sensation of a "cold floor" and protecting the finish from excessive swings in temperature.

Characteristic

EPLF LAMINATE Minimum requirement

LVT MMFA

Higher standard

Minimum requirement

Higher standard

PC

Conformability

PC ≥ 0,5 mm

PC ≥ 0,5 mm

PC ≥ 0,5 mm

PC ≥ 0,5 mm

SD

Water vapour resistance

SD ≥ 75 m

SD ≥ 75 m

SD ≥ 75 m

SD ≥ 75 m

Rλ,B

In-floor cooling or heating system

Rλ,B ≤ 0,15 m2K/W Rλ,B ≤ 0,10 m2K/W

Rλ,B ≤ 0,15 m2K/W Rλ,B ≤ 0,10 m2K/W

Rλ,B ≤ 0,15 m2K/W Rλ,B ≤ 0,10 m2K/W

Rλ,B ≤ 0,15 m2K/W Rλ,B ≤ 0,10 m2K/W

Thermal insulation

Rλ ≥ 0,075 m2K/W

Rλ ≥ 0,075 m2K/W

Rλ ≥ 0,075 m2K/W

Rλ ≥ 0,075 m2K/W

SOUNDPROOFING FOILS | FLOATING INSTALLATION | 147


FLOATING INSTALLATION

USE REQUIREMENTS: DL, CC, CS, RLB

DL

DYNAMIC STRESS FROM IMPACT SOUNDS

The greater the number of cycles at a given force required to cause crushing of the screed, the greater the material's resistance to dynamic loads.

CC

STRESS DURING STATIC LOADS

In this case, the reference is to viscous sliding or creep. The greater the force (expressed in kPa) necessary to produce deformation exceeding 0,5 mm, the better the product’s resistance to creep.

CS

TEMPORARY STRESS FROM LOADS

When the floor is subjected to concentrated loads, both the batten and the interlocking mechanism must resist excessive deformation and consequent breakage. The greater the pressure (expressed in kPa) necessary to obtain a given level of deformation (0,5 mm), the better the product’s resistance to compression.

RLB

IMPACT RESISTANCE

To reduce the risk of surface damage to a minimum, the material used for acoustic insulation in the under floor must be more than able to absorb high forces for short times. The greater the RLB value (impact stress expressed in centimetres), the greater the floor protection level.

Characteristic

EPLF LAMINATE Minimum requirement

Higher standard

LVT MMFA Minimum requirement

Higher standard

DL

Dynamic load resistance

DL25 ≥ 10000 cycles

DL25 ≥ 100000 cycles

DL75 ≥ 10000 cycles

DL75 ≥ 100000 cycles

CC

Viscous sliding under compression

CC ≥ 2 kPa

CC ≥ 20 kPa

NOT AVAILABLE

NOT AVAILABLE

CS

Compression strength

CS ≥ 10 kPa

CS ≥ 60 kPa

CS ≥ 200 kPa

CS ≥ 400 kPa

RLB

Impact resistance

RLB ≥ 50 cm

RLB ≥ 120 cm

NOT AVAILABLE

NOT AVAILABLE

148 | FLOATING INSTALLATION | SOUNDPROOFING FOILS


SILENT STEP SOFT SUBSTRATE MADE OF CLOSED CELL PE

CLOSED CELL Thanks to closed cell polyethylene, the product cannot be irreversibly crushed and remains effective over time.

PRACTICAL The high density polyethylene coating makes it waterproof and appropriate for various applications.

CODES AND DIMENSIONS code SILENTSTEPS

g/m2

H x L [m]

s [mm]

40

1,30 x 25

2,0

A [m2] pcs. / b 32,5

18

FIELDS OF APPLICATION TECHNICAL SPECIFICATIONS Property

FLOOR INSTALLATION Standard

Value

Thickness

-

2 mm

Mass per unit area Estimated theoretical impact sound attenuation level ∆Lw Crushing (screed mass 165 kg/m2)

-

0,15 kg/m²

Thermal conductivity (λ) Water vapour transmission (Sd) Temperature resistance

EN ISO 10140 EN 12667

18 dB 0,03 mm 0,039 W/mK

-

approx. 6 m

-

-10 / +75 °C

FLOATING GLUED

FLOOR TYPE PARQUET LVT (medium high quality) LAMINATE

IN-FLOOR HEATING suitable

SOUNDPROOFING FOILS | SILENT STEP SOFT | 149


SILENT STEP SUBSTRATE MADE OF HIGH DENSITY NPE POLYETHYLENE WITH PE FILM SERVING AS A VAPOUR BARRIER SELF-SEALING Thanks to the integrated adhesive tape, sealing is immediate and doesn't require any additional sealing tape.

DAMP BARRIER The polyethylene film coating prevents the passage of humidity Sd > 75 m, protecting the floor.

VERSATILE The mixture, thickness and coating make it suitable for installation with various floating floors.

CODES AND DIMENSIONS code SILENTSTEP

g/m2

H x L [m]

s [mm]

100

1,0 x 15

2,0

A [m2] pcs. / b 15

20

TECHNICAL SPECIFICATIONS property

Value

Thickness

2 mm

Protection from rising damp (SD)

> 75 m

Dynamic stress from impact sounds (DL)

> 10000 cycles (at 25 kPa)

Lasting stress from static loads (CC) Temporary stress from loads (CS) Impact resistance (RLB)

2 kPa (max load with def. < 0,5 mm for 10 years) 30 kPa (0,5 mm deformation) 1800 mm (below 7 mm of DPL laminate)

Reflected walking sound (RWS)

ΔLw= 18 dB (below 7 mm of DPL laminate) < 25 sones

Thermal insulation (Rλ)

0,060 m2K/W

VOC emissions

0% (class A+)

Impact sound noise insulation (IS)

150 | SILENT STEP | SOUNDPROOFING FOILS

FIELDS OF APPLICATION FLOOR INSTALLATION FLOATING GLUED

FLOOR TYPE PARQUET LVT (medium high quality) LAMINATE

IN-FLOOR HEATING suitable


SILENT STEP ALU SUBSTRATE OF A HIGH DENSITY POLYMER MIX COVERED IN ALUMINIUM SERVING AS A VAPOUR BARRIER PERFORMANCE The high density viscoelastic thermal conductive material gives the product high thermal and acoustic performance.

REFLECTIVE Thanks to the aluminium coating, it is suitable for use with in floor heating systems.

DAMP BARRIER The aluminium coating prevents the passage of damp Sd > 150 m, protecting the floor. Fire reaction class Bfl - s1.

CODES AND DIMENSIONS code

g/m2

H x L [m]

s [mm]

SILENTSTEPA

1000

1,0 x 8,5

2,0

A [m2] pcs. / b 8,5

40

TECHNICAL SPECIFICATIONS Property

Value

Thickness

approx. 2 mm

Protection from rising damp (SD)

> 150 m

Dynamic stress from impact sounds (DL)

> 100000 cycles (at 25 kPa)

Reflected walking sound (RWS)

> 50 kPa (max load with def. < 0,5 mm for 10 years) 300 kPa (0,5 mm deformation) 600 mm (below 7 mm laminate) ΔLw = 18 dB (below 7 mm of DPL laminate) 23 sones

Thermal insulation (Rλ)

0.01 m2K/W

VOC emissions

0% (class A+)

Blauer Engel protocol

compliant

Reaction to fire

Bfl - s1

Lasting stress from static loads (CC) Temporary stress from loads (CS) Impact resistance (RLB) Impact sound noise insulation (IS)

FIELDS OF APPLICATION FLOOR INSTALLATION FLOATING GLUED

FLOOR TYPE PARQUET LVT (medium high quality) LAMINATE

IN-FLOOR HEATING suitable

SOUNDPROOFING FOILS | SILENT STEP ALU | 151


SILENT STEP UNI HIGH DENSITY POLYURETHANE SUBSTRATE WITH EXCELLENT COMPRESSION RESISTANCE VERSATILE Thanks to the mixture and its surface, the product is universally appropriate for both glued and floating installation.

RESISTANT High density makes it appropriate for installation of laminates and LVT with reduced thickness, guaranteeing excellent mechanical stability.

EFFECTIVE The low thermal insulation value (Rλ) makes the product particularly appropriate for use with in floor heating systems.

CODES AND DIMENSIONS code

g/m2

WW

s [mm]

SILENTSTEPU

800

1,0 x 10

2,0

A [m2] pcs. / b 10

35

TECHNICAL SPECIFICATIONS Property

Value

Thickness

2 mm

Conformability (PC)

0,5 mm

Protection from rising damp (SD)

< 75 m

Dynamic stress from impact sounds (DL)

> 10000 cycles (at 70 kPa)

Reflected walking sound (RWS)

> 20 kPa (max load with def. < 0,5 mm over 10 years) > 200 kPa (0,5 mm deformation) 800 mm (below 7 mm of DPL laminate) ΔLw = 18 dB (under laminate) ΔLw= 20 dB (under LVT) 21 sones

Thermal insulation (Rλ)

0,04 m2K/W

VOC emissions

0% (class A+)

Lasting stress from static loads (CC) Temporary stress from loads (CS) Impact resistance (RLB) Impact sound noise insulation (IS)

152 | SILENT STEP UNI | SOUNDPROOFING FOILS

FIELDS OF APPLICATION FLOOR INSTALLATION FLOATING GLUED

FLOOR TYPE PARQUET LVT (medium high quality) LAMINATE

IN-FLOOR HEATING suitable


SEALING PRODUCTS


SEALING PRODUCTS


SEALING PRODUCTS Foams HERMETIC FOAM

high performing elastic soundproofing sealing foam

160

Expanding tapes FRAME BAND

self-expanding sealing tape for window/door frames

KOMPRI BAND

self-expanding sealing tape

162 164

Plasterable tapes PLASTER BAND IN

single-sided tape for internal use, can be plastered

PLASTER BAND OUT

single-sided tape for external use, can be plastered

166 166


ACOUSTICS AND WINDOW/DOOR FRAMES

ACOUSTICS AND WINDOW/ DOOR FRAMES: WHEN AIRTIGHTNESS MAKES YOU FEEL BETTER Modern doors and windows, as well as materials for building envelopes, have undergone major developments over the years in terms of energy and acoustic performance. The most delicate aspect is the connection between the elements, which is crucial in preventing the formation of condensation and mould and maintaining suitable noise insulation.

PRIMARY NODE AND SECONDARY NODE

THREE LEVELS OF PROTECTION

When planning window/door frame installation, it is good practice to base it around the primary and secondary node.

The three level method, conventionally used in most of Europe, identifies the levels of thermal and acoustic insulation for proper installation of the door/window frame. To obtain the best performance, it is expedient to examine every level during design. Rothoblaas offers specific solutions for each of the three levels.

The PRIMARY NODE is the first installation junction between the structure and the supporting frame. The SECONDARY NODE is the installation junction between the supporting frame and the window/door frame. This distinction is useful for proper design based on the three level method. PRIMARY NODE

SECONDARY NODE PRIMARY NODE

This is the most external level, which guarantees resistance to weather. If not properly dealt with, it generates infiltration problems which can lead to the creation of condensation and mould.

SUBFRAME

CONNECTION BETWEEN WINDOW/DOOR FRAME AND STRUCTURE As anticipated in the previous paragraph, the critical point is the connection between the door/window frame and the structure, which may also be affected by the conditions of the materials at the time of installation. Additionally, if we take into consideration all the various materials used near the primary or secondary node, it is easy to understand that dilation can create issues of cracking and non-cohesion between surfaces. Below is some data and some analysis taken from the publication "The performance of door/window frames in the lab and inspection during use" (F. Scamoni, L. Parati, V. Baccan, C. Scrosati). The considerations below are analogously valid for any construction system.

156 | ACOUSTICS AND WINDOW/DOOR FRAMES | SEALING PRODUCTS

BLUE LEVEL

YELLOW LEVEL

This is the intermediate level, which needs to guarantee thermal-acoustic performance and mechanical fastening. The critical aspect derives from the fact that what is effective noise insulation is often not very effective against cold.

RED LEVEL

This is the most internal level, generally the most neglected. This level must guarantee airtightness to avoid the formation of condensation in the installation junctions, which could deteriorate the insulation solutions installed in the primary node. To see the complete array of Rothoblaas solutions, download the catalogue "MEMBRANES AND TAPES FOR WOODEN BUILDINGS".


ACOUSTICS AND WINDOW/DOOR FRAMES

Letâ&#x20AC;&#x2122;s start with analysing a structure/supporting frame node. The graph on the side shows the difference between the two test results, due to the putty used to seal the crack which formed due to the natural withdrawal of the wood supporting frame.

60 50 R [dB]

The second graph, on the other hand, provides a lab case in which two different sealants were used in the supporting frame/frame node in a door/window frame. In the first case (orange line), a closed cell polymeric foam strip was used (KOMPRI BAND or FRAME BAND type), obtaining a soundproofing power for the window/door frame Rw equal to 41 (-2;4) dB. In the other case, a polyurethane foam was used (SEALING FOAM type), obtaining a value of Rw equal to 40 (-1;-3) dB.

70

40 30 20

There are multiple possibilities. In the examples on these pages we limited ourselves to describing variable situations with the intention of illustrating the extent to which airtightness is key to preserving insulation with respect to airborne noise.

125

250

500 1K f [Hz]

2K

4K

R w = 39 (-1;-4) before intervention R w = 41 (-2;-6) after intervention

In fact, it should never be forgotten that

AIR IS ONE OF THE MAIN MEDIUM THROUGH WHICH SOUND WAVES PROPAGATE.

70 60

R [dB]

50 40 30 20

125

250

500 1K f [Hz]

2K

4K

R w = 41 (-2;-4) with KOMPRI BAND or FRAME BAND R w = 40 (-1;-3) with SEALING FOAM

SEALING PRODUCTS | ACOUSTICS AND WINDOW/DOOR FRAMES | 157


ACOUSTICS AND WINDOW/DOOR FRAMES

DETAIL 01 Window/door frame: Platform frame with ventilated faรงade and external masonry covering. 01

04

02

01

03 04 05

09

01. 02. 03. 04. 05. 06. 07. 08. 09. 10.

08

06

TRASPIR CLIMA CONTROL - VAPORVLIES - BARRIER GEMINI - NAIL PLASTER - NAIL BAND GIPS BAND BYTUM BAND - PROTECT BYTUM BAND - PROTECT - GROUND BAND HERMETIC FOAM - FRAME BAND - KOMPRI BAND SEAL BAND - EASY BAND - FLEXI BAND PLASTER BAND IN FRAME BAND

07

02

DETAIL 02 Roof window: CLT roof (Cross Laminated Timber) 01

03

04

02

05

04

06 07

01. 02. 03. 04. 05. 06. 07. 08. 09. 10.

09

10

TRASPIR VAPOR BYTUM GEMINI - NAIL PLASTER - NAIL BAND ALU BUTYL BAND PLASTER BAND IN MULTI BAND FRAME BAND - KOMPRI BAND HERMETIC FOAM - FRAME BAND - KOMPRI BAND GIPS BAND

158 | ACOUSTICS AND WINDOW/DOOR FRAMES | SEALING PRODUCTS

08

02

06

03

01


ACOUSTICS AND WINDOW/DOOR FRAMES

DETAIL 03 Window/door frame: CLT (Cross Laminated Timber) with ventilated faรงade and intermittent covering with open junctions. 05

01

01

03 05 04

07 06 04 08

10

01. TRASPIR UV 02. CLIMA CONTROL - VAPORVLIES - BARRIER 03. GEMINI - NAIL PLASTER - PLASTER BAND - NAIL BAND 04. HERMETIC FOAM - FRAME BAND - KOMPRI BAND 05. GIPS BAND 06. PLASTER BAND OUT - FRONT BAND UV 210 FACADE BAND UV - MULTI BAND 07. 08. 09. 10. 11.

PLASTER BAND IN - MULTI BAND SEAL BAND - MULTI BAND BYTUM BAND - PROTECT - GROUND BAND SEAL BAND - MULTI BAND VENT MESH

02

10 09 11

01 02

DETAIL 04 Window/door frame: Timber frame with external plastered covering. 05

09

01

02 03 05

01

04

02

06

01. 02. 03. 04. 05. 06. 07. 08. 09.

CLIMA CONTROL - VAPORVLIES - BARRIER GIPS BAND FLEXI BAND PLASTER BAND IN - MULTI BAND PLASTER BAND OUT BYTUM BAND - PROTECT HERMETIC FOAM - FRAME BAND - KOMPRI BAND SEAL BAND - MULTI BAND FRAME BAND

07

08

SEALING PRODUCTS | ACOUSTICS AND WINDOW/DOOR FRAMES | 159


HERMETIC FOAM HIGH PERFORMING SOUNDPROOFING SEALING FOAM CERTIFIED SOUNDPROOFING Soundproofing up to 60 dB, certified by the IFT Rosenheim Institute.

HERMETIC Watertight and airtight even if trimmed after drying, thanks to the closed cell structure.

SOLVENT FREE Suitable for indoor applications: it does not give off isocyanates and has a low VOC content (19,4%)

CODES AND DIMENSIONS code

content [ml]

yield [l]

cartridge

pcs.

HERFOAM

750

40

aluminium

12

HERFOAMB2

750

40

aluminium

12

NOTE:

also available with fire resistance class DIN 4102 B2

ELASTIC Thanks to its composition it remains elastic and deformable over time, compensating for the movements of the wood and differential deformation of the building materials.

MATERIAL Closed cell polyurethane mixture, with high elasticity and durable over time.

160 | HERMETIC FOAM | SEALING PRODUCTS


TECHNICAL ASPECTS

TECHNICAL SPECIFICATIONS Property

Standard

Value

Reaction to fire (code: HERFOAM)

DIN 4102 / EN 13501

class B3/F

Acoustic insulation of the connections rated R ST,w

Directive IFT SC-01

10 mm: 60 (-1;-4) dB

Acoustic insulation of the connections rated R ST,w

Directive IFT SC-01

20 mm: 60 (-1;-3) dB

Airtightness

Ö Norm EN 1027

1000 Pa

Airtightness

Ö Norm EN 12114

1000 Pa

Time for creation of external film

-

5/10 minutes

Workable time after extrusion

-

15/20 minutes

Time for initial hardening phase

-

2 hours

Structural stability

DIN 53431

±5%

Cartridge processing temperature

-

+10 / +30 °C

Application temperature

-

-10 °C

Constant thermal resistance

-

-40 / +80 °C

Temporary thermal resistance

-

+120 °C

Density

-

15 / 20 kg/m3

Elongation at break point

DIN 53571

ca. 25 %

Water vapour permeability (DVA/WDD)

DIN 53429

50 / 60 g/m2/24h

Thermal conductivity

DIN 56612

0,035 W/mk

Storage temperature

-

+5 / +20 °C

Transport temperature

-

> 0 °C

Presence of solvents

-

NO

VOC emissions

-

19,4 %

TIPS FOR PROPER SEALING

1.

Shake the can at least 15-20 times before use, preferably in a horizontal position.

2. 3.

6.

If temperatures are not suitable, heat or cool the can using hot or cold water.

The surfaces must be solid, dry, clean and free of grease, dust, chipped parts, wax, old paint residue, rust, etc.

7.

Any foam residues from previous applications must be removed before inserting the sealant into the gun.

Dampen the surface well before applying the foam. Use around 1 dl of water for the entire can.

8.

To avoid damaging the connection thread of the can, place it horizontally and slowly screw it onto the gun.

care not to fill the opening 4. Take with foam beyond the halfway

9.

After use, carefully clean any foam residue from the gun. If it hardens, it could become unusable.

5 °C

15-20

1 dl

point. If sufficiently humidified, the foam will double in size, approximately. 20 °C

NOTES:

5.

The ideal temperature of use is approx. 20°C. Below this temperature, expansion is slowed, while at higher temperatures, the foam may loose effectiveness.

Store the cans properly, following the indications shown on the package or the can itself.

SEALING PRODUCTS | HERMETIC FOAM | 161


FRAME BAND

EN13984

SELF-EXPANDING SEALING TAPE FOR WINDOW/DOOR FRAMES HERMETIC Airtight and watertight, interrupts possible acoustic bridges in the structure-frame connection.

PRACTICAL Thanks to the adhesive strip, application is easy and precise without the need for further adhesive layers.

VERSATILE Effectively seals any type of crack between 2 and 10 mm, resisting heavy rain.

CODES AND DIMENSIONS code

B [mm]

L [m]

smax [mm]

f [mm]

pcs.

FRAME2054

54

30

20

2-10

7

FRAME2074

74

30

20

2-10

5

PROFESSIONAL STANDARD Compliant with EnEV and RAL requirements, also guarantees a high level of thermal and acoustic insulation.

MATERIAL Pre-compressed polyurethane foam impregnated with fireproof substances and polyethylene film (PE).

162 | FRAME BAND | SEALING PRODUCTS


TECHNICAL ASPECTS

TECHNICAL SPECIFICATIONS Property

Standard

Value

Classification

DIN 18542

class BG1 and BGR

Thermal conductivity

EN 12667

λ 10,tr ≤ 0,048 W/mK

60 mm Frame U value

DIN 4108/3

0,8 W/m2K

70 mm Frame U value

DIN 4108/3

0,7 W/m2K

80 mm Frame U value

DIN 4108/3

0,6 W/m2K

Internal Sd value

DIN EN ISO 12572

25 m

External Sd value

DIN EN ISO 12572

0,5 m

Resistant to heavy rain

EN 1027

≥ 1000 Pa

Gap air passage coefficient

EN 12114

α = 0,00 m3 [h x m x (daPa)n]

Compatibility with other building materials

DIN 52435

according to standard

Dimensional tolerance

DIN 7715 T5 P3

according to standard

Reaction to fire

DIN 4102

class B1

Acoustic insulation RST,W (C;Ctr) (1)

IFT Rosenheim

45 (-2 ; -6) dB

Temperature resistance

DIN 18542

-30 / +80 °C

Application temperature

-

≥ +5 °C

Storage temperature

-

+5 / +20 °C

Presence of solvents

-

NO

VOC emissions

-

< 0,02 % (class A+)

APPLICATION INSTRUCTIONS

01

02

03

04

NOTES:

Store the product in a dry location, indoors, max. 12 months (1) Test performed on a 10 mm wide crack

SEALING PRODUCTS | FRAME BAND | 163


KOMPRI BAND

ETA 07/0072

SELF-EXPANDING SEALING TAPE

CERTIFIED SOUNDPROOFING Soundproofing up to 58 dB, certified by the IFT Rosenheim Institute.

ELASTIC Thanks its the special composition, it remains elastic and deformable over time, compensating for the movements of the wood and differential deformation of the building materials.

HERMETIC Airtight and watertight, it prevents possible acoustic bridges forming in the gaps between different building materials.

CODES AND DIMENSIONS code

B [mm]

L [m]

smax [mm]

f [mm]

pcs.

KOMPRI1010

10

13

10

1-4

30

KOMPRI1015

15

13

10

1-4

20

KOMPRI2015

15

8

20

4-10

20

KOMPRI3015

15

4,3

30

6-15

20

KOMPRI4520

20

3,3

45

9-20

15

VERSATILE Pre-compressed self-adhesive profile compatible with the most common building materials. Wide range to effectively seal cracks between 1 and 20 mm over time.

MATERIAL Pre-compressed polyurethane foam tape impregnated with fireproof substances.

164 | KOMPRI BAND | SEALING PRODUCTS


TECHNICAL ASPECTS

TECHNICAL SPECIFICATIONS Property

Standard

Value

Classification

DIN 18542

class BG1 and BGR

Gap air passage coefficient (application B1)

EN 12114

α < 1,0 m3/[h x m x (daPa)n]

Gap air passage coefficient (application BGR)

EN 12114

α < 0,1 m3/[h x m x (daPa)n]

Thermal conductivity (λ)

DIN 52612

0,052 W/mK

Water vapour resistance factor (μ)

EN ISO 12572

≤ 100

Resistance to heavy rain

EN 1027

> 600 Pa

Resistance to UV rays and weather

DIN 53387

according to standard

Compatibility with other building materials

DIN 52453

according to standard

Dimensional tolerance

DIN 7715 T5 P3

according to standard

Reaction to fire

DIN 4102

class B1

Acoustic insulation RST,W

(C;Ctr) (1)

IFT Rosenheim

58 (-2 ; -6) dB

Temperature resistance

DIN 18542

-30 / +90 °C

Application temperature

-

≥ +5 °C

Storage temperature

-

+1 / +20 °C

Presence of solvents

-

NO

VOC emissions

-

< 0,02 % (class A+)

BG1 - BG2 - BGR SELF-EXPANDING TAPES Self-expanding tapes are products generally obtained from expanded polyurethane foam. They are ideal for filling in irregular cracks that need to maintain high elasticity over time. Expansion times depend on the temperature at the work site. Providing excellent thermal-acoustic insulation, they can be more or less resistant to water vapour and heavy rain. DIN 18542:2009 identifies the fields of application for self-expanding tapes, classifying them into 3 categories:

BG1

OUT

Suitable for external use, including exposure to UV rays. Permeable to vapour. Creates an impermeable junction for pressures exceeding 600 Pa. 600 Pa

IN

BG2

OUT

Suitable for external use, if not directly exposed to UV rays. Permeable to vapour. Creates an impermeable junction for pressures exceeding 300 Pa. 300 Pa

IN

BGR

IN

Not suitable for external use. Impermeable to air and vapour.

IN

NOTES:

Store the product in a dry location, indoors, max. 24 months. (1) Test performed with two coupled tapes on a 10 mm wide crack

SEALING PRODUCTS | KOMPRI BAND | 165


PLASTER BAND IN / OUT SINGLE-SIDED TAPE FOR INTERNAL/ EXTERNAL USE, CAN BE PLASTERED CAN BE PLASTERED Technical fabric ideal for applications under plaster, even on porous surfaces thanks to the excellent adhesive strength.

VERSATILE Thanks to its excellent adhesive strength, it is ideal for application on most surfaces, even at low temperatures.

CODES AND DIMENSIONS PLASTER BAND IN code

B [mm]

L [m]

Liner [mm]

pcs.

PLASTIN1263

75

25

12 / 63

5

PLASTIN1288

100

25

12 / 88

4

PLASTIN12138

150

25

12 / 138

2

PLASTIN12188

200

25

12 / 188

2

B [mm]

L [m]

Liner [mm]

pcs.

PLASTOUT1263

75

25

12 / 63

5

PLASTOUT1288

100

25

12 / 88

4

PLASTOUT12138

150

25

12 / 138

2

PLASTOUT12188

200

25

12 / 188

2

PLASTER BAND OUT code

IN-OUT available in both the IN version, with vapour stop function and the OUT version, consisting of a breathable membrane.

MATERIAL PLASTER BAND IN: Vapour stop polypropylene (PP) membrane with acrylic glue and pre-cut separation layer. PLASTER BAND OUT: Breathable polypropylene (PP) membrane with acrylic glue and pre-cut separation layer.

166 | PLASTER BAND IN / OUT | SEALING PRODUCTS


COMPLEMENTARY PRODUCTS


COMPLEMENTARY PRODUCTS


COMPLEMENTARY PRODUCTS Membranes BARRIER 100

vapour barrier screen Sd > 100 m

168

Acrylic tapes ALU BAND

reflective single-sided tape for indoor use

FLEXI BAND

universal single-sided high-adhesive tape

SPEEDY BAND

universal single-sided tape without separation layer

DOUBLE BAND

universal double-sided tape

169 170 171 172


BARRIER 100

EN 13984

VAPOUR BARRIER SCREEN Sd > 100 m

WATERPROOF Thanks to its polyethylene composition, the product is impermeable to dust and water during casting of the screeds, protecting the material from work residues.

VERSATILE The product can be used as a vapour barrier both on roofs and walls, as a protective product during construction.

CODES AND DIMENSIONS code

roll [m]

H x L [m]

A [m2]

pcs. / b

BAR100

1,5 x 50

1,5 x 50

75

70

BAR10040

1,0 x 25

4,0 x 25

100

50

TECHNICAL SPECIFICATIONS Property

Standard

Value

Mass per unit area

EN 1849-2

100 g/m2

Thickness

EN 1849-2

0,15 mm

Water vapour transmission (Sd)

EN 1931

107 m

MD/CD tensile strength

EN 12311-2

150 / 150 N/50 mm

MD/CD elongation

EN 12311-2

850 / 850 %

MD/CD resistance to nail tearing

EN 12310-2

140 / 140 N

Watertightness

EN 1928

compliant

Temperature resistance

-

-40 / +80 °C

Reaction to fire

EN 13501-1

class E

Resistance to air penetration

EN 12114

0,00 m3/m2h50Pa

Thermal conductivity (λ)

-

0,4 W/mK

Water vapour resistance factor (μ)

-

approx. 535000

VOC emissions

-

0% (class A+)

170 | BARRIER 100 | COMPLEMENTARY PRODUCTS

TRANSPARENT Thanks to the polyethylene, the product is almost entirely transparent, meaning the substrates remain visible during installation.

COMPOSITION single layer: functional PE film


ALU BAND REFLECTIVE SINGLE-SIDED TAPE FOR INDOOR USE RELIABLE The combination of aluminium and the special adhesive mix ensures stability in case of sudden temperature changes.

COMPLEMENTARY The aluminium surface makes it perfect for obtaining a fully heat reflective surface.

CODES AND DIMENSIONS code ALUBAND75

B [mm]

L [m]

Liner [mm]

pcs.

75

50

-

18

TECHNICAL SPECIFICATIONS Property

Standard

Value

LONG-LASTING

Total thickness

DIN EN 1942

approx. 0,06 mm

Tear strength

DIN EN 14410

> 20 N/cm

Can be applied to thermo-hydraulic structures, thanks to its high thermal reflectivity.

Expansion capacity

DIN EN 14410

> 3%

Adhesiveness

DIN EN 1939

> 6 N/cm

Water vapour transmission (Sd)

EN 1931

approx. 100 m

Temperature resistance

-

-40 / +130 °C

Application temperature

-

> -10 °C

Watertightness

-

compliant

support: aluminium foil

Storage temperature

-

+15 / +30 °C

glue: acrylate dispersion without solvents

Presence of solvents

-

NO

separation layer: silicon-impregnated

VOC emissions

-

0 % (class A+)

paper

COMPOSITION

COMPLEMENTARY PRODUCTS | ALU BAND | 171


FLEXI BAND UNIVERSAL SINGLE-SIDED HIGH-ADHESIVE TAPE UNIVERSAL Excellent adhesive strength and resistance on all surfaces.

PERFORMANCE Adhesion guaranteed over time even on dusty, porous or humid surfaces.

CODES AND DIMENSIONS code

B [mm]

L [m]

Liner [mm]

pcs.

FLEXI60

60

25

-

10

FLEXI100

100

25

-

6

FLEXI5050

100

25

50 / 50

6

FLEXI7575

150

25

75 / 75

4

TECHNICAL SPECIFICATIONS Property

Standard

Value

Total thickness

DIN EN 1942

0,34 mm

Tear strength

DIN EN 14410

> 50 N/25 mm

Expansion capacity

DIN EN 14410

20 %

Adhesiveness

DIN EN 1939

> 30 N/25 mm

Water vapour transmission (Sd)

EN 1931

40 m

Temperature resistance

-

-40 / +80 °C

COMPOSITION

Application temperature

-

-10 / +40 °C

UV resistance

-

6 months

Watertightness

-

compliant

Storage temperature

-

+5 / +25 °C

Presence of solvents

-

NO

support: PE film glue: acrylate dispersion without solvents reinforcement: reinforcing PE grid separation layer: PE silicon-impregnated paper glue: acrylate dispersion without solvents

VOC emissions

-

< 0,02 % (class A+)

172 | FLEXI BAND | COMPLEMENTARY PRODUCTS

PRACTICAL The flexibility of the support ensures high workability even under extremely cold environmental conditions.


SPEEDY BAND UNIVERSAL SINGLE-SIDED TAPE WITHOUT SEPARATION LAYER RAPID INSTALLATION Can be applied both internally and externally, guarantees fast and secure sealing on the most common materials.

SUSTAINABLE The absence of the separation layer means there is less waste to be disposed of.

CODES AND DIMENSIONS code

B [mm]

L [m]

Liner [mm]

pcs.

SPEEDY60

60

SPEEDY300

300

25

-

10

25

-

2

TECHNICAL SPECIFICATIONS Property

Standard

Value

VERSATILE

Total thickness

AFERA 5006

0,25 mm

Adhesiveness on steel

AFERA 5001

> 27,5 N/25 mm

Progressive adhesion, stable over time on the most common materials.

Adhesiveness on polyethylene

EN 12316-2

> 12,5 N/25 mm

Water vapour transmission (Sd)

EN 1931

40 m

Temperature resistance

-

-40 / +80 °C

Application temperature

-

-10 / +40 °C

UV resistance

-

6 months

Watertightness

-

compliant

Storage temperature

-

+5 / +25 °C

Presence of solvents

-

NO

VOC emissions

-

0 % (class A+)

COMPOSITION support: PE film glue: acrylate dispersion without solvents reinforcement: reinforcing PE grid glue: acrylate dispersion without solvents

COMPLEMENTARY PRODUCTS | SPEEDY BAND | 173


DOUBLE BAND UNIVERSAL DOUBLE-SIDED TAPE

UNIVERSAL Double-sided tape with excellent adhesion on all types of material under all environmental conditions.

SAFE With minimal thickness, it guarantees stability during temperature changes thanks to the reinforcement mesh.

CODES AND DIMENSIONS code DOUBLE40

B [mm]

L [m]

Liner [mm]

pcs.

40

50

-

16

PRACTICAL

TECHNICAL SPECIFICATIONS Property

Standard

Value

Total thickness

DIN EN 1942

0,25 mm

Adhesiveness

DIN EN 14410

> 25 N/25 mm

Temperature resistance

DIN EN 14410

Application temperature

DIN EN 1939

Watertightness

EN 1931

-30 / +100 째C 10 / +40 째C recommended > +5 째C compliant

Storage temperature

-

+5 / +25 째C

Presence of solvents

-

No

VOC emissions

-

< 0,02 % (class A+)

174 | DOUBLE BAND | COMPLEMENTARY PRODUCTS

Thanks to the adhesive strength and integrated mesh, the product can be used for temporary fastening of XYLOFON during construction and prefabrication.

COMPOSITION separation layer: silicon-impregnated paper glue: acrylate dispersion without solvents reinforcement: reinforcing PE grid glue: acrylate dispersion without solvents


SOLUTIONS FOR STAIRS


STAIRS

SILENT STEP UNI

Glulam/solid wood stair body and steps in OSB with floating floor.

ALADIN STRIPE XYLOFON

Stair body in CLT with steps in glulam. 176 | STAIRS | SOLUTIONS FOR STAIRS


STAIRS

01

01A

02

02A

03

03A

04

03B

06

05

01.

STAIRS DETAILS

PRODUCTS

stair-landing arrival connection

HBS

01A. stair-landing arrival connection 02.

stair-landing departure connection

02A. stair-landing departure connection 03.

landing-passing wall connection

03A. landing-passing wall connection 03B. landing-passing wall connection 04.

step-stair structure connection

05.

stair-floor departure connection

06.

stair-landing arrival connection

countersunk screw

VGZ total thread connector with cylindrical head

SKR anchor for concrete

XYLOFON WASHER separating washer for screws

XYLOFON/ ALADIN STRIPE high-performance structural

SOLUTIONS FOR STAIRS | STAIRS | 177


FOR FURTHER INFORMATION A. Speranza, L. Barbaresi, F. Morandi, “Experimental analysis of flanking transmission of different connection systems for CLT panels“ in Proceedings of the World Conference on Timber Engineering 2016, Vienna, August 2016. L. Barbaresi, F. Morandi, M. Garai, A. Speranza, “Experimental measurements of flanking transmission in CLT structures“ in Proceedings of the International Congress on Acoustics 2016, Buenos Aires, September 2016. L. Barbaresi, F. Morandi, M. Garai, A. Speranza, “Experimental analysis of flankng transmission in CLT structures” of Meetings on Acoustics (POMA), a serial publication of the Acoustical Society of America - POMA-D-17-00015 L. Barbaresi, F. Morandi, J. Belcari, A. Zucchelli, Alice Speranza, “Optimising the mechanical characterisation of a resilient interlayer for the use in timber construction” in Proceedings of the International congress on sound and vibration 2017, London, July 2017.

Packaged quantities may vary. No liability is assumed for any errors in printing, technical data or translations. Original reference text: Italian Any updates are available on www.rothoblaas.com. Pictures partially completed with accessories not included. Images for illustration purposes only. This catalogue is the exclusive property of Rothoblaas srl and may not be copied, reproduced or published, totally or in part, without prior written consent. Any violation will be prosecuted according to law. The figures provided must be verified by the designer in charge. All rights reserved. Copyright © 2018 by Rothoblaas All renders © Rothoblaas


LEGEND B [mm]

base

L [m]

length

s [mm]

thickness

smax [mm]

maximum thickness

H [mm]

height

P [mm]

depth

pcs.

pieces

pcs. / b

pieces/pallet

g/m2

mass per unit area

H x L [m]

height and lenght of the roll

A [m2]

area

n Ă&#x2DC;5 [pcs]

number and diameter of holes on plate

dext [mm]

external diameter

dint [mm]

internal diameter

b [mm]

thread length

A [mm]

fastening thickness

f [mm]

opening

Ă&#x2DC;screw [mm]

screw diameter


FASTENING AIRTIGHTNESS AND WATERPROOFING SOUNDPROOFING FALL PROTECTION TOOLS AND MACHINES

Rotho Blaas Srl Via dell‘Adige N.2/1 | 39040, Cortaccia (BZ) | Italia Tel: +39 0471 81 84 00 | Fax: +39 0471 81 84 84 info@rothoblaas.com | www.rothoblaas.com

01SOUND1EN

05|18

Rothoblaas is the multinational Italian company that has made innovative technology its mission, making its way to the forefront of technology for wooden buildings and construction safety in just a few years. With our comprehensive range of products and with a widespread and technically-prepared sales network, we work hard to transfer our know-how to our customers, aiming to be the leading partner for the development and the innovation of products and construction solutions. This approach contributes to the development/diffusion/of a new culture of sustainable construction, aimed at increasing comfortable living and reducing CO2 emission.

SOUNDPROOFING SOLUTIONS - EN  

When a body starts vibrating, the air particles in contact with it begin to oscillate, setting in motion the adjacent ones and generating a...

SOUNDPROOFING SOLUTIONS - EN  

When a body starts vibrating, the air particles in contact with it begin to oscillate, setting in motion the adjacent ones and generating a...