Page 60

Á L G E B R A

POLINOMIOS ESPECIALES

Ejemplos:

Son ciertos polinomios que por su importancia, es necesario conocer. Los más usados son:

i) Sea el polinomio: P(x,y) = 4x3 + 5x2y + 7xy2 + 8y3

Polinomio Ordenado Polinomio Completo

P es un polinomio completo con respecto a “x” y su término independiente con respecto a esa letras es 8y3. También es completo con respecto a “y” y su término independiente con respecto a esta letra es 4x3.

Polinomio Homogéneo Polinomios Idénticos Polinomios Idénticamente Nulos

ii) P(x) = 9ax3 - 3x2 + bx + (q + c)

Polinomios Entero en “x”

Donde el término independiente es: (q + c)

POLINOMIO ORDENADO Con respecto a una letra, es aquel que se caracteriza porque los valores de los exponentes de la letra considerada van aumentando o disminuyendo, según que la ordenación sea ascendente o descendente (creciente o decreciente).

PROPIEDADES DE UN POLINOMIO COMPLETO 1) Si es de grado “n” (G.P. o grado del polinomio), el número de términos,T.P. es igual al G.P. más uno. Es decir: # T.P. = G.P. + 1

Ejemplo:

2) El grado del polinomio completo es igual al número de términos menos uno.

Sea el polinomio: P(x,y) = 4x3y12 + 5x7y8 + 4x12y2

G.P. = # T.P. - 1 3) La diferencia de grados relativos de dos términos consecutivos es igual a la unidad:

P es ordenado con respecto a “x” en forma ascendente y es ordenado con respecto a “y” en forma descendente.

G.R.t(x + 1) - G.R.t(x) = 1

POLINOMIO COMPLETO Con respecto a una letra, es aquel que se caracteriza porque todos los exponentes de la letra considerada existen, desde el mayor hasta el cero inclusive; denominando este último, “término independiente” del polinomio con respecto a esa letra.

4) El término independiente contiene a la variable con exponente cero.

POLINOMIO HOMOGENEO Es aquel que se caracteriza por que todos sus términos tienen igual grado absoluto (G.A.).

- 59 -

Profile for Rolandomario Castro Balcazar

Algebra pre universitaria  

Teoría , conceptos y aplicaciones preuniversitarias

Algebra pre universitaria  

Teoría , conceptos y aplicaciones preuniversitarias

Advertisement