Page 153

Luego, el polinomio factorizado es:

α

α

Sumando y restando 4a2b2 se obtiene:

(a - 2b)(2a + 5b)(2a + 5b)

E = (a4 + 6a2b2 + 9b4) - (4a2b2)

Reponiendo el valor de (a = x2 + y2) y (b = xy)

el primer paréntesis es el desarrollo de un binomio al cuadrado:

E = (x2 + y2 - 2xy)[2(x2 + y2) + 5xy][2(x2 + y2) + 5xy] E = (a2 + 3b2)2 - (2ab)2 E =(x - y)2 (2x2 + 5xy + 2y2)2 factorizando la diferencia de cuadrados: Factorizando el segundo paréntesis por aspa simple: E = (a2 + 3b2 - 2ab)(a2 +3b2 + 2ab) 2

2

[2(x + y ) + 5xy] 2x2 + 2y2 + 5xy 2x

EJERCICIOS RESUELTOS y

1.- Factorizar: E = 49x4m + 5x2my4n + y8n

x

2y

α

Solución:

Se observa que los extremos son cuadrados perfectos, luego el término intermedio debe ser:

(2x + y)(x + 2y) E = (x - y)2 [(2x + y)(x + 2y)]2

2(7x2m) . (y4n) = 14x2my4n E = (x - y)2(2x + y)2(x + 2y)2 Sumando y restando 9x2my4n:

(E) MÉTODO DE ARTIFICIOS DE CALCULO

E = (49x4m + 14x2my4n + y8n) - 9x2my4n E = (7x2m + y4n)2 - (3xmy2n)2

E.1) REDUCCIÓN A DIFERENCIA DE CUADRADOS:

factorizando la diferencia de cuadrados:

Este método consiste en transformar una expresión (trinomio en general), a una diferencia de cuadrados, sumando y restando una misma cantidad de tal manera que se complete el trinomio cuadrado perfecto.

E = (7x2m + y4n - 3xmy2n)(7x2m + y4n + 3xmy2n) 2.- Factorizar:

Ejemplo: Factorizar: 4

2 2

a + 2a b + 9b

E = (2x6 + 1)3 + (x + 1)3 (x - 1)3 ( x4 + x2 + 1)3 Solución:

4

La expresión se puede escribir como:

Solución:

E = (2x6 + 1)3 + [(x2 - 1)(x4 + x2 + 1)]3

Analizando el trinomio, se observa que los extremos son cuadrados perfectos, para que sea el desarrollo de una suma al cuadrado, el término intermedio debe ser doble del producto de las raíces de estos términos; es decir, debe ser: 2(a2) . (3b2) = 6a2b2

efectuando: E = (2x6 + 1)3 + [(x6 - 1)]3 factorizando la suma de cubos: E = [(2x6 + 1) + (x6 - 1)] [(2x6 + 1)2+(x6 - 1)2 - (2x6 + 1)(x6 - 1)]

Luego, se observa que le falta 4a2b2

- 152 -

Profile for Rolandomario Castro Balcazar

Algebra pre universitaria  

Teoría , conceptos y aplicaciones preuniversitarias

Algebra pre universitaria  

Teoría , conceptos y aplicaciones preuniversitarias

Advertisement