Page 103

α

sabiendo que su cociente toma el valor numérico de 2 para x = 1.

El valor numérico para x = 1 será: a+4 3(1)2 - 4(1) + ––––– = 2 2

Solución:

a+4 3 - 4 + ––––– = 2 2

Dividiendo por Ruffini: 6

-5

+a

-3

+4

-1

eliminado denominadores:

↓ 1 - –– 2 6

-8

6-8+a+4=4

1 (a+4) - –– 2 1 (a+4) - –– 2

a+4

a=2

∴ 1

Si el resto es: 1 (a + 4) - 1 R = - –– 2

El cociente primario:

sustituyendo. a = 2:

6x2 - 8x + a + 4

1 (2 + 4) - 1 R = - –– 2

dividiendo entre 2 ,el cociente es: 3x2 - 4x +

α

R = -4

a+4 ––––– 2

(

)

α

Rpta.: El residuo es -4

EJERCICIOS PROPUESTOS 1. Calcular A + B si la división:

3. En la división: 3x4 + 2x3 + Ax2 + 7x - 12 –––––––––––––––––––––– x3 + x2 - 3

2x4 + 3x2 + Ax + B ––––––––––––––––– 2x2 + 2x + 3

el cociente es: 3x + B; el resto: -4x2 + Cx - 15 Hallar ABC.

es exacta a) 2

b) 4

d) 12

e) 0

c) 5

2. Calcular m + n + p si la división deja como resto: 2x2 + x - 5 5

4

3

a) 80

b) 16

d) 210

e) 49

c) 50

4. El residuo en la división es -16: 6x4 - x3y - 6x2y2 + 5xy3 - 3y4 ––––––––––––––––––––––––– 2x2 + xy - 2y2

2

3x - 2x - 3x + mx + nx + p –––––––––––––––––––––––––– 3x3 - 2x2 + 1

Hallar el valor de “y” a) 3

b) 2

d) 0

e) 10

c) -1

- 102 -

a) 1

b) 3

d) -1

e) 4

c) 2

Profile for Rolandomario Castro Balcazar

Algebra pre universitaria  

Teoría , conceptos y aplicaciones preuniversitarias

Algebra pre universitaria  

Teoría , conceptos y aplicaciones preuniversitarias

Advertisement