Constructing Environments:  A01  -­‐  Final  Logbook     ENVS10003   Juhyun  Son  354978

LOGBOOK

Week1

Ju Hyun  Son-­‐354978   2

2

LOGBOOK

3

CONSTRUCTION     The  meaning  of  building  construction  is   the  process  of  preparing;  planning,   design  and  financing.   In  the  first  week,  we  have  studied  about   materials  for  the  construction,  basic   structural  forces,  site  analysis,  load  path   diagrams  and  bluestone  that  often  used   in  construction  in  Melbourne.  Moreover,   we  construct  a  tower  by  using  MDF   (Medium  Density  Fibreboard)  to   understand  the  nature  and  behaviour  of   modular  mass  construction  and  how   loads  can  be  transferred  through  the   compression  structures.

Figure 1  Construction  site

Figure 2  knowledge  map  of  construction

Materials-­‐Melbourne’s bluestone   Bluestone  is  the  material  of  cultural  or   commercial  or  building  stone  varieties.   It  is  often  used  in  Melbourne’s   construction.  Building  stone  of   bluestone  is  basalt  that  can  easily  found   in  volcanoes  around  Melbourne  area.   Basalt  is  used  in  construction  because  it   is  easy  to  find  near  Melbourne,  however,   sandstone  is  normally  used  in  Sydney   and  clay  for  bricks  and  limestone  is  used   in  Perth.  Basalt  is  commonly  dark   colouring,  therefore,  it  makes  city  dark.

Figure 3  bluestones  (basalt)  with  bubbles

Figure 4  knowledge  map  of  Melbourne's  bluestone   (basalt)

Ju Hyun  Son-­‐354978   3

LOGBOOK

4

Basic  structural  forces   The  change  in  the  shape  or  movement  of   a  body  can  be  determined  as  a  Force.   Both  magnitude  and  direction  need  to  be   considered  as  a  vector  function  by  an   arrow  whose  length  is  proportional  to   the  magnitude  and  whose  orientation  in   space  represents  the  direction.   In  the  construction,  the  force  can  be   divided  into  tension  forces  and   compression  forces.

Figure 5  Force  diagram

Figure 6  force  diagram  with  description.

Tension forces   Tension  force  is  pulling  force.  For   example,  when  a  structural  member  is   pulled  over  by  an  external  load,  it  is   moving  apart  and  undergoes  tension.   It  will  cause  the  extension  on  a  member   depending  on  the  stiffness  of  the   material,  cross  sectional  area,  and  the   magnitude  of  the  load.  Tension  can  be   determined  as  opposite  of  compression.     Tension  force  on  a  structural  member  is   most  often  used  as  it  can  span  large   distances.

Figure 7  tension  force  described  by  green  colour

Figure 8  the  changes  of  member  shape  after   applied  tension  force

Ju Hyun  Son-­‐354978   4

LOGBOOK

5

Compression  forces   Compression  forces  on  a  structural   member  are  pressed  from  each  end  of  a   member.  It  is  the  opposite  effect  of  a   tension  force  as  mentioned  above.  It  will   cause  the  compaction  of  a  member  and   the  material  will  be  shortened  by   compression  force.  Compression   members  are  commonly  used  in   columns.

Figure 11  Examples  of  the  load  path  diagram  on  a   structure

Figure 10  the  shape  changes  after  applied   compression  force

Figure 9  A  compression  force  is  pushing  outward   along  the  curve

Load  path  diagram   For  this  part  of  studies,  live  load  is  the   only  one  has  to  be  considered.  Live  load   is  an  applied  load  and  it  has  to  be   considered  how  it  transfers  to  the   ground.  When  an  applied  load  is  placed   on  the  beam,  it  only  transfers  to  the   column  and  reaction  forces  from  the   ground  to  stable  the  structure  will   support  it.

Figure 12  Load  path  diagram  of  simple  structure   and  description

Ju Hyun  Son-­‐354978   5

LOGBOOK

6

Site  analysis   One  of  the  most  important  thing  in   construction  is  site  planning.  It  includes   the  boundaries  of  architecture,   landscape  architecture,  engineering,   real-­‐estate  development,  urban  planning   and  economics.  There  are  several  points   that  significantly  important  for  site   analysis;  location,  neighborhood   context,  site  and  zoning,  legal  elements,   natural  physical  features,  utilities,   human  and  cultural.  Also,  the  climate  is   really  important  issues  in  construction,   therefore,  it  is  considered  well  by   engineer’s  site  analysis.

Figure 13  Examples  of  site  analysi

Figure 14  Examples  of  site  analysis  2

Studio session-­‐Mass  Construction  Tower   (Pavilion)   Build  a  Mass  Construction  Tower  as  high   as  possible  using  the  least  amount  of   MDF.  There  are  two  methods  of   constructing  the  MDF  blocks;  Stack   Bond  and  Stretcher  Bond.  One  of  these   methods  has  to  be  decided  to  construct  a   tower  as  high  as  possible.  Our  group  has   chosen  the  stretcher  bond  method   because  the  force  from  upper  block  can   be  transferred  to  two  different  blocks   that  placed  below.  It  will  make  the  tower   more  stable.  Furthermore,  it  will   prevent  the  collapse  of  the  tower  even  if   we  remove  the  blocks  in  the  middle  of   the  construction.

Figure 16  how  the  load  transfer  to  the  ground  for   each  structure  method

Ju Hyun  Son-­‐354978   6

Figure 15  Stretcher  Bond  method

LOGBOOK

7

One  side  of  the  tower  should  be  open   with  the  gate  to  obtain  the  object  the   size  of  17blocks  for  the  height  11  blocks   for  the  width;  however,  our  group  has   decided  to  construct  a  tower  with  one   side  open  from  the  bottom  to  the  top  as   shown  in  figure  17.  Actually,  the  first   designed  tower  was  with  the  gate  at  the   bottom.  But  the  purpose  of  this   workshop  is  to  build  a  tower  as  high  as   possible  with  the  least  amount  of  blocks.   Therefore,  to  obtain  the  object  and  build   a  tower  as  high  as  possible,  the  design   has  been  changed  as  shown  in  following   figures.  Furthermore,  the  rubber  band   which  makes  the  top  of  the  gate  stable   makes  the  tower  unstable  when  it  gets   higher.

Figure 17  A  tower  with  whole  side  open

Figure 18  original  design  of  our  tower

The material  that  we  used  in  this   workshop  is  MDF  (Medium-­‐density   fibreboard).  The  material  is  very  strong   and  much  more  dense  that  particle   board,  therefore,  it  is  often  used  as  a   building  material  similar  in  application   to  plywood.   To  test  the  stability  of  the  tower,  the   blocks  in  the  middle  of  the  tower  had   been  removed.  The  construction  method   was  stretcher  bond;  therefore,  the  tower   was  really  stable  even  if  many  blocks   were  removed  in  the  middle.  (Shown  in   the  following  figures)

Figure 19  The  stability  of  the  tower  when  the   blocks  are  removed  in  the  middle

Figure  20  Load  path  diagram  shows  the  stability  of   the  tower  by  transffering  the  load  through  the   hole

Ju Hyun  Son-­‐354978   7

LOGBOOK   By  comparing  the  project  with  other   group,  the  tower  that  we  constructed   was  the  highest  and  used  the  least   amount  of  blocks.  Nevertheless,  all  other   groups  had  the  gate  at  the  bottom  or  in   the  middle  of  the  tower.  It  causes  other   groups  to  take  more  time  to  get  higher   towers.  Our  group  has  chosen  not  to   have  a  gate  at  the  front,  but  the  purpose   of  the  constructing  mass  tower  was  to   build  a  tower  as  high  as  possible  by   using  the  least  amount  of  blocks.

Ju Hyun  Son-­‐354978   8

8

LOGBOOK

Week2

Ju Hyun  Son-­‐354978   9

9

LOGBOOK

Ju  Hyun  Son-­‐354978   10

10

LOGBOOK

Ju  Hyun  Son-­‐354978   11

11

LOGBOOK

Ju  Hyun  Son-­‐354978   12

12

LOGBOOK

Ju  Hyun  Son-­‐354978   13

13

LOGBOOK

Ju  Hyun  Son-­‐354978   14

14

LOGBOOK

Week3

Ju Hyun  Son-­‐354978   15

15

LOGBOOK

16

STRUCTURAL  ELEMENT     Structural  Element  is  classified  into   strut,  tie,  beam  and  slab/plates.  Each   element  has  own  distinct characteristics. Firstly, a strut is a slender element design to carry load parallel to its long axis. The load produces compression such as columns. A tie is a slender element design to carry load parallel to its long axis. The load produces tension such as a cable storey bridge. Figure  22  compression  and  tension  in  strut  and  tie

Figure 23  beam  and  slab  diagrams  in  construction   drawing   Figure  21  Examples  of  tie  and  strut

A beam  is  generally  a  horizontal  element   designed  to  carry  vertical  load  using  its   bending  resistance.  The  load  applies   normally  from  the  top  middle  of  the   beam  and  both  end  of  the  beam   supports  it.  The  slab/plate  is  a  wide   horizontal  element  designed  to  carry   vertical  load  in  bending  usually   supported  by  beams.   The  following  diagrams  and  photos  are   presenting  the  beams  and  slabs.

Figure 24  Beam  and  slab/plate  force  diagram

Ju Hyun  Son-­‐354978   16

LOGBOOK

17

Foundations  and  Footings   Foundations  are  found  at  the  bottom  of   buildings  where  the  building  meets  the   ground.  The  foundations  are  the   substructures  of  the  building  and  their   function  is  to  safely  transfer  all  loads   acting  on  the  building  structure  to  the   ground.  Where  parts  of  the  substructure   are  located  below  the  ground,  the   foundations  must  also  resist  the  force  of   the  soil  pressing  against  the  foundation   or  retaining  walls.     Settlement:  over  time,  buildings   compress  the  earth  beneath  them  and   the  buildings  tend  to  sink  a  little  into  the   earth.     Footings  and  foundations  should  be   designed  to  ensure  that  this  settlement   occurs  evenly  and  that  the  bearing   capacity  of  the  soil  is  not  exceeded.     Cracking  in  a  building  often  occurs  with   differential  settlement.

Figure 25  Foundations  and  Footings  (ching)

Figure 27  Foundations  and  Footings  in   construction  site

Figure 26  Foundations  and  footings  reaction   forces  (ching)

Ju  Hyun  Son-­‐354978   17

LOGBOOK

18

There  are  several  types  of  footings:     Shallow  Footings:  are  used  where  soil   conditions  are  stable  and  where  the   required  soil  bearing  capacity  is   adequate  close  to  the  surface  of  the   ground.  Load  is  transferred  vertically   from  the  foundation  to  the  ground.     Deep  foundations:  are  used  where  soil   conditions  are  unstable  or  where  the   soil  bearing  capacity  is  inadequate.  Load   is  transferred  from  the  foundations,   through  the  unsuitable  soil  and  down  to   levels  where  bed  rock,  stiff  clay,  dense   sand/gravel  is  located.     Pad  Footings:  also  called  isolated   footings,  these  types  of  footings  help  to   spread  a  point  load  over  a  wider  area  of   ground.     Strip  footings:  used  when  loads  from  a   wall  or  a  series  of  column  are  spread  in  a   linear  manner.     Raft  foundation:  sometimes  also  called  a   raft  slab,  this  type  of  foundation   provides  increased  stability  by  joining

the individual  strips  together  as  a  single   mat.

Figure 29  Examples  of  footing   (www.sustland.umn.edu)

Figure 28  Different  types  of  footings  (ching)

Ju  Hyun  Son-­‐354978   18

LOGBOOK

19

Deep  foundations   Deep  foundations  can  generally  be   divided  into  two  types:     End  bearing  piles:  extend  the   foundations  down  to  rock  or  soil  that   will  provide  support  for  the  building   loads.     Friction  piles:  rely  on  the  resistance  of   the  surrounding  earth  to  support  the   structure.       Various  methods  and  materials  can  be   used  for  constructing  these  piles,   including:     -­‐  Driving  along  timber,  steel  or  concrete   members  into  the  ground   -­‐  Drilling  into  the  ground  and  then  filling   the  hole  with  concrete  (cages  of  steel   reinforcing  are  of  the  placed  into  the   holes  before  the  holes  are  filled  with   concrete).

Figure 31  Showing  the  installations  of  deep   foundations  (astm.nufu.eu)

Figure 30  installations  of  deep  foundations   (ching)

Ju Hyun  Son-­‐354978   19

LOGBOOK   Retaining  and  foundation  walls     Are  used  when  sites  are  excavated  to   create  basements  or  where  changes  in   site  levels  need  to  be  stabilized.  The   pressure  load  of  the  earth  behind  the   wall  needs  to  be  considered  to  prevent   the  wall  from  overturning.

Figure 32  Retaining  walls  in  LA  (www.ultimate-­‐ handyman.com)

Figure 33  Retaining  and  foundation  walls  (ching)

Ju  Hyun  Son-­‐354978   20

20

LOGBOOK

21

Mass  Materials   These  materials  are  stone,  earth,  clay   and  concrete.   Stone  is  a  hard  material  that  resists   abrasion  –  scratching  and  blasting.  Earth   is  compressive  strength.  Clay  is  good   material  for  thermal  mass.  Lastly,   Concrete  is  durable  materials.   Mass  construction  can  be  divided  into   Modular/Non-­‐modular.   Modular:  clay  brick,  mud  brick  (adobe),   concrete  block,  Ashlar  stone.   Non-­‐Modular:  concrete,  rammed  earth,   monolithic  stone  (columns  &  beams)

Figure 34  Mass  construction  in  site   (www.eugenef.com)

Figure 35  knowledge  map  of  mass  construction

Masonry  materials   It  refers  to  building  with  units  of  various   natural  or  manufactured  products.  It  is   also  usually  with  the  use  of  mortar  as  a   bonding  agent.  In  the  details  of  masonry   materials,  bond  is  the  pattern  or   arrangement  of  the  units  and  course  is  a   horizontal  row  of  masonry  units.  Joint  is   the  way  units  are  connected  to  each   other.  Lastly  mortar  is  mixture  of   cement  or  lime,  and  water  used  as  a   bonding  agent.  The  properties  of  the   unit  are  to  a  degree  applicable  to  the   built  element.  In  other  words,  the  units   together  act  as  a  monolithic  whole.

Figure 36  knowledge  map  of  masonry  materials

Figure 37  Examples  of  masonry  concrete  joint   (www.sustainableconcrete.org)

Ju Hyun  Son-­‐354978   21

LOGBOOK

22

Geometry  and  Equilibrium   Equilibrium  is  a  state  of  balance  or  rest   resulting  from  the  equal  action  of   opposing  forces.  In  other  words,  as  each   structural  element  is  loaded,  its   supporting  elements  must  react  with   equal  but  opposite  forces.  For  an  object   to  be  in  equilibrium,  any  applied  forces   must  be  resisted  by  equal  and  opposite   forces.  These  forces  are  called  reaction   forces.  In  a  building  structure,  the   reaction  forces  are  developed  in  the   supporting  elements.

Figure 39  Example  of  force  equilibrium

Figure 38  Equilibrium  diagram  (Ching,  'Building   construction  illustrated',  p2.12  (2008)

Free Body  Diagrams   Objects  or  systems  in  equilibrium  can  be   represented  in  diagrammatic  from   called  free  body  diagrams.  Applied  force   and  reaction  forces  should  be  the  same   amount  would  cause  the  equilibrium  of   the  structure.   The  following  diagrams/pictures  will   show  the  equilibrium  and  free  body   diagrams.

Figure 40  Free  body  diagram  (en.wikiversity.org)

Figure 41  Free  body  diagram  in  a  beam

Ju Hyun  Son-­‐354978   22

LOGBOOK

23

Bricks   Bricks  are  very  common  material  in   Australia.  A  standard  size  masonry  unit   made  out  of  clay.  It  proportions  may   vary  slightly  depending  on  types  and   countries  but  it  will  always  be  a  hand   sized  unit.  Clay  bricks  are  manufactured   from  clay  or  shale  that  is  shaped  and   then  hardened  by  a  firing  process.  As   one  of  the  oldest  building  materials  the   uses  are  very  broad.  Main  uses  today   include  walls,  arches  and  paving.

Figure 42  3  main  types  of  brick  (e-­‐learning)

Figure 43  different  bond  patterns  of  bricks  (e-­‐ learning)

Joints-­‐clay  bricks   Mortar  joints  are  usually  10mm  (vertical   joints  are  called  perpends  and   horizontal  joints  are  called  bed  joints).   There  are  a  range  of  joint  finishing   profiles  that  are  selected  depending  on   the  type  of  brick,  weather  exposure  and   aesthetics.

Figure 44  CLAY  BRICKS  (E-­‐LEARNING)

Properties of  Bricks   -­‐ Hardness:  med  to  high.  Can  be   scratched  with  a  metallic  object   -­‐ Fragility:  medium.  Can  be  broken   with  trowel   -­‐ Ductility:  very  low  ductility   -­‐ Flexibility/  plasticity:  very  low   flexibility  and  plasticity   -­‐ Porosity/  permeability:  med  to   low.  Becomes  soaked  only  if   placed  in  prolonged  contact  with   water   -­‐ Density:  medium.  Approximately   2~2.5  times  more  dense  than   water   -­‐ Conductivity:  poor  conductors  of   heat  and  electricity   -­‐ Durability/  life  span:  typically   very  durable   -­‐ Reusability/  recyclability:  high.   Can  be  re-­‐used  with  no  change  or   crushed  to  be  used  as  recycled   aggregate   -­‐ Sustainability  &  carbon  footprint:   tends  to  be  locally  produced.  The   firing  process  adds  to  its  carbon   footprint   -­‐ Cost:  generally  cost  effective  but   required  labour  costs   Ju  Hyun  Son-­‐354978   23

LOGBOOK

24

Concrete  blocks   A  standard  size  masonry  unit  made  out   of  concrete.  There  is  a  large  range  of   sizes  and  proportions  available  in  order   to  suit  different  purposes.  Concrete   blocks  are  manufactured  from  cement,   sand,  gravel  and  water.  The  manufacture   process  involves  mixing,  moulding  and   curing.

-­‐ -­‐

-­‐ Figure 46  brick  details  drawing

Figure 45  Concrete  blocks  (e-­‐learning)

Concrete blocks  have  several  different   styles  such  as  hollow  and  solid.   It  can  be  classified  as  load-­‐bearing  or   non-­‐load  bearings  are  used.  Load   bearing  block  is  known  as  a  concrete   masonry  unit.

Properties  of  concrete  blocks   -­‐ Hardness:  med  to  high.  Can  be   scratched  with  a  metallic  object   -­‐ Fragility:  medium.  Can  be  broken   with  trowel   -­‐ Ductility:  very  low  ductility   -­‐ Flexibility/  plasticity:  very  low   flexibility  and  plasticity   -­‐ Porosity/  permeability:  medium.   Some  concrete  blocks  are  sealed   to  reduce  the  opportunity  for   water  absorption   -­‐ Density:  medium.  Approximately   2  to  2.5  times  more  dense  than   water   -­‐ Conductivity:  poor  conductors  of   heat  and  electricity

-­‐

Durability/ life  span:  typically   very  durable   Reusability/  recyclability:   medium.  Sometimes  reused  with   no  change  but  more  often   crushed  to  be  used  as  aggregate   in  other  concrete  products   Sustainability&  carbon  footprint:   inclusion  of  recycled  and  waste   products  from  other  processes  is   allowing  a  positive  reduction  in   carbon  footprint  and  increase  in   sustainability  for  many  concrete   products   Cost:  generally  cost  effective  but   labour  penalties  are  often  applied   as  the  larger  format  units  mean   construction  usually  progresses   at  a  faster  rate

As  a  result,  concrete  shrinks  over  time   while  clay  bricks  will  expand.                 Ju  Hyun  Son-­‐354978   24

LOGBOOK

25

Activity:  on  site   1. Lot  6  café   The  building  is  supported  by   concrete  column  and  concrete  slabs.   And  the  structure  of  the  building  is  a   solid  structure.

Figure 48  Lot  6  café

2. Underground  carpark  &  south   lawn   Underground  car  park  had  been   designed  by  engineering  practice   and  its  placed  under  south  lawn.   All  the  columns  of  underground   car  park  are  hollow  type  and  it  is   designed  as  water  can  be  drained   through  column.  Also,  there  are   steel  inside  of  the  concrete   column  its  called  In  situ.  The   following  photos  are  showing  the   cracks  on  concrete  columns.

3. Arts west  centre

Figure 50  Arts  west  centre

Figure 47  load  transfer  from  concrete  column  to  I   beam

Figure 51  load  transfer  diagram  for  figure  50

Figure 49  Concrete  cracks  in  column

Ju  Hyun  Son-­‐354978   25

LOGBOOK

26

4. Stairs on  west  end  of  union  house   It  is  designed  membrane   structure.  It  looks  like  the  wires   are  holding  the  stairs  like  a  cable   storey  bridge.  However,  in  fact,  it   is  not  actually  holding  it.  These   wires  are  for  just  visualization.

5. North court  Union  house   There  is  a  hole  for  the  water  to   drain.

6. Beaurepaire centre  pool   The  structure  is  visible  for  this   building.  And  the  window  has  a   steel  portal  frame.  There  is  no   resistance  to  lateral  load  like   wind  and  the  brick  walls  are   holding  the  structure  at  the  back.

Figure 54  northcourt

Figure 52  stairs

Figure 55  water  drained  diagram

Figure 53  visual  designed  stairs  with  wire

Figure  56  window  steel  frame  and  the  brick  wall

Ju  Hyun  Son-­‐354978   26

LOGBOOK

Figure 58  running  the  construction

Figure 57  visible  structure

8. New Melbourne  school  of  design   under  construction   New  architecture  building  is  in-­‐ situ  steel  and  it  has  two  types  of   governised.

7. Oval pavilion   It  will  be  more  discussed  in  the   other  activities.

Figure 59  New  architecture  building

Ju Hyun  Son-­‐354978   27

27

LOGBOOK   Glossary   1. Moment   -­‐  In  physics,  moment  relates  to   the  perpendicular  distance  from   a  point  to  a  line  or  a  surface,  and   is  derived  from  the  mathematical   concept  of  moments.  It  is   frequently  used  in  combination   with  other  physical  quantities  as   in  moment  of  inertia,  moment  of   force,  moment  of  momentum,   magnetic  moment  and  so  on.   2. Retaining  wall   -­‐  Retaining  walls  are  structures   designed  to  restrain  soil  to   unnatural  slopes.  They  are  used   to  bound  soils  between  two   different  elevations  often  in  areas   of  terrain  possessing  undesirable   slopes.   3. Pad  footing   -­‐  This  carries  point  loads  where   the  columns  come  down  and  is   used  a  lot  in  portal  frames.  Piles   can  be  placed  on  problem  sites   under  the  pad.  This  system   allows  the  portal  frame  to  be  put   up  quickly  with  the  slab  able  to   be  placed  after.

4. Strip footing   -­‐  This  runs  under  load  bearing   walls,  which  need  supporting   along  their  whole  length.  Strip   footing  would  be  used  for   example  under  precast  concrete   panels.   5. Slab  on  ground   The  slab  on  the  ground  is   constructed  similar  to  the   stiffened  raft,  however,  it  does   not  require  internal  stiffening   beams  and  can  only  be   constructed  on  class  A  or  class  S   sites.   6. Substructure   -­‐ The  supporting  part  of  a   structure;  the  foundation   -­‐ The  earth  bank  or  bed  supporting   railroad  tracks   -­‐ A  structure  forming  a  foundation   or  framework  for  a  building  or   other  construction

Ju Hyun  Son-­‐354978   28

28

LOGBOOK

Week4

Ju Hyun  Son-­‐354978   29

29

LOGBOOK

30

Span  and  spacing   Span  is  the  distance  measured  between   two  structural  supports.  It  can  be   measured  between  vertical  supports   (horizontal  member)  or  between   horizontal  supports  (vertical  member).   It  is  not  necessarily  the  same  as  the   length  of  a  member.   Spacing  is  the  repeating  distance   between  a  series  of  like  or  similar   elements.  It  is  often  associated  with   supporting  elements  (such  as  beams,   columns  etc.)  and  can  be  measured   horizontally  or  vertically.  Spacing  is   generally  measured  center-­‐line  to   center-­‐line.

Figure 60  Span  and  Spacing  in  structure   (nationalvetcontent.edu.au)

Figure 61  Span  &  Spacing  in  structure

Floor system:  Concrete,  steel  &  timber   Concrete  systems-­‐slabs  of  various  types   are  used  to  span  between  structural   supports.  These  can  be  one-­‐way  or  two-­‐ way  spans.   Steel  systems:  Steel  framing  systems   take  various  forms;  with  some  utilising   heavy  gauge  structural  steel  members  &   other  using  light  gauge  steel  framing.  In   many  instances  a  combination  of   member  types  &  materials  are  combined   depending  on  their  structural  function.   Steel  framing  systems  sometimes   combine  with  concrete  slab  systems  to

where the  particular  benefits  of  steel   framing  &  shallow  depth  floor  slab   systems  are  desired.  The  spanning   capabilities  of  the  particular  materials   help  to  determine  the  spacing   requirements  of  the  supports.     Timber  systems:  traditional  timber  floor   framing  systems  use  a  combination  of   bearers  (primary  beams)  &  joists   (secondary  beams).  The  span  of  the   bearers  determines  the  spacing  of  the   piers  of  stumps  &  the  spacing  of  the   bearers  equals  the  span  of  the  joists.

Figure 62  concrete  floor  slab   (http://www.tn173.com/)

Ju Hyun  Son-­‐354978   30

LOGBOOK

31

Figure 63  Steel  framing  system  (   http://www.steelframingsystems.com.au/)

Figure 64  Timber  framing  system   (http://steelmax.com.au/)

Concrete: Component   When  cement  is  mixed  with  water  it   binds  the  sand  and  gravel  aggregates   together  to  make  the  hard,  solid   material  we  call  concrete.  A  common   concrete  mix  is:     -­‐ Part  cement:  Portland,  Lime   -­‐ Parts  fine  aggregate:  Sand   -­‐ Parts  coarse  aggregate:  Crushed   rock   -­‐ 0.4-­‐0.5  part  water

Figure 65  concrete  components  (e-­‐learning)

Concrete: Provenance   When  the  cement  powder  and  water  are   mixed,  a  chemical  reaction  takes  place   and  heat  is  released.  This  process  is   called  hydration.  During  this  process   crystals  are  formed  that  interlock  and   bind  the  sand,  crushed  rock  and   cement/water  paste  together.  If  too   much  water  is  added  to  the  concrete   mix,  the  final  concrete  will  not  be  strong   enough  (weak).  If  too  little  water  is   added,  the  concrete  mixture  will  be  too   stiff  and  it  will  be  very  difficult  to  work   with  (unworkable).

Figure  66  materials  of  cast  concrete  provenance  (   http://www.examiner.com/article/experience-­‐ the-­‐nature-­‐of-­‐sculpture-­‐the-­‐nathan-­‐manilow-­‐ sculpture-­‐park)

Ju  Hyun  Son-­‐354978   31

LOGBOOK

32

Concrete:  Process   One  of  the  great  advantages  of  concrete   is  fluid  and  shapeless  before  it  hardens.   It  can  be  formed  in  to  any  shape  we   desire.  Formwork  is  the  term  used  for   the  temporary  support  or  a  mould  used   to  hold  the  liquid  concrete  in  place  unit   it  becomes  hard.  It  can  be  built  at  the   building  site  as  IN  SITU/  PRE-­‐CAST  with   a  range  of  different  materials  such  as   timber,  metal,  plastic,  form-­‐ply  etc.     Wall  formwork  process:   -­‐ Spreaders:  keep  formwork  apart   -­‐ Formwork  ties   -­‐ Plywood  sheating   -­‐ Inner  surface  of  panels  leaves  an   impression  on  concrete   -­‐ Timber  studs   -­‐ Horizontal  walers  reinforce  the   vertical  members   -­‐ Sill  plate   -­‐ Bracing

Figure 67  wall  formwork  process  (  ching)

During  the  curing  process  the  formwork   needs  to  be  supported  as  the  weight  of   the  wet  concrete  is  very  heavy.  Props   and  bracings  of  various  types  could  be   used  to  achieve.  Concrete  generally   reaches  75%  of  its  compressive  strength   in  approximately  7days  by  testing  for   the  require  strength  causing  28  days.   The  formwork  can  be  removed  carefully   since  the  concrete  is  hardened  and   strong  enough.

Figure  68  Examples  of  concrete  (   www.brighthubengineering.com)

Figure 69  Concrete  finishes  (e-­‐learning)

Ju Hyun  Son-­‐354978   32

LOGBOOK

33

Concrete:  Reinforcement   Concrete  is  also  known  as  ‘artificial   stone’.  It  is  showing  that  the  concrete   and  stone  are  the  similar  materials.  It  is   very  strong  in  compression  but  it  is   weak  in  tension.  To  improve  tension   forces,  steel  reinforcement  is  required  in   the  form  of  mesh  or  bars.     Properties  of  concrete:   -­‐ Hardness:  High,  can  be  scratched   with  a  metallic  object   -­‐ Fragility:  Low,  can  be  chipped   with  a  hammer   -­‐ Ductility:  Very  low  ductility   -­‐ Flexibility/  Plasticity:  Low   flexibility  and  plasticity   -­‐ Porosity/  Permeability:  Med,   Depending  on  proportions  and   components  (aerated  or  high   water  ratio  concrete  has  a  high   porosity  vs  waterproof  concrete   that  is  created  when  permeability   reducing  admixtures  are  included   in  the  concrete  mix   -­‐ Density:  Med  to  High,   Approximately  2.5  more  dense   that  water   -­‐ Conductivity:  Poor  conductor  of   heat  and  electricity

-­‐ -­‐

-­‐ -­‐

Durability/ Life  span:  Typically   very  durable   Reusability/  Recyclability:  Med  to   Low.  Can  be  partially  re-­‐used   when  crushed  to  be  used  as   aggregate  for  new  concrete   elements   Sustainability  &  carbon   footpring:  High  embodied  energy.   Non-­‐renewable.  Long  Lasting   Cost:  generally  cost  effective.   Labor  dependent  for  formwork  &   pouring

Figure 70  Process  of  reinforcement  concrete   (dspace.jorum.ac.uk)

Concrete: Considerations   One  of  the  main  issues  is  that  the   concrete  is  permeable  material  but  it  is   not  completely  waterproof.  Therefore,   the  steel  bars  cannot  be  protected  from   moisture  and  oxidation  if  it  is  close  to   the  surface.  It  can  occur  both  aesthetic   and  structural  degradation  of  the   concrete.  Another  issue  is  poor  vibration   of  the  concrete  while  the  pouring  is   processing.  Bubbles  can  compromise  the   structural  performance  of  the  element   and,  in  a  worst  case  scenario  will  result   in  the  element  failing.

Figure  71  reinforcement  concrete  failing   (inhabitat.com)

Ju Hyun  Son-­‐354978   33

LOGBOOK

34

Beams   A  Beam  is  mostly  horizontal  structural   element.  A  beam  can  carry  loads  along   the  length  of  the  beam  and  transfer  the   load  to  the  columns.  A  beam  normally   can  process:   -­‐ Supported  at  both  ends  of  the   beam   -­‐ Supported  at  numerous  points   along  the  length  of  beam   -­‐ Supported  at  points  away  from   the  ends  of  the  beam   -­‐ Supported  at  only  one  end  of  the   beam

Figure 72  force  tramsfer  along  the  beam  (ching)

Figure 73  Beam  and  column  joints  (www.condor-­‐ rebar.com)

Cantilevers   A  cantilever  is  created  when  a  structural   element  is  supported  at  only  one  end.   The  function  of  a  cantilever  is:   -­‐ Carrying  loads  along  the  length  of   the  member  and  transfer  these   loads  to  the  support.   -­‐ Horizontal   -­‐ Vertical   -­‐ Angled

Figure 74  Examples  of  cantilever  (Ching)

Figure 75  Cantilever  beam  load  transfer  to  column

Ju Hyun  Son-­‐354978   34

LOGBOOK

35

IN  SITU  CONCRETE   It  has  been  poured  into  formwork  and   cured  on  the  building  site.  This  process   includes:   -­‐ Fabrication  and  assembly  of  the   formwork   -­‐ Placing  any  required   reinforcement   -­‐ Pouring   -­‐ Vibration  and  the  curing  of  the   concrete     There  is  a  limited  time  to  harden  the   concrete  to  become  unworkable  to   ensure  that  the  concrete  is  placed  in  the   proper  position  since  the  concrete  has   been  poured.  (Note:  the  air  bubbles   removed  and  the  desire  finish  applied)

Figure 76  Uses  of  IN  SITU  CONCRETE  (e-­‐learning)

Uses of  IN  SITU   In  situ  concrete  is  a  great  many   applications.  It  is  generally  used  for   structural  purposes:   -­‐ Footings   -­‐ Retaining  walls   -­‐ Bespoke  (nonstandard)     -­‐ Structural  element     Sometimes  it  is  used  as:   -­‐ Landscapes   -­‐ Swimming  pools   -­‐ Basement  walls  between  piers  or   overhead  surfaces.

Figure 77  Examples  of  insitu  concrete  uses  (e-­‐ learning)

Joints There  are  construction  joints  and   control  joints:   -­‐ Construction  joints  are  used  to   divide  the  construction  into   smaller  and  more  manageable   sections  of  work.   -­‐ Control  joints  are  required  to   absorb  the  expansions  and   contractions  that  thermal   variations  cause  and  the  long   term  tendency  of  concrete  to   shrink  over  time.  The   elongation/shrinkage  is   proportional  to  the  temperature   differential,  the  material   coefficient  and  the  dimensions  of   the  piece.   These  joints  are  potential  weak   points  and  must  ensure  that  be   detailed  appropriately,  expecially  in   terms  of  water  and  moisture  control

Figure 78insitu  concrete  joints  (www.praton.com)

Ju Hyun  Son-­‐354978   35

LOGBOOK

36

PRE-­‐CAST  CONCRETE   The  concrete  has  been  fabricated  in  a   controlled  environment  and  then   transported  to  site  for  installation  can   be  called  as  pre-­‐cast  concrete.  It  may   avoid  many  of  the  quality  control  issues   associated  with  in  situ  concrete.  These   elements  also  allow  work  on  site  to   progress  at  a  much  faster  rate.

Figure 81  uses  of  pre-­‐cast  concrete  (e-­‐learning)

Figure 80Pre-­‐cast  concrete  processing   (www.mhmarketingsalesmanagement.com419)

Figure 79  process  of  pre-­‐cast  concrete  (Ching)

Uses of  Pre-­‐cast  concrete   It  is  widely  used  in  many  different   applications  such  as:   -­‐ The  structure  of  a  building   -­‐ Bridge  or  civil  works   -­‐ Forming  part  of  the  primary   -­‐ Rarely  used  in  footings   -­‐ Common  in  retaining  walls,  walls   and  columns

Joints-­‐pre-­‐cast concrete   There  are  two  types  of  joints  for  pre-­‐cast   concrete  such  as:   -­‐ Construction  joints:  the   panel/element  nature  of  pre-­‐cast   concrete  mean  that  joints   naturally  occur  when  on  precast   element  meets  another   -­‐ Structural  joints:  the  type  and   performance  of  the  structural   connections  joining  the  precast   elements  to  each  other  and  to   other  parts  of  the  structure  are   critical  for  the  overall   performance  of  the  building.     It  depends  on  the  desired  aesthetic   outcome.

Ju Hyun  Son-­‐354978   36

LOGBOOK

Figure 83  Pre  cast  concrete  finishes  (e-­‐learning)

Figure 82  Pre  cast  concrete  panel   (gsacriteria.tpub.com)

Activity: Oval  pavilion  will  be  discussed   more  in  later  week.

Considerations  of  Pre-­‐cast  concrete   These  elements  can  be  limited  in  size   due  to  transport.  It  is  very  difficult  to   incorporate  on  site  changes.

Ju Hyun  Son-­‐354978   37

37

LOGBOOK   Glossary   1. Joist   -­‐  In  architecture  and  engineering,   a  joist  is  one  of  the  horizontal   supporting  members  that  run   between  foundations,  walls,  or   beam   to   support   a   ceiling   or   floor.   They  may  be  made  of  wood,   engineered  wood,  steel,  or   concrete.  Typically,  a  beam  is   bigger  than  a  joist  and  beams  lay   out  in  repetitive  patterns  often   support  joists.   2. Steel  decking   -­‐  A  structural  steel  deck  plate  is   stiffened  either  longitudinally  or   transversely,  or  in  both   directions.  This  allows  the  deck   both  to  directly  bear  vehicular   loads  and  to  contribute  to  the   bridge  structure’s  overall  load-­‐ bearing  behavior.   3. Span   Span  is  the  distance  between  two   intermediate  supports  for  a   structure,  e.g.  a  beam  or  a  bridge.   A  span  can  be  closed  by  a  solid   beam  or  by  a  rope.  The  first  kind

is used  for  bridges,  the  second   one  for  power  lines.   4. Girder   -­‐  A  girder  is  a  support  beam  used   in  construction.  Girders  often   have  an  I-­‐beam  cross  section  for   strength,  but  may  also  have  a  box   shape,  Z  shape  or  other  forms.   5. Concrete  plank   -­‐  is  a  precast  slab  or  pre-­‐stressed   concrete  typically  used  in  the   construction  of  floors  in  multi-­‐ storey  apartment  buildings.     6. Spacing   -­‐ In  architecture  and  structural   engineering,  a  space  frame  or   spacing  is  a  truss-­‐like,   lightweight  rigid  structure   constructed  from  interlocking   struts  in  a  geometric  pattern.   Spacing  can  be  used  to  span  large   areas  with  few  interior  supports.

Ju Hyun  Son-­‐354978   38

38

LOGBOOK

Week5

Ju Hyun  Son-­‐354978   39

39

LOGBOOK

40

SHORT  AND  LONG  COLUMNS   Columns  are  vertical  structural   members  designed  to  transfer  axial   compressive  loads.  It  can  be  divided  into   Short  and  long  column.   Short  columns:   -­‐ The  ratio  of  effective  column   length  to  the  smallest  cross   section  dimension  is  less  than   12:1   -­‐ Structurally  adequate  if  the  load   applied  to  the  column  cross   section  does  not  exceed  the   compressive  strength  of  the   material.   -­‐ Become  shorter  when  a   compressive  load  is  applied.  It   can  be  failed  by  crushing  when   the  compressive  strength  is   exceeded

Figure 84  crushed  by  compressive  strength  (e-­‐ learning)

Figure 85  illustration  of  short  column

Long column   When  the  ratio  of  effective  column   length  to  the  smallest  cross  section   dimension  is  greater  than  12:1,  it   considers  as  a  long  column.   The  characteristics  of  long  columns  are:   -­‐ Unstable  and  fail  by  buckling   -­‐ The  actual  length  is  between  the   fixed  point  at  the  top  and  bottom   of  the  column   -­‐ Column  changes  by  different   fixing  methods

Figure 86  long  column  illustration  (Ching)

Figure 87  long  column  buckling(www.civildb.com)

Ju Hyun  Son-­‐354978   40

LOGBOOK

41

Wall  systems   There  are  three  types  of  wall  systems.       1. Structural  Frames   -­‐ Concrete  frames   -­‐ Steel  frames   -­‐ Timber  frames   2. Load  bearing  walls   -­‐ Concrete   -­‐ Masonry   3. Stud  walls   -­‐ Light  gauge  steel  framing     -­‐ Timber  framing

Figure 89  Examples  of  wall  systems  (   www.neslo.com)

Figure 88  3  different  types  of  wall  system  (ching)

Structural Frames   1. Concrete  frames-­‐typically  use  a   grid  of  columns  with  concrete   beams  connecting  the  columns   together   2. Steel  frames-­‐typically  use  a  grid   of  steel  columns  connected  to   steel  girders  and  beams.   3. Timber  frame  (post  and  beam)-­‐ typically  uses  a  grid  of  timber   posts  or  poles  connected  to   timber  beams.  Bracing  of   members  are  required.

Figure 90  Examples  of  steel  frame  (   buildipedia.com)

Figure 91  Examples  of  timber  frame   (www.strandsystems.com)

Ju  Hyun  Son-­‐354978   41

LOGBOOK   Load  bearing  walls   1. Concrete   -­‐ In  situ/precast  element   -­‐ Supporting  spandrel  panels  over   and  link  into  other  strucgtural   elements   2. Reinforced  masonry   -­‐ Constructed  from  core  filled   hollow  concrete  blocks  or  grout   filled  cavity  masonry   -­‐ Bond  beams  creates  special   concrete  blocks-­‐filled  with   concrete  to  bond  the  individual   units  together   -­‐ Propping  can  be  removed  after   concrete  has  cured   -­‐ Bond  beams  can  be  used  as  steel   or  concrete  lintels   3. Solid  masonry     -­‐ Can  be  created  with  single  or   multiple  skins  of  concrete   masonry  units  or  clay  bricks   -­‐ Skins  of  masonry  joined  together   using  a  brick  or  with  metal  wall   ties  placed  within  the  mortar  bed   4. Cavity  masonry   -­‐ Walls  formed  from  2  skins  of   masonry

-­‐

-­‐

Advantage: better  thermal   performance,  better   opportunities  for  insulation   within  the  cavity,  better   waterproofing  and  the  better   opportunity  to  run  services   within  the  wall  cavity   DAMP  PROOF  COURSE/WEEP   HOLES  in  a  wall  are  indicators   that  the  wall  is  a  cavity  wall   rather  than  a  solid  wall

Figure 92  examples  of  concrete  and  reinforced   masonry  bearing  walls  (e-­‐learning

Figure 93  solid  masonry  &  cavity  masonry   examples  (ching)

Ju Hyun  Son-­‐354978   42

42

LOGBOOK

43

Stud  framing   Metal  and  timber  stud  framed  walls  use   smaller  sections  of  framing  timber  or   light  gauge  framing  steel  to  meet  the   structural  demands  of  the  construction.   -­‐ Smaller  sections:  repeated  at   smaller  intervals  and  require   restraining  along  their  lengths   with  rows  of  NOGGINGS  to   prevent  the  long  thin  members   from  buckling   -­‐ It  consists  of:  top  and  bottom   plates,  vertical  studs,  noggins,   cross  bracing  and  ply  bracing

Figure 95  ply  bracing  illustration

Brick veneer  construction     Combinations  of  1skin  of  non-­‐structural   masonry  and  1  skin  of  structural  frame   wall  are  widely  used  in  the  construction   industry.

Figure 97  Examples  of  brick  veneer  construction   (www.workspacetraining.com.au)   Figure  94  stud  framing   (www.architectionary.com)

Figure 96  Brick  veneer  construction  (e-­‐learning)

Ju Hyun  Son-­‐354978   43

LOGBOOK

44

Wood  to  Timber   Provenance   Early  wood:   -­‐ Rapid  growth  at  beginning  of   growing  season   -­‐ Thin,  large  cells:  light  colour   Late  wood:   -­‐ Slower  growth,  often  limited  by   lack  of  water   -­‐ Thick  small  cells:  darker  colour   -­‐ Gives  the  growth  ring   Growth   -­‐ One  ring  per  year   -­‐ Some  climates  may  have  more   than   -­‐ One  growth  season  per  year   -­‐ Fires  or  disease  may  produce  an   extra  ring

Figure 98  3  different  wood  type  (e-­‐learning)

Step2: place  the  balsa  wood  into  the   drawing

Activity:  Structural  concepts   Step1:  Draw  the  structure  with  1:20   scale

Figure 100  structure  drawing

Figure 102  balsa  wood  used  for  the  structural   member

Ju Hyun  Son-­‐354978   44

Figure 101  balsa  wood  used  for  the  structural   member

LOGBOOK   Step3:  cut  the  each  structural  member   and  connect  it  together  as  same  shaped   as  the  drawing

Figure 103  1:20  scaled  structural  member

Our group  had  used  super  glue  to   connect  each  structural  member,   however,  it  wasn’t  strong  enough  to   stick  together  because  the  structure  was   pretty  big.  Also,  the  balsa  wood  was  too   weak.  The  other  group  was  proper  wood   and  the  nails  to  create  the  structure   member  and  it  was  pretty  strong.

Figure 105  other  group's  structure

Figure 104  load  path  diagram  of  the  structure

Ju Hyun  Son-­‐354978   45

45

LOGBOOK   Glossary

1. Stud A  wall  stud  is  a  vertical  framing   member  in  a  building’s  wall  of   smaller  cross  section  than  a  post.   They  are  a  fundamental  element   in  building  framing.   2. Nogging   An  architectural  term,  it  refers  to   the  term  used  for  the  filling  in   between  wall  framing  in   buildings.  Also  it  is  a  horizontal   bracing  piece  used  to  give  rigidity.   3. Lintel   A  lintel  can  be  a  load-­‐bearing   building  component,  a  decorative   architectural  element,  or  a   combined  ornamented  structural   item.  It  is  often  found  over   portals,  doors,  windows,  and   fireplaces.   4. Axial  load   -­‐  is  a  force  that  is  exerted  along   the  lines  of  an  axis  of  a  straing   structural  member.  It  is  an   essential  mechanical  force  that  is   used  to  determine  an  ideal   column  in  structural  design.

5. Buckling In  a  compression  member  or   compression  portion  of  a   member,  the  load  at  which   bending  progresses  without  an   increase  in  the  load.   6. Seasoned  timber   Wood  drying  reduces  the   moisture  content  of  wood  before   its  use.

Ju Hyun  Son-­‐354978   46

46

LOGBOOK

Week6

Ju Hyun  Son-­‐354978   47

47

LOGBOOK

48

Trusses   In  engineering  process,  a  truss  is  a   structure  comprising  five  or  more   triangular  units  constructed  with   straight  members  whose  ends  are   connected  at  joints  referred  to  as  nodes.   External  forces  and  reactions  to  those   forces  are  considered  to  act  only  at  the   nodes  and  result  in  forces  in  the   members  which  are  either  tensile  or   compressive  forces.  Moments  are   explicitly  excluded  because,  and  only   because,  all  the  joints  in  a  truss  are   treated  as  revolute.

Figure 107  Examples  of  timber  trusses   (www.eldortrusses.com)\

Roof Systems   There  are  two  roof  types  such  as  flat   roofs  and  pitched  and  sloping  roofs.   Flat  roofs  are  normally  consists  of   concrete  slabs,  flat  trusses/  space   frames,  beams  &  decking,  joinst  &   decking  and  roof  sheet.  To  be  pitched   roof  the  angle  should  be  greater  than   3degress.  It  consists  of  rafters,  beams  &   purlins  and  trusses.     Concrete  roofs  are  generally  flat  plates   of  reinforced  concrete  or  precast  slabs   with  a  topping  of  concrete.  The  top

surface is  sloped  towards  drainage   points  and  the  entire  roof  surface   finished  with  applied  waterproof   membrane.     1. Flat   -­‐ Structural  steel  roofs  consist   of  a  combination  of  primary   and  secondary  roof  beams  for   heavier  roof  finishes  such  as   metal  deck/concrete;  or  roof   beams  and  purlins  for  lighter   sheet  metal  roofing.   2. Sloping   -­‐ Structural  steel  roofs  consist   of  roof  beams  and  purlins  and   lighter  sheet  metal  roofing   3. Portal  frames   -­‐ Consist  of  a  series  of  braced   rigid  frames  (two  columns   and  a  beam)  with  purlins  for   the  roof  and  girts  for  the   walls.   -­‐ The  walls  and  roof  are  usually   finished  with  sheet  metal.           Ju  Hyun  Son-­‐354978   48

LOGBOOK

49

-­‐ -­‐

Figure 108Examples  of  flat  roof   (alliedroofing.info)

Figure  110  3d  drawing  of  frames  of  the  roof

Figure 109  Examples  of  sloping  roof  construction   (crate-­‐gate.com)

3D plate  type  structures  that   are  long  spanning  in  two   directions   Linear  steel  sections  of   various  cross  section  types   are  welded,  bolted  or   threaded  together  to  form   matrix-­‐like  structures.

Trussed roofs   -­‐ constructed  from  a  series  of   open  web  type  steel  or  timber   elements   -­‐ manufactured  from  steel  or   timber  components   -­‐ fixed  together  to  form   efficient  elements  able  to   span  long  distances   Space  frames

Figure 111  welded  and  bolted  connections

Figure 112  Examples  of  space  frame   (commons.wikimedia.org)

Ju Hyun  Son-­‐354978   49

LOGBOOK

50

Light  framed  roofs   There  are  two  types  of  light  framed   roofs  such  as  gable  roofs  and  hip  roofs   Gable  roofs:   -­‐ Characterized  by  a  vertical,   triangular  section  of  wall  at   one  or  both  ends  of  the  roof.   -­‐ Consists  of  common  rafters,   ridge  beams  and  ceiling  joists.     -­‐ Timber,  cold-­‐formed  steel   sections  are  used   Hip  roofs:   -­‐ Characterized  by  a  vertical,   triangular  section  of  wall  at   one  or  both  ends  of  the  roof   -­‐ Consists  of  common  rafters,   hip  rafters,  valley  rafters,  jack   rafters,  ridge  beams  and   ceiling  joists.   -­‐ Timber-­‐cold-­‐formed  steel   sections  are  used.

Figure 114  Examples  of  hip  roofs   (www.tecotested.com)

Metal -­‐

-­‐

-­‐ -­‐

Figure 113  Gable  roofs  (Ching)

Metal atoms  as  being  like  ball   bearings  to  understand  why   metals  are  malleable  and   ductile  and  not  brittle   Subject  to  any  stress  the   metal  atoms  slide  past  each   other  and  the  mobile   electrons  rearrange   Packed  together  in  layers  and   these  layers  stacked  one  upon   another   copper  atoms  can  easily  slide   over  or  past  one  another   hence  copper  is  malleable  and   ductile

Figure 115  Examples  of  metal  (wiki)

Figure 116metal  atom  sketches

Ju Hyun  Son-­‐354978   50

LOGBOOK

51

Metal-­‐types   -­‐ Ferrous:  iron  is  the  4th  most   common  element  in  the  earth   (relatively  cheap)   -­‐ Non-­‐Ferrous:  all  other  metals   generally  more  expensive   (less  common).  Less  likely  to   react  with  oxygen  and   superior  working  qualities   -­‐ Alloys:  combinations  of  two   or  more  metals

-­‐

-­‐

-­‐

-­‐

Figure 118  different  metal  shapes  for  construction   (www.spartanmechanics.net)

Figure 117  different  metal  types  and   used(www.handsmetals.co.uk)

Metal-­‐properties -­‐ Hardness:  varied.  Depending   on  type   -­‐ Fragility:  low.  Generally  will   not  shatter  or  break   -­‐ Ductility:  high   -­‐ Flexibility/plasticity:  med  to   high.  Flexibility  and  high   plasticity  while  heated   -­‐ Porosity/  permeability:   generally  impermeable/  used   for  guttering,  flashing  etc   -­‐ Density:  high  (3times  greater   than  water  for  aluminium  to

-­‐

19times greater  than  water   for  gold   Conductivity:  very  good   conductors  of  heat  and   electricity.  Can  be   advantage/disadvantage   Durability/  life  span:  can  very   durable.  Varies  depending  on   type,  treatment,  finishing  and   fixing   Reusability/  recyclability:   high   Sustainability  &  carbon   footprint:  very  high  embodied   energy,  recyclable  and   renewable  if  correctly   managed   Cost:  generally  cost  effective

Ju Hyun  Son-­‐354978   51

LOGBOOK

52

Metal  consideration   -­‐ React  with  other  metals  by   giving  up/taking  on  another   metal’s  ions.   -­‐ Galvanic  series  lists  the   metals  in  order  of  their   tendency  to  give  up  ions  to   other  metals  and  corrode   -­‐ Ion  transfer  caused  by   contacting  two  different   metals

Figure 119  different  type  of  metals  corrosion   order  (e-­‐learning)

-­‐ -­‐

-­‐

Water related  damage   Oxidation  and  corrosion:  ions   can  react  with  oxygen   forming  an  oxide  which  can   sometimes  protects  the  metal   but  in  other  instances  it  can   result  in  the  corrosion  of  the   metal.  Aluminum  oxidizes  to   form  a  protective  layer.  Rusty   steel  is  an  example  of   undesirable  corrosion.   Protect  against  water  to   reduce  corrosion:     1. Avoid  prolonged  exposure   to  moisture   2. Seal  against  moisture   3. Chemical  treatment.

Figure 120  metal  corrosion   (www.uotechnology.edu.iq)

Ferrous metals   Iron  alloys   -­‐ Steel  is  an  alloy  of  iron  with   carbon  being  the  primary   additional  alloy  element   -­‐ Including  manganese,   chromium,  boron  and   titanium  among  others   -­‐ Different  proportions  and   combinations  result  in   different  types  of  steel   Steel  property   -­‐ Very  strong  and  resistant  to   fracture   -­‐ Transfer  heat  and  electricity   -­‐ Can  be  formed  into  many   different  shapes   -­‐ Long  lasting  and  resistant  to   wear

Figure  121  iron  steel  (e-­‐learning)

Ju Hyun  Son-­‐354978   52

LOGBOOK

53

Steel-­‐types  and  uses   1. Framing   -­‐ Columns,  beams,  purlins,  stud   frames   -­‐ Hot  rolled  steel:  elements  are   shaped  while  metal  is  hot.   More  materials  is  required  for   this  type  or  process   -­‐ Cold  formed  steel:  elements   are  folded  from  sheets  that   have  been  previously   produced  and  cooled  down.   Used  as  secondary  structure   (protected  by  hot  dip  process:   galvanization)-­‐joints  are   bolted  or  screwed   -­‐ Reinforcing  bars:  due  to  its   good  tensile  resistance,  steel   is  used  in  conjunction  with   concrete  to  produce   reinforced  concrete.   Deformations  on  the  bars   assists  bonding  with  the   concrete   2. Sheeting   -­‐ Cladding  and  roofing:   protected  from  weather   exposure  (paint,  enameled   finishes,  galvanization)

3. Stainless steel  alloys   -­‐ Chromium  is  the  main   alloying  element   -­‐ Alloy  is  miled  into  coils,   sheets,  plates,  bars,  wire,  and   tubing   -­‐ Generally  used  harsh   environments  or  where   specific  inert  finishes  are   required   -­‐ Wall  ties  in  cavity  walls  are   often  made  from  stainless   steel  due  to  its  corrosion   resistance   -­‐ Very  rarely  used  as  primary   structure  due  to  cost

Figure 122  stainless  steel  (www.thomasnet.com)

Figure 123  different  shapes  of  steel   (www.stainlesssteelblog.com)

Figure   124  steel  framed  structure   (chinaprefabhouse.en.made-­‐in-­‐china.com)

Ju  Hyun  Son-­‐354978   53

LOGBOOK

54

Nonferrous  metals   Aluminium   -­‐ Very  light  compared  to  other   metals   -­‐ Non-­‐magnetic  and  non-­‐ sparking   -­‐ Easily  formed,  machined  and   cost   -­‐ Pure  aluminium  is  soft  and   lacks  strength,  but  alloys  with   small  amount  copper,   magnesium,  silicon,   manganese,  and  other   elements  have  very  useful   properties

-­‐ Copper   -­‐ -­‐ -­‐ Uses   Figure  126  Aluminium  atom  shape

Uses

-­‐

-­‐

Figure 125  Aluminium  metal  property   (www.constellium.com)

-­‐ -­‐

Extruded sections  are   common  for  window  frames   and  other  glazed  structures   such  as  balustrades/   handrails   Door  handles  and  catches  for   windows   Rolled  aluminium  is  used  for   cladding  panels   Reacts  with  air  creating  a   very  fine  layer  of  oxide  that   keeps  it  from  further

-­‐ -­‐ -­‐

oxidation giving  it  that  matte   natural  finish   Common  treatments  are   power  coating  and   anodisation   Reddish  with  a  bright  metallic   lustre     Very  malleable  and  ductile   Good  conductor  of  heat  and   electricity   Traditionally  roofing  material   Widely  used  for  hot  and  cold   domestic  water  and  heating   pipework   Electrical  cabling

Figure 127  copper  cable  (39clues.wikia.com)

Ju Hyun  Son-­‐354978   54

LOGBOOK

55

Zinc

-­‐ -­‐ -­‐

Present use  in  construction:   plating  thin  layers  of  zinc  on   to  iron  or  steel  is  known  as   galvanizing  and  helps  to   protect  the  iron  from   corrosion  (roofing  material).     Cladding  material  for  both   roofs  and  walls   Brittle  at  ambient   temperatures  but  is  malleable   at  100to  150  degress.     Reasonable  conductor  of   electricity

Tin -­‐

-­‐

-­‐

-­‐

Figure 128  zinc  used  construction   (www.commodityonline.com)

Frequently used  for  roofs,   cornices,  tank  linings  and   flashing  strips  for   waterproofing   Less  commonly  used  to  day   because  it  is  now  known  to  be   toxic  to  humans.  It  occurs   high  enough  doses,  lead  can   be  toxic.   A  bluish-­‐white  lustrous  metal.   Very  soft,  highly  malleable,   ductile,  and  a  relatively  poor   conductor  of  electicity   Very  resistant  to  corrosion   but  tarnishes  upon  exposure   to  air

-­‐ -­‐

-­‐

-­‐

-­‐

Very rare  today   Used  in  building  for  lining   lead  pipes  and  occasionally  as   a  protective  covering  for  iron   plates  and  for  small  gas   pipes/tubing   Tin  is  a  silvery-­‐white  metal,  is   malleable,  somewhat  ductile,   and  has  a  highly  crystalline   structure   Resists,  distilled,  sea,  and  soft   top  water,  but  is  attacked  by   strong  acids,  alkalis,  and  acid   salts   Oxygen  in  solution   accelerates  the  attack

Figure 130  Tin  material   (www.proactiveinvestors.com.au)

Ju Hyun  Son-­‐354978   55

LOGBOOK

56

Titanium   -­‐ Used  in  strong  light-­‐weight   alloys   -­‐ Making  an  attractive  and   durable  cladding  material,   though  it  is  often   prohibitively  expensive   -­‐ Well  known  for  its  excellent   corrosion  resistance   -­‐ High  strength  to  weight  ratio   -­‐ Light,  strong,  easily  fabricated   metal  with  low  density

Bronze -­‐ -­‐

-­‐

Brass Used  for  bearings,  clips,   electrical  connectors  and   springs   Often  used  for  external   applications,  prior  to  the   discovery  of  aluminium,  due   to  its  toughness  and   resistance  to  corrosion   Corrosion  resistant,  harder   and  can  be  used  in   engineering  and  marine   applications

-­‐

-­‐ -­‐ -­‐

Tough and  typically  used  in   elements  where  friction  is   required  such  as  locks,  gears,   screws,  valves   Commonly  cound  in  fittings   such  as  knobs,  lamps,  taps   Malleable  and  has  a  relatively   low  melting  point  and  is  easy   to  cast   Not  ferromagnetic

Figure 133  Brass  material  (brass-­‐turned-­‐ parts.brass-­‐cable-­‐glands.co.uk)   Figure  131  Titanium  material   (www.titaniumjoe.com)

Figure  132  Bronze  I-­‐beam  (life.time.com)

Ju Hyun  Son-­‐354978   56

LOGBOOK   Activity:  continue  from  week5.  We  have   actually  done  everything  in  week5.     Glossary   1. Rafter   -­‐  A  rafter  is  one  of  a  series  of   sloped  structural  members   (beams)  that  extend  from  the   ridge  or  hip  to  the  wall  plate,   downslope  perimeter  or  eave,   and  that  are  designed  to  support   the  roof  deck  and  its  associated   loads.   2. Purlin   -­‐  A  purlin  is  any  longitudinal   horizontal,  structural  member  in   a  roof  except  a  type  of  framing   with  what  is  called  a  crown  plate.     3. Cantilever   -­‐  A  cantilever  is  a  beam  anchored   at  only  one  end.  The  beam  carries   the  load  to  the  support  where  it   is  forced  against  by  a  moment   and  shear  stress.  It  allows  for   overhanging  structures  without   external  bracing.  It  can  also  be   constructed  with  trusses  or  slabs.   4. Portal  frame

5.

6.

7. 8.

-­‐ is  a  method  of  building  and   designing  structures,  primarily   using  steel  or  stee-­‐reinforced   precast  concrete  although  they   can  also  be  constructed  using   laminated  timber  such  as  glulam.   The  connections  between  the   columns  and  the  rafters  are   designed  to  be  moment-­‐resistant,   i.e.  they  can  carry  bending  forces.   Eave   -­‐  is  the  bottom  edge  of  a  roof.  The   eaves  normally  project  beyond   the  side  of  the  building  forming   an  overhang  to  throw  water   clear.   Alloy   -­‐  is  a  mixture  or  solid  solution   composed  of  a  metal  and  another   element.   Soffit   -­‐  formed  as  a  ceiling.   Top  chord   -­‐  is  a  truss.

Ju Hyun  Son-­‐354978   57

57

Juhyun son 354978a01 final submition part1