Page 41

NEWS

EPRI tests integration of plug-in vehicles to utilities’ power needs

Eight international car manufacturing firms and 15 US utilities took part in the first demonstration of an open software platform in October, to allow the batteries in plug-in electric vehicles to respond to the grid’s supply and demand needs. The test, which was held in California, is a part of a project, led by the Electric Power Research Institute (EPRI) and Sumitomo Electric Industries, to develop a central software platform that will allow PEVs to collectively respond to requests from utilities to help manage the high demand on power grids at peak times. This demonstration represents a major milestone toward implementing a common interface communications architecture that meets the needs of utilities and equipment manufacturers while simultaneously benefiting electric vehicle owners and electricity users, says Dan Bowermaster, manager of EPRI’s Electric Transportation Program. Seven different plug-in vehicles — a Ford Focus Electric, a GM Cadillac ELR, a BMW i3, a Mercedes-Benz Smart ED, a Toyota Prius Plug-In, a Honda Fit EV and a Chrysler RAM PHEV — took part in the demo,

www.batteriesinternational.com

which lasted one hour, to show the cars’ ability to accept a grid signal from a single utility for a demand response exercise. Each car simultaneously took a signal from the Sacramento Municipal Utility District, to stop and then resume charging. The vehicles at the demonstration reflect the range of communications technologies that can be used to connect electric cars with the smart grid, such as wired communications through the charging plug and telematics/wireless communications through a cellular modem in the vehicle. The OEM central server architecture has been designed to accommodate the different communications, to allow for the widest participation between vehicles and the grid. The ability to integrate charging with the nextgeneration grid is a key challenge we need to meet, says Doug Kim, director of Advanced Technology at Southern California Edison, which was one of the project’s utility participants. The adoption of standardized interfaces could provide maximum ease and flexibility for PEV owners. Some vehicles required additional software controls for communication, but the hope is, if the pilot is successful, these controls will be built in to future models. The secret sauce to the OEM central server is that it is able to act as a single gateway interface to both the wired and wireless connections to the vehicles. Some of the demo vehicles are in production today, some are near-production prototypes, says Ford’s Dave McCreadie who is leading the car maker’s collaboration in the project.

The successful rollout of the EPRI’s open software EV-to-grid platform depends on consumers seeing the benefit financially. Many of our PEV customers are environmentally conscious, so the idea of being able to support the grid in a way that will create less waste will be a selling point to some, but others may need a different incentive. “Our first challenge is to continue to expand the use of PEVs — we are on a good path with more than 250,000 being driven in the US, “ says McCreadie. The project was launched in mid-2014. The car makers are: BMW, Chrysler, Ford, General Motors, Honda Mercedes-Benz, Mitsubishi and Toyota. The utilities were Austin Energy, CenterPoint Energy, Commonwealth Edison, Con Edison, CPS Energy, DTE Energy, Duke Energy, Manitoba Hydro, Northeast Utilities, Pacific Gas & Electric, PJM Interconnection, Sacramento Municipal, San Diego Gas & Electric, Southern Company, Southern California Edison, and the Tennessee Valley Authority. Scaling up the demonstration will require new elements to be considered that are not part of the initial technical proof-of-concept shown this October. They include geographic diversity of vehicles and the utilities that serve these areas, as not all utilities have the communications capability to interface with the OEM central server. When this is rolled out to electric car customers, there will need to be systems in place for billing, or settlements, and exchange of information. Data privacy and security will also be of importance. For Ford, the next steps

are testing the programme to ensure it is robust and expand the rollout with willing plug-in car owners, while adding more functionality and capability to the basic platform architecture. In 2015 other use cases that will potentially be added include real-time pricing, renewable energy signals, aggregation and facility energy management system integration. The EPRI-led programme, at this stage, is only for the automakers and utilities that have agreed to take part, though all PEV automakers can join. Vehicles from manufacturers that are not participating in the OEM central server project may still have the ability to interact with the smart grid, depending on their communication method and the utility territory they are in. Some forms of smart charging can be accomplished through special charging stations. The process for managing PEV charging will be transparent to the vehicle owner. Vehicle owners maintain ultimate control and would have the option to participate in a demand response and load management programme managed either by the utility or by a third party, or opt out altogether. In the next development phase, the EPRI team will be integrating the PEV communications platform with residential, fleet, and commercial facility energy management systems. This will enable testing of its ability to manage local control scenarios such as demand management for commercial and industrial consumers. Additionally, it will enable interface communications for charging stations and commercial demand response facilitators.

Batteries International • Fall 2014 • 39

Batteries International — issue 93  

UPS embracing the latest technology — The global implications for energy storage of the latest UK TSO report — The changing rules on transpo...

Batteries International — issue 93  

UPS embracing the latest technology — The global implications for energy storage of the latest UK TSO report — The changing rules on transpo...