Page 68

Matemática para divertirse

Martin Gardner

Esto puede decirse a causa de otro interesante teorema acerca de las curvas simples cerradas. Todas las regiones de "adentro" de esas curvas están separadas entre sí por un número par de líneas. Lo mismo es cierto en el caso de todas las regiones de "afuera". Y cualquier región de adentro está separada de cualquier región de afuera por un número impar de líneas. El cero se considera número par, de modo que si no hay líneas entre dos regiones, por cierto que éstas serán parte del mismo "lado", y nuestro teorema seguirá siendo válido. Cuando pasamos de cualquier parte de la región A a cualquier parte de la región B, por cualquier camino, cruzamos un número par de líneas. En la figura 4 se muestra uno de esos caminos por medio de una línea de puntos. Como ves, cruza cuatro líneas, un número par. De modo que podemos decir con certeza que, sin importar cómo sea el resto de la línea, ¡la región B también está adentro!

68

MATEMATICA DIVERTIDA  

LIBRO DE MATEMATICA DIVERTIDA

MATEMATICA DIVERTIDA  

LIBRO DE MATEMATICA DIVERTIDA

Advertisement