Page 26

Clinical Arrhythmias 51. K  ozhevnikov DO, Yamamoto K, Robotis D, et al. Electrophysiological mechanism of enhanced susceptibility of hypertrophied heart to acquired torsade de pointes arrhythmias. Circulation 2002;105:1128–34. PMID: 11877367. 52. Murakawa Y, Sezaki K, Yamashita T, et al. Three-dimensional activation sequence of cesium-induced ventricular arrhythmias. Am J Physiol Circ Physiol 1997;273:H1377–85. https:// doi.org/10.1152/ajpheart.1997.273.3.H1377; PMID: 9321828. 53. Schreiner KD, Voss F, Senges JC, et al. Tridimensional activation patterns of acquired torsade-de-pointes tachycardias in dogs with chronic AV-block. Basic Res Cardiol 2004;99:288–98. https://doi.org/10.1007/s00395-004-0469-4; PMID: 15221347. 54. Senges JC, Sterns LD, Freigang KD, et al. Cesium chloride induced ventricular arrhythmias in dogs: three-dimensional activation patterns and their relation to the cesium dose applied. Basic Res Cardiol 2000;95:152–62. PMID: 10826508. 55. Kim TY, Kunitomo Y, Pfeiffer Z, et al. Complex excitation dynamics underlie polymorphic ventricular tachycardia in a transgenic rabbit model of long QT syndrome type 1. Heart Rhythm 2015;12:220–8. https://doi.org/10.1016/j. hrthm.2014.10.003; PMID: 25285647. 56. Dunnink A, Stams TRG, Bossu A, et al. Torsade de pointes arrhythmias arise at the site of maximal heterogeneity of repolarization in the chronic complete atrioventricular block dog. Europace 2017;19:858–65. https://doi.org/10.1093/ europace/euw087; PMID: 28525920. 57. Akar FG, Yan GX, Antzelevitch C, et al. Unique topographical distribution of M Cells underlies reentrant mechanism of torsade de pointes in the long-QT syndrome. Circulation 2002;105:1247–53. PMID: 11889021. 58. Boulaksil M, Jungschleger JG, Antoons G, et al. Drug-induced torsade de pointes arrhythmias in the chronic AV block dog are perpetuated by focal activity. Circ Arrhythmia Electrophysiol 2011;4:566–76. https://doi.org/10.1161/CIRCEP.110.958991; PMID: 21622813.

172

59. V  andersickel N, Bossu A, De Neve J, et al. Shortlasting episodes of torsade de pointes in the chronic atrioventricular block dog model have a focal mechanism, while longer-lasting episodes are maintained by re-entry. JACC Clin Electrophysiol 2017;3. https://doi.org/10.1016/j. jacep.2017.06.016; PMID: 29759839. 60. Hinterseer M, Thomsen MB, Beckmann BM, et al. Beat-tobeat variability of QT intervals is increased in patients with drug-induced long-QT syndrome: a case control pilot study. Eur Heart J 2008;29:185–90. https://doi.org/10.1093/eurheartj/ ehm586; PMID: 18156612. 61. Hinterseer M, Beckmann BM, Thomsen MB, et al. Relation of increased short-term variability of QT interval to congenital long-QT syndrome. Am J Cardiol 2009;103:1244–8. https://doi. org/10.1016/j.amjcard.2009.01.011; PMID: 19406266. 62. Ritsema van Eck HJ, Broeyer FJ, van Herpen G, et al. Shortterm QT variability: a marker for reduced repolarization reserve in anthracyclin therapy. Computers in Cardiology 2009;585–8. 63. Hinterseer M, Beckmann BM, Thomsen MB, et al. Usefulness of short-term variability of QT intervals as a predictor for electrical remodeling and proarrhythmia in patients with nonischemic heart failure. Am J Cardiol 2010;106:216–20. https://doi. org/10.1016/j.amjcard.2010.02.033; PMID: 20599006. 64. Lengyel C, Orosz A, Hegyi P, et al. Increased short-term variability of the QT interval in professional soccer players: possible implications for arrhythmia prediction. PLoS One 2011;6: e18751. https://doi.org/10.1371/journal.pone.001875; PMID: 21526208. 65. Tereshchenko LG, Fetics BJ, Domitrovich PP, et al. Prediction of ventricular tachyarrhythmias by intracardiac repolarization variability analysis. Circ Arrhythmia Electrophysiol 2009;2:276–84. https://doi.org/10.1161/CIRCEP.108.829440; PMID: 19808478 66. Paz O, Zhou X, Gillberg J, et al. Detection of T-wave alternans using an implantable cardioverter-defibrillator. Heart Rhythm 2006;3:791–7. https://doi.org/10.1016/j.hrthm.2006.03.022;

PMID: 16818208. 67. S  andhu RK, Costantini O, Cummings JE, et al. Intracardiac alternans compared to surface T-wave alternans as a predictor of ventricular arrhythmias in humans. Heart Rhythm 2008;5:1003–8. https://doi.org/10.1016/j.hrthm.2008.04.003; PMID: 18598955. 68. Bossu A, Houtman MJC, Meijborg VMF, et al. Selective late sodium current inhibitor GS-458967 suppresses torsades de pointes by mostly affecting perpetuation but not initiation of the arrhythmia. Br J Pharmacol 2018;175:2470–82. https://doi. org/10.1111/bph.14217; PMID: 29582428. 69. Ji Y, Varkevisser R, Opacic D, et al. The inward rectifier current inhibitor PA-6 terminates atrial fibrillation and does not cause ventricular arrhythmias in goat and dog models. Br J Pharmacol 2017;174:2576–90. https://doi.org/10.1111/bph.13869; PMID: 28542844. 70. Varkevisser R, van der Heyden MA, Tieland RG, et al. Vernakalant is devoid of pro-arrhythmic effects in the complete AV block dog model. Eur J Pharmacol 2013;720: 49–54. https://doi.org/10.1016/j.ejphar.2013.10.054; PMID: 24211677. 71. Bourgonje VJA, Schoenmakers M, Beekman JD, et al. Relevance of calmodulin/CaMKII activation for arrhythmogenesis in the AV block dog. Heart Rhythm 2012;9:1875–1883. https://doi.org/10.1016/j. hrthm.2012.07.023; PMID: 22846339. 72. Stams TR, Oros A, van der Nagel R, et al. Effects of K201 on repolarization and arrhythmogenesis in anesthetized chronic atrioventricular block dogs susceptible to dofetilide-induced torsade de pointes. Eur J Pharmacol 2011;672:126–34. https:// doi.org/10.1016/j.ejphar.2011.09.180; PMID: 22001562. 73. Oros A, Houtman MJ, Neco P, et al. Robust anti-arrhythmic efficacy of verapamil and flunarizine against dofetilide-induced TdP arrhythmias is based upon a shared and a different mode of action. Br J Pharmacol 2010;161:162–75. https://doi. org/10.1111/j.1476-5381.2010.00883.x; PMID: 20718748.

ARRHYTHMIA & ELECTROPHYSIOLOGY REVIEW

Profile for Radcliffe Cardiology

AER 8.3  

Arrhythmia & Electrophysiology Review Volume 8 Issue 3 Autumn 2019

AER 8.3  

Arrhythmia & Electrophysiology Review Volume 8 Issue 3 Autumn 2019