Chapter 2: Quadratic and Other Special Functions Exercises 2.1 __________________________________________________________________ 1.
2 x2 3 x2 2 x 4
9.
x2 2 x 1 0 2.
x2 2 x 5 2 2 x2 3x 2 2 x 3 0
3.
( y 1)( y 2) 4 y2 3 y 2 4 y2 3 y 2 0
4.
5.
x 2 4 x 12 0 x 2 6 x 2 x 12 0 x( x 6) 2( x 6) 0 ( x 6)( x 2) 0 x 6 0 or x 2 0 Solution: x = -2, 6 6.
x2 x 0 x( x 1) 0 Solution: x = 0, 1 Never divide by a variable. A root is lost if you divide. 10. t 2 4t 3t 2 0 2t 2 4t
0 2t (t 2) 2t 0 or t 2 0 Solution: t = 0, –2
( z 1)( z 3) 1 z2 4z 2 0
x 2 4 x 12
x2 11x 10 x 2 11x 10 0 x 2 10 x x 10 0 ( x 10)( x 1) 0 x 10 0 or x 1 0 Solution: x = 1, 10
7.
9 4 x2 0 (3 2 x)(3 2 x) 0 3 2 x 0 or 3 2 x 0 3 3 Solution: x , 2 2
8.
25 x 2 16 0 (5 x 4)(5 x 4) 0 5 x 4 0 or 5 x 4 0 4 4 Solution: x , 5 5
x x2
11.
4t 2 4t 1 0 (2t 1)(2t 1) 0 2t 1 0 1 Solution: t 2
12. 49 z 2 14 z 1 0 (7 z 1)(7 z 1) 0
7z 1 0 7 z 1 1 Solution: z 7 13. a. x2 4 x 4 0 a = 1, b = –4, c = –4 (4) (4)2 4(1)(4) x 2(1)
4 32 4 4 2 22 2 2 2 b. Since 2 1.414, the solutions are approximately 4.83, –0.83. c. x2 6 x 7 0 a = 1, b = –6, c = 7
6 36 28 2 6 8 62 2 3 2 2 2 2 1.414, the solutions are approximately 4.83, –0.83. x
©2016 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 94