2009

CHARACTERIZATION OF A WET GAS USING TWO STAGE SEPARATION

CONTENTS

1. CHARACTERIZATION OF A WET GAS USING TWO STAGE SEPARATION 3 1.1 PROGRAM HELP ...................................................................................... 3 1.2 INPUTDATA ............................................................................................... 4 1.3 OUTPUTDATA ........................................................................................... 4 ATTACHMENTS ...................................................................................................... 5

2

1. CHARACTERIZATION OF A WET GAS USING TWO STAGE SEPARATION

1.1

PROGRAM HELP

The following is the program help for using the MATLAB program called: septank_compositions, conducted by the author of this document JOHN MR. The program can be used for recombination problems based on the composition of the fluid separator tank, regarding to condensate and wet gas.

% SYNTAX: %[components,zi]=septank_compositions(components,compositions,RGCs,RGCt, Tt,APIc,Tr,Pr,answ); % PARAMETERS: % -components is a cell array containing components´ names, f.e.: % components={'N2', 'CH4'}. % -compositions is a numeric matrix containing components´ compositions % in order: [yis;yit;xit]. % -RGCs is Relationship Gas-Condensed from separator. % -RGCt is Relationship Gas-Condensed from tank. % -Tt is tank´ temperature. % -APIc is tank condensed´ API gravity. % -Tr is reservoir temperature. % -Pr is reservoir pressure. % -answ is a choosing number. Type: answ~=0 if there isn´t any plus % component, answ=1 if there exists some plus component. % -weightcomponent is a vector cell array containing weight component´ characterization % in order:{'Name',MFgsep,MFgtank,MFctank,MWctank,MWcgsep,SGcgsep} % RESULTS: % Basis: 1lbmol condensed from tank. % AUTHOR: % JOHN MR or Per7, COLOMBIA, 2009. % Remind us to: "The Great Leader".

3

1.2

INPUTDATA

Los datos de entrada son los siguientes: components={'C1','C2','C3','i-C4','C4','i-C5','C5','C6'}; compositions=[0.8943 0.0518 0.0313 0.0043 0.0103 0.0028 0.0032 0.0018 ;0.4615 0.1218 0.1845 0.0373 0.1020 0.0327 0.0384 0.0206; 0.0026 0.0042 0.0234 0.0134 0.0499 .0424 .0629 0.1244 ]; RGCs=170516; RGCt=492; Tt=70; APIc=64.7; Tr=200; Pr=2800; answ=1; weightcomponent= {'C7+',0.0002, 0.0012, 0.6768, 111,108,0.754 }; 1.3

OUTPUTDATA

En las siguientes páginas anexas se muestran los datos generados en el Matlab Command, los cuales son presentados ordenadamente. Allí se muestran: la composición del gas condensado zi, el factor volumétrico del gas condensado Bcg, el GPM del gas condensado y la presión de rocío retrógrada del gas condensado Pdew.

4

ATTACHMENTS

>> components={'C1','C2','C3','i-C4','C4','i-C5','C5','C6'}; compositions=[0.8943 0.0518 0.0313 0.0043 0.0103 0.0028 0.0032 0.0018 ;0.4615 0.1218 0.1845 0.0373 0.1020 0.0327 0.0384 0.0206; 0.0026 0.0042 0.0234 0.0134 0.0499 .0424 .0629 0.1244 ]; RGCs=170516; RGCt=492; Tt=70; APIc=64.7; Tr=200; Pr=2800; answ=1; >> [components,zi]=septank_compositions(components,compositions,RGCs,RGCt,Tt,APIc,Tr,Pr,answ) Type weightcomponent containing separator plus component info. weightcomponent= {'C7+',0.0002, 0.0012, 0.6768, 111,108,0.754 }; Plus Component: Name MFgsep MFgtank MFctank MWctank MWcgsep SGcgsep C7+ 0.0002 0.0012 0.6768 111 108 0.754 APIc(60ºF) calculated By Rajan´s Fit: T>45ºF APIc(60ºF)= 63.8211 Condensed´ Density (60ºF)(lb/ft^3)= 45.1838 By Kay´s Mixture Rule: MWc= 98.322 a= 174.1424lbmolgs/lbmolct b= 0.50246lbmolgt/lbmolct c= 1lbmolct/lbmolct d= 175.6449lbmolcgr/lbmolct Comp Ci MWci MFctank xit xit*MWci MFgsep yis a*yis(lbmolgis/lbmolct C1 16.043 0.0026 0.0417118 0.8943 155.7356 C2 30.07 0.0042 0.126294 0.0518 9.020578 C3 44.097 0.0234 1.03187 0.0313 5.450658 i-C4 58.124 0.0134 0.778862 0.0043 0.7488125 C4 58.124 0.0499 2.90039 0.0103 1.793667 i-C5 72.151 0.0424 3.0592 0.0028 0.4875988 C5 72.151 0.0629 4.5383 0.0032 0.5572558 C6 86.178 0.1244 10.7205 0.0018 0.3134564 C7+ 111 0.6768 75.1248 0.0002 0.03482849 Comp Ci MFgtank yit b*yit(lbmolgit/lbmolct lbmolcgir/lbmolct zi LiqDencgir(lb/gal) C1 0.4615 0.23189 155.9701 0.88799 2.5 C2 0.1218 0.0612 9.085978 0.051729 2.97 C3 0.1845 0.092705 5.566763 0.031693 4.231 i-C4 0.0373 0.018742 0.7809544 0.0044462 4.694 C4 0.102 0.051251 1.894818 0.010788 4.87 i-C5 0.0327 0.016431 0.5464294 0.003111 5.206 C5 0.0384 0.019295 0.6394504 0.0036406 5.261 C6 0.0206 0.010351 0.4482071 0.0025518 5.536 C7+ 0.0012 0.00060296 0.7122314 0.004055 6.2884 Some Condensed Gas´ Properties: SWcgsep= 0.66394 Meehan´s Method: a) Correlation By Brown; Katz; Oberfell; Alden. Hydrocarbons´ Specific Gravity>=0.55 SWeightHC= 0.66394 b) Hydrocarbons´ Pseudoproperties: By Standing: Condensed Gas: scPHC= 666.781psia scTHC= -85.0874ºF c) Mixture´ Pseudoproperties (Using Standing´s fit): scPM= 666.781psia scTM= -85.0874ºF d) Wichert-Aziz´ Method:

scPM´= 666.781psia scTM´= -85.0874ºF Temperature(ºF) Pseudoreduced Temperature 200 1.7611 Pressure(psia) Pseudoreduced Pressure 2800 4.1993 Dranchuk-AbouKassem´s Method: abserror=0.307%: 0.2<=srP<=30.0 and 1.0<srT<=3.0, srP<1.0 and 0.7<srT<=1.0; Method unacceptable over srT=1.0 and srP>=1.0 z= 0.88703 Bcg= 181.0312BR/BS Finding GPM: GPM = 1.714gal/MPCS. NOTE: Condensation: C3:80% and weighter:100%. Nemeth-Kennedy´s Correlation Valid for: Pd=[1270,10790]psia, T=[500,780]ºR, MWC7+=[106,235] Valid for: SGC7+=[0.7330,0.8681]. Avererror=7.4% Pdew= 1780.7398psia CALCULATIONS FINISHED SUCCESFULLY Remind us to: "The Great Leader". components = 'C1'

'C2'

'C3'

'i-C4'

'C4'

'i-C5'

'C5'

'C6'

'C7+'

zi = Columns 1 through 8 0.8880 Column 9 0.0041 >>

0.0517

0.0317

0.0044

0.0108

0.0031

0.0036

0.0026

CHARACTERIZATION OF A WET GAS USING TWO STAGE SEPARATION

CHARACTERIZATION OF A WET GAS USING TWO STAGE SEPARATION