Page 1

Universidad Fermín Toro Vicerrectorado Académico Facultad de Ciencias Económicas y Sociales Escuela de Relaciones Industriales Análisis de Problema y toma de Decisiones

Herramientas y Técnicas

Toma de Decisiones


Toma de Decisiones

El método Determinístico Un modelo determinístico es un modelo matemático donde las mismas entradas producirán invariablemente las mismas salidas, no contemplándose la existencia del azar ni el principio de incertidumbre. Está estrechamente relacionado con la creación de entornos simulados a través de simuladores para el estudio de situaciones hipotéticas, o para crear sistemas de gestión que permitan disminuir la incertidumbre. La inclusión de mayor complejidad en las relaciones con una cantidad mayor de variables y elementos ajenos al modelo determinístico hará posible que éste se aproxime a un modelo probabilístico o de enfoque estocástico.

Método de Progrmacion Lineal Los términos clave son recursos y actividades, en donde “m” denota el número de distintos tipos de recursos que se pueden usar y n denota el número de actividades bajo consideración. Algunos ejemplos de recursos son dinero y tipos especiales de maquinaria, equipo, vehículos y personal.

"

Herramientas y Tecnicas

Los ejemplos de actividades incluyen inversión en proyectos específicos, publicidad en un medio determinado y el envío de bienes de cierta fuente a cierto destino. En cualquier aplicación de programación lineal, puede ser que todas las actividades sean de un tipo general (como cualquiera de los ejemplos), y entonces cada una correspondería en forma individual a las alternativas específicas dentro de esta categoría general. El tipo más usual de aplicación de programación lineal involucra la asignación de recursos a ciertas actividades. La cantidad disponible de cada recurso está limitada, de forma que deben asignarse con todo cuidado. La determinación de esta asignación incluye elegir los niveles de las actividades que lograrán el mejor valor posible de la medida global de efectividad. Ciertos símbolos se usan de manera convencional para denotar las distintas componentes de un modelo de programación lineal. Estos símbolos se enumeran a continuación, junto con su interpretación para el problema general de asignación de recursos a actividades. Z = valor de la medida global de efectividad xj = nivel de la actividad j (para j = 1,2,...,n) cj = incremento en Z que resulta al aumentar una unidad en el nivel de la actividad j bi = cantidad de recurso i disponible para asignar a las actividades (para i = 1,2,...,m)


Toma de Decisiones

Herramientas y Tecnicas

aij = cantidad del recurso i consumido por cada unidad de la actividad j El modelo establece el problema en términos de tomar decisiones sobre los niveles de las actividades, por lo que x1,x2,....,xn se llaman variables de decisión. Los valores de cj, bi y aij (para i = 1,2,....,m y j = 1,2,....,n) son las constantes de entrada al modelo. Las cj, bi y aij también se conocen como parámetros del modelo.

Deberá tenerse en cuenta que este método sólo trabaja para restricciones que tengan un tipo de desigualdad "≤" y coeficientes independientes mayores o iguales a 0, y habrá que estandarizar las mismas para el algoritmo. En caso de que después de éste proceso, aparezcan (o no varíen) restricciones del tipo "≥" o "=" habrá que emplear otros métodos, siendo el más común el método de las Dos Fases.

Métodos Probabilísticos El Metodo SiMPLEX El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución.

Partiendo del valor de la función objetivo en un vértice cualquiera, el método consiste en buscar sucesivamente otro vértice que mejore al anterior. La búsqueda se hace siempre a través de los lados del polígono (o de las aristas del poliedro, si el número de variables es mayor). Cómo el número de vértices (y de aristas) es finito, siempre se podrá encontrar la solución. El método Simplex se basa en la siguiente propiedad: si la función objetivo, f, no toma su valor máximo en el vértice A, entonces hay una arista que parte de A, a lo largo de la cual f aumenta.

#

Lo que nos permite un método probabilístico es conocer con un cierto nivel de certeza como se podría comportar un sistema a futuro. A los métodos que utilizan variables aleatorias que varían con el tiempo se les conoce como métodos estocásticos. Un ejemplo de ellos es el proceso Markoviano, el cual consiste en asociar probabilidades a cada uno de los posibles resultados dentro de cada línea de acción para un determinado tiempo. De esta forma se podrá así determinar la probabilidad final de encontrarse en un estado determinado en el tiempo especificado.


Toma de Decisiones Logica bayesiana El método más antiguo para el tratamiento de la incertidumbre es la probabilidad. Dentro del campo de la inteligencia artificial, surgieron críticas contra el uso de métodos probabilistas en sistemas expertos, especialmente porque las hipótesis necesarias para hacer tratable el método bayesiano clásico eran incorrectas en la mayor parte de los problemas del mundo real. Esto motivó el desarrollo de otros métodos, como los factores de certeza o la lógica difusa, en que se introducen implícitamente hipótesis y aproximaciones aún más exigentes. Afortunadamente, el desarrollo de las redes bayesianas en la década de los 80 permitió refutar las objeciones anteriores contra el uso de la probabilidad, construyendo un modelo de razonamiento causal con un sólido fundamento teórico.

Por otro lado, los diagramas de influencia, que aparecen también en la década de los 80, pueden considerarse como una extensión de las redes bayesianas, que por tener nodos de decisión y nodos de utilidad, permiten resolver problemas de toma de decisiones. En la década de los 90 ha crecido exponencialmente el número de investigadores, universidades y empresas dedicados a este tema; actualmente existen sistemas expertos bayesianos en las especialidades más diversas.

$

Herramientas y Tecnicas

Dado que nuestra investigación aplicada se ha centrado sobre todo en la medicina, la mayor parte de los ejemplos que ofrecemos en este curso corresponden a sistemas expertos médicos, aunque mencionaremos también las aplicaciones en ingeniería, visión artificial, comercio electrónico, informática educativa, interfaces inteligentes

Teoria de Juegos La teoría de juegos es un área de la matemática aplicada que utiliza modelos para estudiar interacciones en estructuras formalizadas de incentivos (los llamados juegos) y llevar a cabo procesos de decisión. Sus investigadores estudian las estrategias óptimas así como el comportamiento previsto y observado de individuos en juegos. Tipos de interacción aparentemente distintos pueden, en realidad, presentar estructura de incentivo similar y, por lo tanto, se puede representar mil veces conjuntamente un mismo juego.

Desarrollada en sus comienzos como una herramienta para entender el comportamiento de la economía, la teoría de juegos se usa actualmente en muchos campos, como en la biología, sociología, psicología y filosofía.


Toma de Decisiones Experimentó un crecimiento sustancial y se formalizó por primera vez a partir de los trabajos de John von Neumann y Oskar Morgenstern, antes y durante la Guerra Fría, debido sobre todo a su aplicación a la estrategia militar —en particular a causa del concepto de destrucción mutua garantizada. Desde los setenta, la teoría de juegos se ha aplicado a la conducta animal, incluyendo el desarrollo de las especies por la selección natural. A raíz de juegos como el dilema del prisionero, en los que el egoísmo generalizado perjudica a los jugadores, la teoría de juegos ha atraído también la atención de los investigadores en informática, usándose en inteligencia artificial y cibernética.

Aunque tiene algunos puntos en común con la teoría de la decisión, la teoría de juegos estudia decisiones realizadas en entornos donde interaccionan. En otras palabras, estudia la elección de la conducta óptima cuando los costes y los beneficios de cada opción no están fijados de antemano, sino que dependen de las elecciones de otros individuos. Un ejemplo muy conocido de la aplicación de la teoría de juegos a la vida real es el dilema del prisionero, popularizado por el matemático Albert W. Tucker, el cual tiene muchas implicaciones para comprender la naturaleza de la cooperación humana. La teoría psicológica de juegos, que se arraiga en la escuela psicoanalítica del análisis transaccional, es enteramente distinta.

%

Herramientas y Tecnicas


Toma de Decisiones

Toma de Decisiones

revista  

pedromolina

Advertisement