Page 69

upgrade heat via some of the dwelling’s original radiators. Those are the basics of the upgrade: but how has the house performed since 2009, and what lessons have been learned? Speaking to Simmonds now, his overall message about the house’s performance is exactly what you might expect from a certified Enerphit project: conditions inside are highly consistent and comfortable. The only issues and “lessons learned” related to a relatively small number of details – mainly focused around the suspended ground floor over the basement, and related to the lack of a DPC and inadequate basement ventilation. Simmonds says that despite the fluctuations in temperature between the relatively cold winters of 2010 and 2011, and the milder winters have followed, the house’s gas consumption has been fairly consistent year-on-year, only changing slightly, and always staying under 7,000 kWh. In 2010, the total gas bill for the year at Grove Cottage was £384.45. “It’s surprisingly consistent how much gas we use,” he says. During the same year, temperatures inside averaged 20.8C, with the maximum figure recorded being 24.5C in the upper hall, and the minimum being 18.5C in one bedroom which has two external walls and no radiator. Relative humidity has remained steady, with an average figure in 2010 of 48.9%. The house has not experienced any overheating, except for some in the attic room, where there is “localised and slightly excessive solar gain” through east and west-facing roof windows during heatwaves. He plans to buy a simple external solar blind to combat this. Simmonds says insulating externally kept the building’s thermal mass within the insulated envelope, helping to smooth out internal temperatures. This also helps to keep the masonry warm and dry. During the heating season the gas boiler is set to a continuous heating regime with weather compensation, and only comes on when top-up heat is needed to maintain the house at the thermostat setting, delivering heat to the rads at a low temperature. After the build, Simmonds installed moisture monitors in some of the ground floor timbers to monitor conditions here. Some wall plates in the basement and joist ends had rotted away from the damp masonry in the years before the retrofit, while ground floor timbers that were embedded in the old brick walls were suffering from ongoing decay. During the retrofit some joist ends were cut back from the external walls and supported on beams spanning the basement. However Simmonds says that due to oversight, inexperience, and a desire to keep the floor structurally connected to the walls, some joists were left embedded in — or tight up against — the damp basement wells. Simmonds says at the time, he wrongly considered the use of sheep wool – based on its capillary active characteristics – adequate to help safely move moisture from wetter areas at joist ends to drier areas where the moisture would be able to dissipate through the assembly. Although more broadly the floor remains in good condition, with the moisture content of

joists within acceptable levels, Simmonds believes the airtightness and insulation work in specific areas of the floor edge may have exacerbated the problem of localised timber decay, by reducing the removal of water vapour associated with bulk air movement at these points. Combined with a slight increase in temperature, he says, timber decay becomes more likely. Simmonds ended up removing edge floorboards and cutting back a handful of rotting joist ends, which were already supported on the timber basement beams. He has also drilled preservative boron plugs into the joist ends adjacent to the chimney stacks, which were too difficult to remove. The two joists adjacent to the gable walls have been replaced with recycled plastic timber and the edge insulation and airtightness detail has been reinstalled and improved. During this latter operation, a DPC (damp proof course) cream was injected (Dryzone from Safeguard Europe), which will help to reduce rising damp loads up into the house via the masonry walls. Simmonds has also improved cross ventilation in the basement by unblocking an air vent that became clogged with debris during the retrofit, and has also worked to reduce surface condensation on the basement walls. A second DPM recently placed over the concrete floor slab in the basement has prevented this being a condensation-fed moisture reservoir (leading to high humidity in the basement air). Simmonds says the basement is now much drier and more useful — in winter it averages about 11C inside, with 60% relative humidity — and serves as a music room. “These measures mean that water vapour is now generally moving from the house through the floor into the basement and away via ventilation air to the outside, whereas before the opposite was generally occurring.” he says. Simmonds carried out all this work himself, and says it could have been avoided if he had had a better understanding of moisture mechanisms and pathways in these critical ground floor zones in 2008. He says the remedial work has prevented or at least significantly reduced the risk of ongoing rot at the floor edges — and reinstated the thermal and airtightness performance in a more robust manner. Meanwhile, the lessons learned have helped to inform Simmonds Mills’ detailing for other retrofit projects and is informing the AECB retrofit course which he is involved in writing. But back inside the thermal envelope, how is the main body of the house performing? Simmonds says a couple of spots in the house tend to be cooler. One is by the double external doors in the kitchen (leading to the garden), which have become a bit misaligned — perhaps due to heavy family use. This has led to some air infiltration, and requires attention from time to time to ensure frame and seals meet properly. “The doors need annual readjustment to sit properly against their seals,” he says. “You become extremely attuned to the lack of draughts in this sort of house — so you can identify the smallest draught very easily!” Another similar spot is around the sitting room floor adjacent to the gable walls in the old part of the house, where — despite the rejigged floor-to-wall detail described above — there 

ph+ 69

Profile for Passive House Plus (Sustainable Building)

Passive house plus issue 10 (UK edition)  

Passive house plus issue 10 (UK edition)