Resonance aieee iit study material maths complete pdf'

Page 204

∫ (n − 1) sin

n−2

Ιn = sinn–1 x . (– cos x) +

⇒ ⇒

= – cos x sinn–1 x + (n - 1)

∫ sin

= – cos x sinn–1 x + (n – 1)

∫ sin

n−2

x cos 2 x dx

x(1 − sin2 x ) dx

n− 2

x dx − (n − 1) sinn x dx

Ιn = – cos x sin x + (n – 1) Ιn–2 – (n – 1) Ιn nΙn = – cos x . sinn–1 x + (n – 1) Ιn–2 ; n–1

Ιn = –

n −1 cos x sinn−1 x + Ιn–2 n n

Example : 44 Find the reduction formula for If Ιn =

∫ tan

n

∫ tan

n

x dx .

x dx , to prove that (n – 1) (Ιn + Ιn–2) = tann–1 x.

Solution Here Ιn =

∫ tan

=

∫ tan

x(sec 2 x − 1) dx

=

∫ tan

x sec 2 x dx –

=

∫ tan

n

x dx

n −2

n− 2

n− 2

∫ tan

n− 2

x tan2 x dx

∫ tan

n −2

x dx

x sec 2 x − Ι n− 2

tann−1 x n −1 Hence (n – 1) (Ιn + Ιn–2) = tann–1 x. ⇒

Ιn + Ιn–2 =

Example : 45

∫ sec

Find reduction formula for

n

x dx

Solution Let Ιn =

∫ sec

Ιn =

n

x

∫ sec

n−2

x sec2x dx

Apply by parts taking secn–2 x as the first part and sec2x as the second part

∫ sec

3

⎡d

∫ ⎢⎣ dx (sec

n−2

Ιn = secn–2 x

Ιn = secn–2 x tan x –

Ιn = secn–2 x tan x – (n – 2)

Ιn + (n – 2) Ιn = secn–2 x tan x + (n – 2)

(n – 1) Ιn = secn–2 x tan x + (n – 2) Ιn–2

x dx –

∫ (n − 2) sec

n− 3

∫ sec

⎤ x ) sec 2 x dx ⎥ dx ⎦

x sec x tan x tan x dx

n −2

x (sec 2 x − 1) dx

∫ sec

n− 2

x dx

Page # 23.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Resonance aieee iit study material maths complete pdf' by S.Dharmaraj - Issuu