January / February 2016 NLGI Spokesman

Page 20

In this study, various PAO lubricating greases made from different thickener chemistries were tested to evaluate their particle generation properties. This particle generation phenomenon was studied using a custom test rig utilizing a high precision cleanroom ball-screw to simulate true application conditions. The ball-screw was tested at speeds from 200 RPM to 2,400 RPM to illustrate the effect of speed on the particle generation across different applications. This paper will show the tendencies of certain base oils and thickener chemistries to generate particles and which ones present advantages of improved durability and environmental cleanliness for critical processes and applications.

KEY WORDS: Particle Generation, DOE Introduction

The thought of Particle Generation is one that haunts many Engineers’ minds especially if they are working on applications in the Aerospace, Semiconductor, or Clean Room industries. The idea of foreign particles of unknown or dubious nature flying through the air (or travelling through vacuum) only to deposit on a critical area like a semiconductor fab, optical sensor, or even into the human body as the case may be with medical robots for surgery can certainly bring nightmares. This has been such a critical area and movement in the last thirty years and given rise to Clean Rooms manufacturing and the characterization of air cleanliness.

Jason T. Galary, Gus Flaherty Nye Lubricants, Inc.

INVESTIGATION INTO THE DYNAMIC PARTICLE GENERATION OF LUBRICATING GREASES

The purpose of this study is to examine the phenomenon of Dynamic Particle Generation in Lubricating Greases that are used in a variety of applications in critical Industries which include Aerospace, Semiconductor Manufacturing, Medical, and Cleanrooms. This Particle Generation occurs in bearings, ball screws, and other mechanical devices when dynamic conditions are present and should not be confused with Outgassing which is related to the pressure effects on a system. This is a critical factor in many systems as particle generation can contaminate critical systems or processes causing them to fail. These failures can lead to excessive costs, production lines going down, and equipment damage.

The focus for so long has been on the quality of the air in the room and the perception has long been that lubricants are a source of contamination in cleanroom and vacuum environments. In order to alleviate the worries of many customers across various applications and industries, the solution over the last twenty years has been to Ultrafilter1 the lubricant to reduce the number of particles and the size of them. There are three levels for cleanliness in a grease: • Unfiltered grease – Can contain particles larger than 75 µm. • Filtered or so-called “Clean” grease – For example MIL-G81322 Aircraft grease cannot have any particles greater than - 20 VOLUME 79, NUMBER 6


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.