Issuu on Google+

Noise   tolerant   design,   vibra8on     monitoring     &   control   on   drilling   pla<orms   and   offshore  structures     Research  in  Singapore    

Research  Case   Studies    

  Research  at  Newcastle   University  Interna7onal   Singapore  (NUIS)    is  driven  by   matching  industry  needs  with   our  academic  excellence  and   funding  projects  through  a   mix  of  grants  and   consultancy.  We  also  offer  a   range  of  post  grad’  industry   based  research  degrees,   delivering  great  research   projects  as  well  as  up-­‐grading   staff  competence.       To  find  out  more  contact  the   research  and  Development   team:    

NUIS-­‐Research@ncl.ac.uk   (+65)  6550  1963   www.ncl.ac.uk/research    

Prof’  E  Mesbahi  in  collabora7on  with  a  major  Singapore  shipyard   Background   While   on-­‐board   comfort   for   workers   is   a   vital   for   opera7onal   efficacy   and   safety   in   drilling   opera7ons,   the   concept   of   crew   habitability   in   rela7on   to   drilling   vessels   has   assumed   far   greater   importance   in   recent   years.   This   reflects   tougher   regulatory   criteria,   and   a   greater   apprecia7on   of   the   fa7gue-­‐inducing   effect   and   long-­‐term   health   issues   associated   with   protracted   exposure   to   high   levels   of   noise   and   vibra7on.    Hence,  shipbuilders  are  looking  to  limit  noise  and  vibra7on  as  much  as  possible.  This  is  par7cularly  important  on  accommoda7on   quarters  on  the  drilling  plaDorm.  Ideally,  poten7al  problems  should  be  iden7fied  at  the  earliest  stages  of  design  and  build.  

Methodology   Acous7c   studies   will   be   undertaken   from   an   early   design   stage   by   modelling   structure   and   airborne   noise   characteris7cs   of   machinery   and  equipment  on  the  drilling  plaDorm  predic7ng  noise  radiated  to   accommoda7on  quarters.       The  results  of  these  studies  will  help  drive  a  balanced  approach  to   noise   reduc7on,   guiding   the   ergonomic   and   efficient   accommoda7on   layout,   placement   of   equipment,   structure   design   and  moun7ng  arrangements  during  the  design  stage.     The  research  will  also  provide  an  ac7ve  noise  and  vibra7on  control   system  to  reduce  the  residual  noise  and  vibra7on  that  could  not  be   eliminated   by   design;   an   example   being   the   airborne   noise   and   vibra7on   from   the   engine   room.   This   twin   approach   provides   a   holis7c   solu7on   to   mi7gate   noise   and   vibra7on   on   drilling   plaDorms.   The   projects   was   conducted   using   the   EDB   IPP   PhD   program   delivering   both   the   research   project   and   a   PhD   level   employee   expert  in  field  

Significance   This  study  will  develop  the  state  of  the  art  in  terms  of  the  technology  of  noise   and  vibra7on  reduc7on  in  offshore  structures.  This  will  allow  the  construc7on   and  opera7on  of  plaDorms  and  rigs  which  have  a  more  comfortable  living  and   working   accommoda7on   for   crew.   This   will   reduce   vibra7on   and   noise   induced   stress   and   fa7gue   and   consequently   have   far   reaching   posi7ve   benefits  on  crew  safety  and  performance.  

Airborne  and  Structure  borne  noise  and  vibra8on  


Autonomous  Underwater  Vehicle  (AUV)  Docking  Hoop.     Dr  S  C  Chin  in  collabora7on  with  a  leading  Singapore  Technology  Company  

Background   Autonomous  Underwater  Vehicles  (AUV)  are  recovered  at  depth  using  a  docking  cradle  or  hoop,  then  released  to  conduct  work  at  or  above   the  sea-­‐bed.  This  project  involved  the  design  of  the  command  and  control  logic  for  the  Autonomous  Underwater  Vehicle  (AUV)  Docking  Hoop.   The  docking  hoop  ‘captures’  the  AUV  which  is  moving  at  3Knots  at  a  constant  depth  and  heading.     The   docking   hoop   itself   needs   to   match   this   trajectory   whilst   aligning   itself   perfectly   in   6   axis   to   engage   the   AUV.   The   capture   opera7on  occurs  at  depth  and  in  waters  where  currents  act  on  both   the   docking   hoop   and   AUV   requiring   con7nuous   automated   adjustment  of  the  docking  hoop  posi7on  and  orienta7on.    

Methodology   The  project  was  split  into  different  phases:       •  Design  of  the  command  and  control  logic.   •  Laboratory   based   simula7on   of   the   command   and   control   logic   prior   to   integra7on  to  the  Docking  Hoop.     •  Define   and   recommend   hardware   (e.g.   processors   cards   etc)   required   for   the   control  path.     •  Technical   support   for   subsequent   tes7ng,   trials  and  tuning  (dry  and  wet)  of  the  AUV   Docking  Hoop  control  logic.    

Significance   The   new   design   of   docking   hoop   enabled   the   AUV   to   be   retrieved   safely   and   effec7vely,   significantly   reducing   the   7me   and   cost   of   the   opera7on   and   also   reducing   the   risk   of   loosing   the  AUV.  The  redesigned  hoop  is  shown:    

Research  in  Singapore    

Research  Case   Studies    

  Research  at  Newcastle   University  Interna7onal   Singapore  (NUIS)    is  driven  by   matching  industry  needs  with   our  academic  excellence  and   funding  projects  through  a   mix  of  grants  and   consultancy.  We  also  offer  a   range  of  post  grad’  industry   based  research  degrees,   delivering  great  research   projects  as  well  as  up-­‐grading   staff  competence.       To  find  out  more  contact  the   research  and  Development   team:     NUIS-­‐Research@ncl.ac.uk   (+65)  6550  1963   www.ncl.ac.uk/research    


Crea8ng  A  Healthy  Singapore  Cuisine©  To   Prevent  And  Reduce  Disabili8es  And  Death  From   Cardiovascular  Disease   Research  in  Singapore    

Research  Case   Studies    

  Research  at  Newcastle   University  Interna7onal   Singapore  (NUIS)    is  driven  by   matching  industry  needs  with   our  academic  excellence  and   funding  projects  through  a   mix  of  grants  and   consultancy.  We  also  offer  a   range  of  post  grad’  industry   based  research  degrees,   delivering  great  research   projects  as  well  as  up-­‐grading   staff  competence.       To  find  out  more  contact  the   research  and  Development   team:    

NUIS-­‐Research@ncl.ac.uk   (+65)  6550  1963   www.ncl.ac.uk/research    

Dr  M  Y  Chan  in  collabora7on  with  SHF   Background   Paradoxically,  the  health  of  Singaporeans  has  not  improved  despite  increased  affluence.  Cardiovascular  disease  (CVD)  remains   as   the   top   killers.   Obesity   rates   and   prevalence   of   diabetes   are   rising.   Changing   the   current   dietary   intakes   of   Singaporeans   which  are  currently  high  in  saturated  fat  and  salt  and  low  in  dietary  fibre  to  a  diet  based  on  the  Mediterranean  Diet  principles   should  significantly  reduce  the  disabili7es  and  deaths  from  CVD.  To  date,  there  are  no  published  studies  examining  the  efficacy   for   adap7ng   the   Mediterranean   diet   for   Asian   communi7es   and   the   rela7on   between   such   a   tailored   diet   and   on   CVD   risk   factors  in  the  Asian  context.  Addi7onally,  the  authors  are  not  aware  of  any  exis7ng     wholesome  healthy  ea7ng  plan  adapted  from  Mediterranean  diet  based  on  a     Singapore  context.     Methodology   Having   conducted   a   comprehensive   literature   review   to   iden7fy   salient   aspects   of   the   Mediterranean   diet,   we   now   propose   to   design   the   Healthy   Singapore   Cuisine.   Subsequently,  we  will  develop  a  dietary  index  to  quan7fy  adherence  to  this  dietary   plan   and   assess   the   rela7onship   between   adherence   to   this   plan   and   the   various   biological  risk  factors  for  CVD  (i.e.  blood  lipids,  blood  pressure,  glycemic  markers  and   markers   of   inflamma7on)   in   a   popula7on-­‐based   cross-­‐sec7onal   study.   In   addi7on,   focus  groups  will  be  conducted  to  explore  what  people  think  about  this  new  dietary   plan,   to   gather   their   perceived   barriers   and   to   assess   the   acceptability   of   the   dietary   plan  (e.g.  cost,  convenience,  taste  and  ease  of  prepara7on).     Significance   The   development   of   this   Healthy   Singapore   Cuisine   could   help   form   part   of   the   branding  strategy  for  Singapore  Heart  Founda7on  (SHF)  in  developing  an  ea7ng  plan   which   is   ahrac7ve,   affordable   and   accessible   to   consumers.   This   plan   helps   to   translate   evidenced   -­‐based   dietary   recommenda7ons   into   prac7cal   and   ahrac7ve   recommenda7ons  for  healthy  ea7ng  to  help  reduce  the  burden  of  CVD  in  Singapore.   At   the   same   7me,   this   health-­‐   promo7ng   ini7a7ve   would   also   help   to   raise   the   profile   of   Singapore   Heart   Founda7on   as   a   charitable   organiza7on.   Preliminary   findings   from   the   focus   groups   will   also   help   to   design   a   larger-­‐scale   interven7on   trial.    


Process  intensifica8on  in  pharmaceu8cal  and  Chemical  manufacturing   Dr  K  Boodhoo  in  collabora7on  with  a  global  pharmaceu7cal  and  a  Singapore  Ins7tute   Research  in  Singapore     Background  

Process  Intensifica7on  (PI)  is  any  chemical  engineering  strategy  (either  or  both  equipment  and  methods)  that  could  lead  to  a  substan7ally  smaller   (equipment  size/produc7on  capacity  ra7o,  or  inventory),  cleaner  (reduced  wastes  or  by-­‐products),  and  more  energy  efficient  technology  which   ul7mately  resulted  in  cheaper,  safer,  environment-­‐friendlier  and  sustainable  technologies.  To  date,  in  the  open  literature,  there  is  no  sa7sfactory   methodology   that   systema7cally   evaluates   pharmaceu7cal   processes   in   this   aspect   as   they   normally   involve   more   complex   chemistry   and   processing  needs.      Separa7on  steps  have  been  reported  to  be  the  major  contributor  of  the  overall  processing  energy  and  costs  of  a  synthesis,  i.e.   ca.  40-­‐90%  of  the  process  mass  intensity  and  omen  consume  more  than  50%  of  the  energy  requirements  in  dis7lla7on  and  drying  steps  alone.  We   will  evaluate  a  number  of  common  chemical  transforma7ons  omen  used  in  pharmaceu7cal  syntheses,  assessing  the  possibility  of  intensifying  the   reac7on  step  in  conjunc7on  with  its  separa7on  step,  and  also  looking  at  overall  process  green  and  sustainability  performance.      

Background  

In   this   three-­‐year   project,   we   will   iden7fy   and   evaluate   a   number   of   commonly   used   industrial   scale   pharmaceu7cal   reac7ons,   e.g.     amina7on,   amida7on,   esterifica7on,   Friedel–Crams   (acyla7on),   Organometallics   (e.g.  organolithium,  Grignard),  halogena7ons   (fluorina7on),   hydrogena7on,   Pd-­‐mediated   coupling,   alkyla7on   of   amine,   ozonolysis,   oxida7on,   etc.   for   the   possibility   of   intensifica7on,   especially   in   separa7on   and   reac7on   that   could   poten7ally   lead   to   a   more  environmental  inclined  and  sustainable   processing.  The  feasibility  of  solvent  recycle,   material   recovery   and   other   possibility   of   PI   men7oned  earlier  will  also  be  considered  for   the   whole   process   in   order   to   bring   out   the   overall  benefits.      

Background  

This  project  will  provide  a  generic,  systema7c  and  prac7cal  methodology  for  evalua7ng  a  pharmaceu7cal  process  to  gain  the  advantages  from   Process   intensifica7on   for   overall   green   and   sustainability   benefits.   It   will   also   increase   training   and   awareness   in   the   applica7on   of   Process   Intensifica7on   techniques   for   new   and   exis7ng   processes.   The   project   also   demonstrates   the   benefits   that   can   be   achieved   by   undertaking   Process  Intensifica7on  methods  on  an  exis7ng  pharmaceu7cal  process.      

Research  Case   Studies    

  Research  at  Newcastle   University  Interna7onal   Singapore  (NUIS)    is  driven  by   matching  industry  needs  with   our  academic  excellence  and   funding  projects  through  a   mix  of  grants  and   consultancy.  We  also  offer  a   range  of  post  grad’  industry   based  research  degrees,   delivering  great  research   projects  as  well  as  up-­‐grading   staff  competence.       To  find  out  more  contact  the   research  and  Development   team:     NUIS-­‐Research@ncl.ac.uk   (+65)  6550  1963   www.ncl.ac.uk/research    


Signal  Processing  and  Informa8on  Analy8cs   Research  in  Singapore    

Research  Case   Studies    

  Research  at  Newcastle   University  Interna7onal   Singapore  (NUIS)    is  driven  by   matching  industry  needs  with   our  academic  excellence  and   funding  projects  through  a   mix  of  grants  and   consultancy.  We  also  offer  a   range  of  post  grad’  industry   based  research  degrees,   delivering  great  research   projects  as  well  as  up-­‐grading   staff  competence.       To  find  out  more  contact  the   research  and  Development   team:    

NUIS-­‐Research@ncl.ac.uk   (+65)  6550  1963   www.ncl.ac.uk/research    

Dr  Wai  Lok  Woo    

Background   Signal   Processing   and   Informa7on   Analy7cs   (SPIA)   is   an   emerging   field   of   research   focusing   on   the   mathema7cal   founda7ons   and   prac7cal   applica7ons   of   signal   processing   algorithms   that   learn,   reason   and   act.   It   bridges   the   boundary   between  theory  and  applica7on,  developing  novel  theore7cally-­‐inspired  methodologies  targe7ng  both  longstanding  and   emergent  signal  processing  applica7ons.  The  core  of  IASP  lies  in  its  use  of  intelligent,  nonlinear  and  non-­‐Gaussian  signal   processing   methodologies   combined   with   convex   and   non-­‐convex   op7misa7on.   SPIA   encompasses   new   theore7cal   frameworks  for  sta7s7cal  signal  processing  coupled  with  informa7on  theore7c  learning,  and  novel  developments  in  these   areas   specialised   to   the   processing   of   a   variety   of   signal   modali7es   including   audio,   speech,   bio-­‐signals,   images,   mul7spectral,  and  video  among  others.   Sta7s7cs   is   organised   informa7on   but   intelligence   is   more   than   that.   We   believe   that   it   is   just   not   enough   to   solve   a   problem   by   giving   the   most   “frequent”   answer.   At   Newcastle,   our   goal   is   to   develop   new   theories   and   demonstrable   algorithms   for   informa7on   analy7cs   that   truly   integrates   signal   processing   and   computa7onal   intelligence.   These   algorithms   have   been   able   to   discover   knowledge   for   themselves   and   learning   to   learn   new   informa7on   whenever   unseen  data  is  captured.  While  many  researchers  discount  the  need  for  human  interven7on  in  data  analysis,  our  work   goes   further   and   provides   the   freedom   to   enable   collabora7ve   syncre7sa7on   between   human   intui7on   and   machine   intelligence.    

A  number  of  challenges  currently  tackled  by  SPIA  include:     •  electric  smart  grid   •  informa7on  technology  for  personalised  healthcare     •  contents-­‐based  image  search  engine   •  signal   separa7on   (e.g.   single-­‐   and   mul7-­‐channel   recordings,   audio   source   separa7on,  bio-­‐signal  separa7on  including  EEG,  ECG  and  MEG)  

Con$nued:    


Smart  signal  processing  to  separate  a   mixture  of  jazz  music  and  speech.     Research  in  Singapore    

Research  Case   Studies    

tracking  

1.  Mixed  signal   Event   detec7on   Signal   absence   probability  

Decision   device  

2.  Separated  Jazz  Music  

tracking  

Wiener  filter  

Hierarchical  Bayesian   machine  

Mul7dimensional  space   transform  

Ac$ve  Noise   Cancella$on  

data  level  

signal   level  

  Research  at  Newcastle   University  Interna7onal   Singapore  (NUIS)    is  driven  by   matching  industry  needs  with   our  academic  excellence  and   funding  projects  through  a   mix  of  grants  and   consultancy.  We  also  offer  a   range  of  post  grad’  industry   based  research  degrees,   delivering  great  research   projects  as  well  as  up-­‐grading   staff  competence.       To  find  out  more  contact  the   research  and  Development   team:    

informa$on   level  

3.  Separated  female  speech  

NUIS-­‐Research@ncl.ac.uk   (+65)  6550  1963   www.ncl.ac.uk/research    


Control  of  mechanical  vibra8on  and  Psyco-­‐acous8c  parameters  in  hard  disk   drives.     Research  in  Singapore    

Research  Case   Studies    

  Research  at  Newcastle   University  Interna7onal   Singapore  (NUIS)    is  driven  by   matching  industry  needs  with   our  academic  excellence  and   funding  projects  through  a   mix  of  grants  and   consultancy.  We  also  offer  a   range  of  post  grad’  industry   based  research  degrees,   delivering  great  research   projects  as  well  as  up-­‐grading   staff  competence.       To  find  out  more  contact  the   research  and  Development   team:    

NUIS-­‐Research@ncl.ac.uk   (+65)  6550  1963   www.ncl.ac.uk/research    

Dr  Chin  collabora7on  with  major  global  hard  drive  manufacturer   Background   In  the  hard  drive  industry,  hard  disk  drive  acous7cs  are  becoming  important.  With  the  introduc7on  of  hard  drives  into   new   emerging   markets   in   which   the   consumer   is   more   keenly   aware   of   and   sensi7ve   to   radiated   acous7c   noise   issues   caused   by   vibra7on,   engineers   are   facing   great   challenges   to   meet   customer   demands.   Drive   manufacturers   are   under   severe  cost  constraints,  many  7mes  unable  to  incorporate  all  the  noise  control  devices  necessary  to  make  drives  quieter.      

Research   It   is   well   understood   that   the   m e c h a n i c a l   n o i s e s   c o m e   f r o m   vibra7ons;   however,   hearing   is   not   a   purely   mechanical   phenomenon   of   wave   propaga7on   but   is   also   a   sensory   and   perceptual   event   or   we   called   psychoacous7c.  In  other  words,  when  a   person   hears   a   sound,   it   arrives   at   the   ear   as   a   mechanical   sound   wave   traveling   through   the   air,   whereas   inside   the   ear   it   is   transformed   into   neural   ac7on   poten7als.   These   nerve   pulses   then   travel   to   the   brain   where   they  are  sensed.    

In   HDD   field,   there   are   three   psychoacous7c   parameters   namely:1)   Loudness     2)   Sharpness,   and   3)   Pure   Tone.   These   parameters   need   to   be   measured   with   high   sensi7vity   microphones   in   an   environment   with   lowest   background   noise   while   the   mechanical   vibra7on   will   be   measured   by   ahaching   an   accelerometer   on   the   HDD   casing   under   most   of   environment.   To   accomplish   this,   a   detailed   technical   understanding   and   control   of   psychoacous7cs       and   mechanical   vibra7on  are  essen7al  to  successfully  developing  psychoacous7c  control  strategies  on  hard  disk  drive.  


Hydrodynamics  in  offshore  structures     Dr  A  Mesbahi  in  collabora7on  with  JSL  (SembCorp)  

Background  

A   lot   of   work   and   research   has   been   done   over   the   years   to   solve   local   phenomena   such   as   green   water,   sloshing,   slamming,   violent   flows,   vortex  induced  vibra7on  and  so  on  by  means  of  CFD.  This  trend  has  started  to  change  in  the  last  decade  or  so  towards  the  use  of  CFD  for  a   complete  hydrodynamic  analysis.  This  complete  CFD  approach  for  hydrodynamic  analysis  of  marine  structures  is  s7ll  a  long  way  from  reaching  a   mature   status.   The   general   approach   to   solve   the   hydrodynamics   problem   is   to   use   a   mul7-­‐stage   method   in   which   tradi7onal   methods   (linear)   would   be   used   to   calculate   the   frequency   domain   responses   and   the   occurrence   of   local   phenomena   (such   as   green   water),   and   then   7me-­‐ domain  CFD  tools  will  be  used  to  predict  non-­‐linear  responses  associated  with  these  events.  This  methodology  is  not  so  straight  forward  in  the   sense  that  different  codes  or  somware  will  have  certain  constraints  such  as  single  hull/mul7-­‐hull  or  zero  speed/high  speed.  For  the  CFD   analysis  of  the  local  phenomena,  most  of  the  codes  developed       are   “in-­‐house”   codes,   which   makes   it   difficult   to   access   and   integrate   with   other   somware.   A   new   methodology   that   is   focused   on   the   offshore   industry,   specifying   the   appropriate   procedure   and   somware   development   for   a   complete   hydrodynamics   study   of   marine   structures   is   highly   advisable   for   the   successful   analysis   of   current   and   new   structures   that   are  facing  new  environments  (such  as  deeper  waters  or  arc7c   condi7ons).  

Methodology  

So   far   the   air   gap   phenomenon   (for   instance)   has   been   inves7gated   by   rather   simplis7c   CFD   methods.   Therefore,   the   development   of   a   fully   integrated   non-­‐linear   CFD   method   to   evaluate   green   water   loads   on   FPSO   or   air   gap   on   semi-­‐ submersible  will  be  a  great  improvement  to  the  way  in  which   these   complex   hydrodynamic   phenomena   are   currently   analysed.   The   development   of   the   CFD   method   will   also   contribute   to   the   consistency   of   the   methodology   developed.   Benchmark  data  for  the  valida7on  of  the  codes  will  be  sought   via  publica7ons,  model  tests  and  real  data.  

Significance  

By   beher   understanding   the   limita7ons   of   current   CFD   techniques   in   their   applica7on   to   offshore   structures,   improved   designs,   structure   performance  and  modelling  can  be  provided.  This  will  give  significant  advantage  in  the  design  phase  of  offshore  structured  manufactured  by   JSL.  

Research  in  Singapore    

Research  Case   Studies    

  Research  at  Newcastle   University  Interna7onal   Singapore  (NUIS)    is  driven  by   matching  industry  needs  with   our  academic  excellence  and   funding  projects  through  a   mix  of  grants  and   consultancy.  We  also  offer  a   range  of  post  grad’  industry   based  research  degrees,   delivering  great  research   projects  as  well  as  up-­‐grading   staff  competence.       To  find  out  more  contact  the   research  and  Development   team:     NUIS-­‐Research@ncl.ac.uk   (+65)  6550  1963   www.ncl.ac.uk/research    


Singapore case studies