Issuu on Google+

Analytical Computer System GC 9300

OPERATING INSTRUCTIONS

Serving the Gas Industry Worldwide

STATUS MARCH 2013

by Honeywell


...............................................................................................................................................................................................................

Note: Unfortunately, paperwork does not automatically update itself but technical developments are constantly being made. Therefore, we reserve the right to change the descriptions and statements contained in our operating instructions without prior notice. However, you can conveniently download the most recent version of this manual (and those of other devices) from our website www.rmg.com.

RMG Messtechnik GmbH Otto-Hahn-Straße 5 35510 Butzbach (Germany) Fax: 06033 / 897-130 E-mail: Messtechnik@Honeywell.com

Phone numbers: Switchboard: Customer Service: Spare Parts:

06033 / 897-0 06033 / 897-127 06033 / 897-173

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


CONTENTS

...............................................................................................................................................................................................................

INTRODUCTION ................................................................................... 1 DESIGN AND FUNCTIONS .................................................................. 2 Front panel ............................................................................................................ 2 Functions ............................................................................................................... 3 Analysis ......................................................................................................................... 3 Operation ...................................................................................................................... 4 Data storage .................................................................................................................. 5

SAFETY INSTRUCTIONS ...................................................................... 7 INSTALLATION .................................................................................... 8 Mounting ............................................................................................................... 8 Electrical connections .......................................................................................... 8

STARTUP............................................................................................ 13 Establishing the connection with the PC ...........................................................13 Switching on the device......................................................................................13

OPERATION ....................................................................................... 14 Touchscreen operation .......................................................................................14 Start screen................................................................................................................. 14 Data: Results of the last analysis ................................................................................. 15 Graphic: Chromatogram of the last analysis ................................................................ 16 Status: Status indicators, e.g. column temperature..................................................... 17 Service: Service functions ........................................................................................... 17 User: User-specific display .......................................................................................... 18 Details: List of all measured values and parameters of the GC 9300 .......................... 19 Archive: Display of the archive entries......................................................................... 20 Log: Display of the logs ............................................................................................... 21 Fault: Display of fault messages with date and time .................................................... 22

Operating Examples ............................................................................................23 Entering a user code.................................................................................................... 23 Changing the operating mode ..................................................................................... 23 Programming the current output ................................................................................. 24 Reading out values for the Maintenance Book entry.................................................... 24

Viewing and Reading Out Archives with an Internet Browser ............................25 Fault Messages ...................................................................................................26 Alarms ......................................................................................................................... 26 Warnings ..................................................................................................................... 27 Hints............................................................................................................................ 29 ............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


CONTENTS

...............................................................................................................................................................................................................

TECHNICAL DATA.............................................................................. 30 ANNEX ............................................................................................... 32 List of Parameters ...............................................................................................32  01 GC9300 Mode ........................................................................................................ 32 02 Current Values ....................................................................................................... 35 03 Stream-1 Values ..................................................................................................... 40 04 Stream-2 Values ..................................................................................................... 46 05 Stream-3 Values ..................................................................................................... 52 06 Stream-4 Values ..................................................................................................... 58 07 Ref.-Gas Values ...................................................................................................... 64 08 Cal.-Gas Values ...................................................................................................... 69 09 Calibration results .................................................................................................. 75 10 Specialties.............................................................................................................. 80 11 Component Parameter ........................................................................................... 92 12 Calibration Parameters......................................................................................... 107 13 Calculation Parameters ........................................................................................ 109 14 Gas Analyzer Unit ................................................................................................. 119 15 In- and Outputs .................................................................................................... 125 16 Serial Ports ........................................................................................................... 154 17 Network ............................................................................................................... 158 18 DSfG..................................................................................................................... 163 19 External I/O System............................................................................................. 187 20 Faults and Status ................................................................................................. 191 21 Date, Time ............................................................................................................ 193 22 Archives, Storage ................................................................................................. 195 23 Hourly Values ....................................................................................................... 199 24 Daily Values.......................................................................................................... 212 25 Monthly Values..................................................................................................... 224 26 User ..................................................................................................................... 237 27 Service ................................................................................................................. 241 29 Nameplate............................................................................................................ 243

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


INTRODUCTION

...............................................................................................................................................................................................................

Introduction The analytical computer GC 9300 is a component of the process gas chromatograph PGC 9300, which analyzes natural gas and biogas and supplies the measured values required to determine the energy content and to calculate the K coefficient. As a control unit it determines the analysis sequence and outputs the measurement results. All operating parameters are saved on the device and it is also used for operation. In addition to analysis control, the GC 9300 offers the following functions: − Calculation of superior and inferior calorific value, standard density, Wobbe index and percentage content of individual gas components according to ISO 6976 and optional calculation of the methane number. − Saving of analysis results in archives and tariff function − Comprehensive communication functions − Setting of operating modes for auditing purposes and for analysis of gas samples.

1

The core of the GC 9300 is an "embedded PC", in other words PC technology with a standard processor and standard memory card. The operating system is Windows CE 6.0, which is used in devices such as palmtops and satellite navigation devices. The computer is operated using the touchscreen, which has an easily understandable menu. A PC connected via the network interface supports the following operating modes: 1. With the GC version of the operating software RMGView, which is already used for the ultrasonic flowmeter. 2. The non-custody transfer archives can be viewed and saved using any Internet browser. Other operation options are available via DSfG bus with the aid of RMG software products such as the PGC auditing program AKA-II, for example.

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


DESIGN AND FUNCTIONS

...............................................................................................................................................................................................................

Design and functions Front panel

2

Touchscreen

Calibration switch Home button

The following display and control elements are located on the front panel: Green LED (Power)

Steady light: Voltage indicator.

Orange LED (Connect)

Steady light: Measuring element is connected and active.

Yellow LED (Warning)

Flashing light: There is currently a fault in the non-custody transfer functions (warning) Steady light: A warning has occurred in the meantime

Red LED (Alarm)

Flashing light: There is currently a fault in the custody transfer functions (alarm) Steady light: An alarm has occurred in the meantime

Calibration switch

Sealable rotary switch, the calibration lock is open at the end stop.

USB interface

For the connection of USB components (e.g. a mouse), sealed for custody transfer applications.

Home button

For accessing the main menu.

Touchscreen

Display and control panel of the analytical computer.

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


DESIGN AND FUNCTIONS

...............................................................................................................................................................................................................

Functions Analysis The analytical computer GC 9300 is the controller for the process gas chromatograph PGC 9300 and controls the analytical procedure in the measuring element CP 4900. In normal mode, as soon as an analysis is completed the computer moves on to the next one, whereby an analysis takes approx. 3 minutes. The analytical run is interrupted by automatic calibration. Calibration includes 10 calibration gas analyses irrespective of whether it is started automatically or manually and thus takes approx. 30 minutes. The calibration interval is defined in the PTB approval and is as follows: − For the superior calorific value measuring device (custody transfer measurement of superior calorific value, standard density and CO2 content): 1 week − For the gas quality measuring device (plus custody transfer measurement of the individual components): 1 day Calibration can also be started manually at any time.

3

The PGC 9300 can be used as a single stream version for the analysis of the gas from one sampling point or a multistream version for up to four sampling points. In the case of multistream versions, the measured gas changes in the default setting with each analysis. An analysis is based on the signal curve of the sensor, called a chromatogram, for each column unit. Each peak in this chromatogram indicates a gas component. In the analysis, the areas under the peaks are determined and the individual gas components are then calculated in mol% using polynomials. The polynomial coefficients are determined during basic calibration. During automatic and manual calibration, a correction factor (response factor) is calculated for each component. Basic calibration is performed during startup and after certain repair and service activities. The calculated response factors do not change during operation and are used for comparison with the current response factors used for analysis. This makes it possible to detect a drift in the measuring element, which can be caused by accumulation of moisture or heavy hydrocarbons. If the deviation exceeds 10%, an alarm message is displayed and the column modules must be baked out. Basic calibration cannot be performed during operation. In addition to the custody transfer variables of superior calorific value and standard density mentioned earlier, the analytical computer calculates the inferior calorific value, relative density and Wobbe index and, optionally, the methane number from the individual components as non-custody transfer variables. The calculations (with the exception of the methane number) are performed as per ISO 6976.

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


DESIGN AND FUNCTIONS

...............................................................................................................................................................................................................

Operation

4

Operation takes place on the analytical computer and supports the following actions: − Reading out of analysis results − Starting of manual calibration − Switching of analysis from measuring gas to test gas (reference gas) − Displaying and changing operating parameters − Inspection of archives and logs − Display of chromatograms − Display of fault messages − Display of the status of the device With the exception of the display functions, input of the user code or opening of the calibration switch is required for almost all other actions. Operating modes The PGC 9300 features the following operating modes, which are available on the "Details" screen under "GC 9300 Mode": AUTORUN Normal analysis operation with automatic calibration STOP Analysis operation is stopped BASIC-CAL Basic calibration (protected against accidental activation) NORM-CAL Calibration started manually (equivalent to automatic calibration) REF-GAS Test gas analysis (reference gas)

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


DESIGN AND FUNCTIONS

...............................................................................................................................................................................................................

Data storage There are two archives available for storing the analysis results: 1. The non-custody transfer measured data archive 2. The custody transfer archive as per the DSfG standard The archives have the following structure and memory depth: Measured value archive

      

Event log Parameter log Individual analyses archive Mean hourly values archive Mean daily values archive Mean monthly values archive Calibration results archive

5 1000 1000 351360 17568 186 120 14640

Date, time Event (text) Parameter – old value Parameter – new value Number of analyses per entry Number of valid analyses Stream, gas type Superior calorific value Wobbe index Standard density Relative density Inferior calorific value Real gas factor Methane number Unnormalized sum Molar content of individual components (20) User values (20) Peak areas (20) Retention times (20) Retention times for basic calibration Response factors (20) Response factors for basic calibration (20) Peak start time (20) Peak end time (20) Total area

entries entries entries entries entries entries entries

• •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• •

• • • • • • • • • • • • • • • • •

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


DESIGN AND FUNCTIONS

...............................................................................................................................................................................................................

Archive as per the DSfG standard The DSfG archive is divided into the archive groups 1 through 23: AG

6

Designation

Content

Entries

1 3 5 7 9 11

Mean hourly values 1 Measured values 1 Mean hourly values 2 Mean daily values Mean monthly values Calibration gas 1

13 15 17 19

Reference gas 2 Long-term archive Mean analog values Mean hourly values 4

21 23

Reference gas 4 Log

Hs, rho, rd, N2, CO2, H2, status bit string Hs, rho, components, status bit string Hs, rho, components, status bit string Hs, rho, components, status bit string Hs, rho, components, status bit string Calibration results: ΔHs, Δrho, new response factors, calibration OK Hs, rho, components, status bit string Hs, rho, CO2, status bit string Analog values 1 through 16, status bit string Hi, Wo, Wl, MN, Zn, unnormalized sum, components Hs, rho, components, status bit string Event, Hs, rho, components

2280 960 2280 95 24 200 700 70848 2280 2280 700 2280

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


SAFETY INSTRUCTIONS

...............................................................................................................................................................................................................

Safety Instructions The analytical computer GC 9300 is used for controlling the analysis of the PGC measuring element CP 4900 and for the calculation of gas quality variables such as superior calorific value, standard volume or Wobbe index of the measured gases. The computer is also used for operation of the PGC 9300 and for the archiving of measured and calculated values. The GC 9300 complies with currently applicable standards and regulations. However, failure to operate it properly may cause hazards. Operating errors can destroy the measuring element of the PGC in particular.

7

The analytical computer is intended for installation in a control cabinet in the electronics compartment. Please observe the following signs: Danger of explosion In the manual, this symbol warns you of an explosion hazard. Please observe the instructions given next to this symbol. As to the danger of explosion, please note the following in particular:  The GC 9300 may not be used in areas subject to explosion hazards. It may only be installed in safe areas.  When connecting the measuring element, an external oxygen sensor or additional equipment in areas subject to explosion hazards, make sure that the appropriate explosion protection is provided for these components. If they are intrinsically safe devices, they must be electrically isolated when connected. Damage to property In the manual, this symbol warns you of possible damage to property. The instructions given next to this symbol inform you about what you can do to avoid damage to the analytical computer GC 9300 or to other components of the process gas chromatograph PGC 9300. In particular:  Make sure that all gas pipes to the measuring element and the measuring element itself are flushed before switching on the power supply. If there is still air in the piping or in the measuring element, this can lead to destruction of the measuring element. Please refer also to the operating instructions for the PGC measuring element CP 4900. It is essential to observe the warning information in these operating instructions and the generally applicable safety rules. No warranty claims can be asserted if there is unauthorized interference with the device!

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


INSTALLATION

...............................................................................................................................................................................................................

Installation Mounting The analytical computer GC 9300 is intended for mounting in a control cabinet in the Non-Ex area. It is mounted in a rack. The device dimensions are as follows: W x H x D = 213 x 128.4 x 310 mm (42 DU / 3 HU)

8 Caution The GC 9300 may not be used in areas subject to explosion hazards. It may only be installed in safe areas.

Electrical connections Device rear panel: X1

X2

X3

X4

X5

X6

X7

X9

X8

X10

1

A1+

1

A5+

1

A9+

1

S1+

1

I1e

1

I4e

1

E1+

1

E6+

1

E13+

1

E18+

2

A1-

2

A5-

2

A9-

2

S1-

2

I1e

2

I4e

2

E1-

2

E6-

2

E13-

2

E18-

3

A2+

3

A6+

3

A10+

3

S2+

3

I2e

3

I5e

3

E2+

3

E7+

3

E14+

3

E19+

4

A2-

4

A6-

4

A10-

4

S2-

4

I2e

4

I5e

4

E2-

4

E7-

4

E14-

4

E19-

5

A3+

5

A7+

5

A11+

5

S3+

5

I3e

5

I6e

5

E3+

5

E8+

5

A3-

6

A7-

6

A11-

6

S3-

6

I3e

6

I6e

6

E3-

6

E8-

E15+

5

6

E20+

6

E15-

6

E20-

7

A4+

7

A8+

7

A12+

7

S4+

7

t1+

7

I7e

7

E4+

7

E9+

8

A4-

8

A8-

8

A12-

8

S4-

8

t1s

8

I7e

8

E4-

8

E9-

7

E16+

7

9

AL+

9

WA+

9

E11+

9

E12+

9

t1s

9

I8e

9

E5+

9

E10+

8

E16-

8

10

AL-

10

WA-

10

E11-

10

E12-

10

t1-

10

I8e

10

E5-

10

E10-

9

E17+

9

E17- 10

10

F1

X11

X12

X13

X14

X15

X37

X38 X39

N PE

USB-D

PE

X16 RMG

COM6

COM5

L

COM1

24VDC F1=2A

100-230VAC F1=1,6A

COM2

COM3

COM4

COM7 X19

X18

Ethernet Nr. 2

Nr. 1

The connections are set up on the rear panel of the device. If the number of inputs/outputs is not sufficient, an add-on module (Wago) with additional digital and analog inputs and outputs can be connected via a serial RS 232 interface. The corresponding parameters can be found on the "Details" screen under "External I/O System".

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


INSTALLATION

...............................................................................................................................................................................................................

Pin assignment X1 1 2 3 4 5 6 7 8 9 10

A1+ A1A2+ A2A3+ A3A4+ A4AL+ AL-

Digital output 1 + Digital output 1 Digital output 2 + Digital output 2 Digital output 3 + Digital output 3 Digital output 4 + Digital output 4 Alarm contact + Alarm contact -

PGC: Valve stream 1 + PGC: Valve stream 1 PGC: Valve stream 2 + PGC: Valve stream 2 PGC: Valve stream 3 + PGC: Valve stream 3 PGC: Valve stream 4 + PGC: Valve stream 4 PGC: Alarm + PGC: Alarm -

X2 1 2 3 4 5 6 7 8 9 10

A5+ A5A6+ A6A7+ A7A8+ A8WA+ WA-

Digital output 5 + Digital output 5 Digital output 6 + Digital output 6 Digital output 7 + Digital output 7 Digital output 8 + Digital output 8 Warning contact + Warning contact -

Calibration gas valve Calibration gas valve Reference gas valve Reference gas valve Calibration running Calibration running Collective message for digital outputs 9 - 12 Collective message for digital outputs 9 - 12 PGC: Warning Contact closed in the event of a warning PGC: Warning

X3 1 2 3 4 5 6 7 8 9 10

A9+ A9A10+ A10A11+ A11A12+ A12E11+ E11-

Digital output 9 + Limit value exceeded analog value 1* Digital output 9 Limit value exceeded analog value 1* Digital output 10 + Limit value exceeded analog value 2* Digital output 10 Limit value exceeded analog value 2* Digital output 11 + Limit value exceeded analog value 3* Digital output 11 Limit value exceeded analog value 3* Digital output 12 + Limit value exceeded analog value 4* Digital output 12 Limit value exceeded analog value 4* Input 11 + (Note: passive input, Umax = 30 V) Input 11 – (Note: passive input, Umax = 30 V)

9

Contact closed in the event of an alarm

* The analog values under "Specialties“ can be monitored for limit values. Exceeding these limits leads to a warning or the setting of a signaling contact. ............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


INSTALLATION

...............................................................................................................................................................................................................

10

X4 1 2 3 4 5 6 7 8 9 10

X5 1 2 3 4 5 6 7 8 9 10

X6 1 2 3 4 5 6 7 8 9 10

S1+ S1S2+ S2S3+ S3S4+ S4E12+ E12-

Current output 1 + Current output 1 Current output 2 + Current output 2 Current output 3 + Current output 3 Current output 4 + Current output 4 Input 12 + (Note: passive input, Umax = 30 V) Input 12 – (Note: passive input, Umax = 30 V)

I1e I1e I2e I2e I3e I3e t1+ t1s t1s t1-

Polarity of current inputs depends on operating mode (active/passive). Current input 1 Carrier gas pressure – I (He) Current input 1 Carrier gas pressure – I (He) Current input 2 Measuring gas pressure Current input 2 Measuring gas pressure Current input 3 Current input 3 Temperature input 1 supply ++ Room temperature Temperature input 1 sense + Room temperature Temperature input 1 sense Room temperature Temperature input 1 supply -Room temperature

I4e I4e I5e I5e I6e I6e I7e I7e I8e I8e

Polarity of current inputs depends on operating mode (active/passive). Current input 4 Current input 4 Current input 5 Carrier gas pressure – II (argon) Current input 5 Carrier gas pressure – II (argon) Current input 6 Current input 6 Current input 7 / Temperature input 2 supply ++ Current input 7 / Temperature input 2 sense + Current input 8 / Temperature input 2 sense Current input 8 / Temperature input 2 supply --

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


INSTALLATION

...............................................................................................................................................................................................................

X7 1 2 3 4 5 6 7 8 9 10

E1+ E1E2+ E2E3+ E3E4+ E4E5+ E5-

Digital input 1 + Digital input 1 Digital input 2 + Digital input 2 Digital input 3 + Digital input 3 Digital input 4 + Digital input 4 Digital input 5 + Digital input 5 -

Pmin helium - 1 Pmin helium - 1 Pmin helium - 2 Pmin helium - 2 Pmin calibration gas Pmin calibration gas Pmin test gas Pmin test gas Tmin calibration gas Tmin calibration gas

X8 1 2 3 4 5 6 7 8 9 10

E6+ E6E7+ E7E8+ E8E9+ E9E10+ E10-

Digital input 6 + Digital input 6 Digital input 7 + Digital input 7 Digital input 8 + Digital input 8 Digital input 9 + Digital input 9 Digital input 10 + Digital input 10 -

Tmin test gas Tmin test gas Pmax high-pressure reduction stream - 1 Pmax high-pressure reduction stream - 1 Pmax high-pressure reduction stream - 2 Pmax high-pressure reduction stream - 2 Pmax high-pressure reduction stream - 3 Pmax high-pressure reduction stream - 3 Pmax high-pressure reduction stream - 4 Pmax high-pressure reduction stream - 4

X9 1 2 3 4 5 6 7 8 9 10

E13+ E13E14+ E14E15+ E15E16+ E16E17+ E17-

Digital input 13 + Digital input 13 Digital input 14 + Digital input 14 Digital input 15 + Digital input 15 Digital input 16 + Digital input 16 Digital input 17 + Digital input 17 -

Valve control stream – 1 Valve control stream – 1 Valve control stream – 2 Valve control stream – 2 Valve control stream – 3 Valve control stream – 3 Valve control stream – 4 Valve control stream – 4 Alarm input Alarm input

11

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


INSTALLATION

...............................................................................................................................................................................................................

12

X10 1 2 3 4 5 6 7 8 9 10

E13+ E13E14+ E14E15+ E15-

Digital input 18 + Digital input 18 Digital input 19 + Digital input 19 Digital input 20 + Digital input 20 Not allocated Not allocated Not allocated Not allocated

Pmin argon - 1 Pmin argon – 1 Pmin argon – 2 Pmin argon – 2 Warning input Warning input

Power supply X16

230 V/AC version L 100 – 230 V Not allocated N 100 – 230 V PE Potential equalization

24 V/DC version Not allocated + + 24 V - 24 V PE Potential equalization

Network interfaces X18: Ethernet interface 1 X19: Ethernet interface 2

For connection with the measuring element CP 4900 For connection of a PC or to a local network

Serial interfaces X11: X12: X13: X14: X15: X37: X38:

COM 1 COM 2 COM 3 COM 4 COM 5 COM 6 COM 7

RS 232 / RS 485* RS 232 / RS 485* RS 232 / RS 485* RS 232 / RS 485* RS 232 RS 232 RS 232

Modbus RTU / Modbus ASCII WAGO-IO / GPS 170 DSfG / Modbus RTU / Modbus ASCII / RMG-Bus DSfG / RMG-Bus Modbus RTU / Modbus ASCII Modbus RTU / Modbus ASCII / RMG-Bus Modbus RTU / Modbus ASCII

* configurable in the device with jumpers, delivery state in bold text.

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


STARTUP

...............................................................................................................................................................................................................

Startup Establishing the connection with the PC A crossover network cable is required for the direct connection between the analytical computer and a PC. A standard network cable is required for connection to a hub.

13

Switching on the device Caution Make sure that all gas pipes to the measuring element and the measuring element itself are flushed before switching on the power supply for the measuring element. If there is still air in the supply pipes or in the measuring element, this can lead to destruction of the column modules. Remove the air from the system as described in the manual for the measuring element CP 4900. After the power supply is switched on, the PGC 9300 performs automatic calibration provided the operating mode is not set to STOP. Initial calibration is normally successful and the analytical computer switches to analysis operation directly after calibration. Parameters can only be changed once this initial calibration has been completed. If initial calibration is unsuccessful, a second calibration is carried out immediately afterwards. If this calibration also fails, operation stops automatically.

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


OPERATION

...............................................................................................................................................................................................................

Operation Touchscreen operation The touchscreen allows easy operation via a graphical and largely self-explanatory user interface. The "Home" button brings you back to the start screen from anywhere in the menu.

14

Operate the touchscreen directly using your fingers or use the supplied plastic stylus. Never use hard or sharp objects such as screwdrivers or pencils. These may scratch or tear the protective film of the touchscreen.

Start screen

The start screen provides an overview of the current status of the PGC. It contains the following: − 4 LED icons (fault, warning, hint, connected), which indicate the fault status of the PGC as well as the status of the connection to the measuring element. − Information as to whether the user lock or calibration switch is open. − Readiness indicator (READY for "ready", INITIALIZING for "initializing measuring element" or FLUSHING for "flushing measuring element") − Device date and time − Analysis status for gas streams S1 through S4 as well as reference gas and calibration gas. − Software version The icons have the following meanings for the analysis status: Green: Gas stream is connected and is currently being analyzed. Blue: Gas stream is not connected.

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


OPERATION

...............................................................................................................................................................................................................

If the gas stream icons are gray, this means that the gas stream is not available for the current device version. S1, Ref and Cal are always available.

If the gas stream icons are green, this means that the last analysis of this gas stream was faultless. Yellow: There is currently no measurement result for this gas stream. Red: The last analysis was faulty.

15

The individual screens are arranged like tabs. They represent the top operating menu level and are accessed using the buttons at the top of the screen. The following screens are available: GC9300 Data Graph State Service User Details Archives Log DSfG Fault

Start screen Results of the last analysis Chromatograms and trends Status indicators, e.g. column temperature Service functions User-specific display List of all measured values and parameters of the GC 9300 Display of the archive entries Display of the logs Display of the DSfG archives Display of fault messages with date and time

Data: Results of the last analysis

The results of the last analysis are displayed on this screen. The molar content of the gas components is displayed in the window on the right and the resulting calculated values such as superior calorific value, standard density and Wobbe index are shown in the window on the left. If calculation of the methane number is activated, this is also shown here.

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


OPERATION

...............................................................................................................................................................................................................

In the selection field at the top left of the screen you can select the analysis result to be displayed. The following options are available:

16

Next Stream-1 Stream-2 Stream-3 Stream-4 REF-Gas Cal.-Gas

Result of the last analysis, irrespective of gas stream or gas type. Measuring gas from gas stream 1 Measuring gas from gas stream 2 Measuring gas from gas stream 3 Measuring gas from gas stream 4 Last reference gas analysis Last calibration gas analysis

Graphic: Chromatogram of the last analysis

The chromatograms, i.e. the signal curves of the last analysis are displayed on the "Graphic" screen. As previously described under "Data", the gas stream or gas type is selected in the selection field at the top left of the screen. There is an additional "rejected" option for analyses that were not successfully completed and whose result is therefore not displayed under "Data". Two or three column modules can be mounted in the measuring element. For each of these modules there is a curve. The curves can be displayed individually or together. Zoom: The scale of the graphic can be changed. Using the stylus, touch the light blue graphic field and drag a rectangle by moving the stylus. The area inside the rectangle is then enlarged. To return to the original default scale, click "Undo Zoom".

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


OPERATION

...............................................................................................................................................................................................................

Status: Status indicators, e.g. column temperature

17

For entries in the Maintenance Book, you will find variables such as pressure and temperature for columns 1 through 3 here as well as the input pressures for measuring gas and carrier gas. For some applications an additional, second carrier gas is used.

Service: Service functions

The service functions can be used to make very specific settings or start functions: Service (front panel) The following functions can be selected and started when the calibration switch is open by clicking the "Execute" button: − Calibrational commissioning: Commissioning for custody transfer application − Stop GC/start Windows explorer: Exits the GC program − Reboot device − Download ERRORLOG.TXT from analyzer

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


OPERATION

...............................................................................................................................................................................................................

− Import multilevel:

Imports column-specific parameters from the basic calibrations − Calc block-crcs: A checksum over the custody transfer parameters is calculated for each menu item under "Details" Caution: These functions have an enormous impact on the mode of operation and are therefore reserved for RMG service personnel.

18

User The following functions can be selected and started by clicking the "Execute" button: − Touch calibrate: Calibration is performed according to the operating system instructions and is used for correct assignment of the contact points to the graphic elements. Contrast Setting:

Slide switch for adjusting the image contrast

User: User-specific display

For ease of operation, the User screen has an option that allows you to combine 20 freely selectable, frequently required measured values for faster display. The values are selected on the "Details" screen under "User/Screen". The corresponding Modbus address must then be entered for each display value. This can be found by navigating to the respective variable on the "Details" screen and clicking on it. The change is not applied until after the GC 9300 is restarted.

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


OPERATION

...............................................................................................................................................................................................................

Details: List of all measured values and parameters of the GC 9300

19

Here you will find a list of all measured values, parameters and operating modes. The values are arranged in three levels and can also be changed from this menu. The navigation for the top two levels is displayed in the window on the left and the respective parameters and measured values are then shown in the window on the right. When you click on a parameter in the window on the right, a window for changing the parameter opens:

This window contains either fields for entering numerical values or selection fields for changing modes, depending on the parameter type. The above example shows how the operating mode can be changed in this way. The yellow field underneath contains a brief description of the parameter with additional instructions if necessary. The "-" and "+" buttons bring you to the previous or next parameter in the current level. If a numerical value or text has to be entered, a keyboard opens as soon as you click on the corresponding input field:

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


OPERATION

...............................................................................................................................................................................................................

20

Archive: Display of the archive entries

You can view all archive entries on this screen. A record with gas components and calculated variables can be displayed on this screen. The desired data can be filtered out as follows using the selection fields:

Selection field on left: All All performed analyses, i.e. also calibration and reference gas S1 Gas stream 1 S2 Gas stream 2 S3 Gas stream 3 S4 Gas stream 4 Ref Reference gas Cal Calibration gas Skip Analyses that are not used (e.g. failed)

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


OPERATION

...............................................................................................................................................................................................................

Selection field in middle: Each Analysis Display of the individual analyses Hour Display of the mean hourly values Day Display of the mean daily values Month Display of the mean monthly values

Selection field on the right: A calendar field opens, in which the date of the archived data can be selected.

21

With the -100, -10, -1, +1, +10 and +100 buttons you can jump forward and back one, ten or hundred entries.

Log: Display of the logs

The log for the PGC is displayed on this screen. In the selection field on the right you can toggle between the following: Events: All events such as incoming or outgoing alarms with date and time, for example Parameters: All parameter changes with date and time

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


OPERATION

...............................................................................................................................................................................................................

Fault: Display of fault messages with date and time

22

All of the most recent faults that have not yet been acknowledged are displayed. Fault messages that are no longer important (yellow) can be deleted here. Faults with a red background are alarms (A), i.e. the custody transfer measurement is faulty; faults with an orange background are warnings (W), i.e. the custody transfer measurement is not affected; hints (H) are information that is not related to faults. The tab is displayed in color if another screen is displayed: Light blue: no fault; Yellow: warning; Red: alarm.

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


OPERATION

...............................................................................................................................................................................................................

Operating Examples Entering a user code When changing a large number of parameters, you must first enter the user code. The default setting is 99999999. Proceed as follows:  Open the "Details" screen and scroll down in the window on the left until "User" appears.  Click on the word "User", then on "Codeword" in the window on the right.  Enter the user code using the displayed keyboard.  Confirm your input by clicking the "OK" button.  Click the "Apply" button.  Click the "Back" button to exit the parameterization window.

23

Changing the operating mode To change the operating mode, you must first enter the user code. Stay on the "Details" screen and proceed as follows:  Scroll up to the top of the window on the left.  Click on "GC9300 Mode".  Click on "Operating Mode" in the window on the right.  Select the desired operating mode in the selection field.  Click the "Apply" button.  Click the "Back" button to exit the parameterization window. The following operating modes are available: AUTORUN Normal analysis operation. One analysis is performed after another, interrupted by automatic calibration. STOP Measurement and calibration operation are disabled. BASIC-CAL Basic calibration for startup and for RMG service. Basic calibration may not be carried out during normal analysis operation. NORM-CAL Manual calibration, which can be started at any time and has the same effect as automatic calibration and also takes 30 minutes. AUTORUN is activated automatically after calibration. REF-GAS Reference gas analysis, i.e. the reference input for the analysis of test gas or a gas sample is connected. The PGC remains in this mode until it is changed again. After the operating mode is changed, the analysis or calibration currently being performed is ended and switchover takes place directly afterwards.

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


OPERATION

...............................................................................................................................................................................................................

Programming the current output

24

To change the operating mode, you must first enter the user code. Stay on the "Details" screen and proceed as follows:  On the "Details" screen, navigate to the measured value that you wish to output via the current output.  In the window on the right, click on the name of the measured value to read the Modbus address on the parameterization screen. Click "Back" to exit the parameterization screen.  In the window on the left, scroll to "Inputs and Outputs" and click on it.  Scroll down and select one of the four current outputs.  In the window on the right, click on "Operating Mode" and select the desired operating mode of the current output, e.g. 4-20 mA.  In the window on the right, click on "Select" and enter the Modbus address of the measured value to be output under "Select" on the parameterization screen.  Finally, enter the limits. "Phys. Min. Value" is the measured value for which the minimum current (0 or 4 mA) is to be output, while "Phys. Max. Value" is the measured value for the maximum current (20 mA).  The limit value violation should be set to "WARNING" provided the current output is not being used for custody transfer.

Reading out values for the Maintenance Book entry The following values must be read out for the entry in the Maintenance Book: − Carrier gas pressure − Measuring gas pressure − Column temperature − Column pressure These values can be found on the "Details" screen:  In the window on the left, select "Measuring Element/Pressure of Gas for Analysis". The measuring gas pressure is displayed on the right in the first line.  In the window on the left, select "Measuring Element/Carrier Gas-I". The carrier gas pressure is displayed on the right in the first line.  In the window on the left, select "Measuring Element/Channel-I". The pressure and temperature for column 1 are displayed in the window on the right.  In "Measuring Element/Channel-2" and "Measuring Element/Channel-3" you can find the values for other columns.

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


OPERATION

...............................................................................................................................................................................................................

Viewing and Reading Out Archives with an Internet Browser If there is a TCP/IP connection between a PC and the analytical computer, the archives can be read out with any Internet Browser and the archive content displayed. The archive content can be saved in the file formats html and csv. The abbreviation "csv" stands for "character-separated values", a format that can be read by MS Excel. Data is read out and viewed from the following window:

25

The gas streams or gas types are selected on the left, the period is selected on the right and the file format is selected at the bottom.

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


OPERATION

...............................................................................................................................................................................................................

Fault Messages Fault messages are categorized as follows: A Alarms Custody transfer measurement faults W Warnings Non-custody transfer function faults H Hints Messages without faults

26

Alarms Fault number Internal DSfG 1 7001 2 7002 3 424 4

Type A A A A

9 10 11 12 13 14 15 16 17 20 21

407 7010 7011 7012 7013 621 622 623 624 7020 7021

A A A A A A A A A A A

50 51 52 53 54 55 80 81 82

7050 7051 7052 7053 7080 7081 7082

A A A A A A A A A

83 84 85 86 87

7083 7084 7085 7086 7087

A A A A A

88 89 90 91 92 93 94 95 96 97

7088 7089 7090 7091 7092 7093 7094 7095 7096 7097

A A A A A A A A A A

Text

Description

Config file incorrect ERR_CAN_WRITE A/D converter range

Conflict in parameter assignment/software Device bus error A/D converter collective fault message for current inputs 1 through 8 Registry data type Error reading a value from the registry. Value does not have the expected data type. Power failure Temporary power failure T1 open circuit Open circuit room temperature measurement T2 open circuit Open circuit room temperature measurement 2 Temp.-1 min / max Room temperature measurement error Temp.-2 min / max Room temperature measurement 2 error Current out.-1 limit Current output 1: Measured value outside of limits Current out.-2 limit Current output 2: Measured value outside of limits Current out.-3 limit Current output 3: Measured value outside of limits Current out.-4 limit Current output 4: Measured value outside of limits ISO conditions Input variables for ISO 6976 outside of permitted limits GPA conditions Input variables for GPA 2172-96 outside of permitted limits Measuring element timeout Measuring element no longer responding Chromatogram (FTP) Error during chromatogram transfer Max. measuring time Specified maximum analysis time exceeded Incorrect meas. el. number Incorrect measuring element connected Too many peaks Too many peaks in the chromatogram Unnamed peak too early The first unknown peak occurs within the analysis time Ana: Nitrogen Analysis: Nitrogen content outside of permitted limits Ana: Methane Analysis: Methane content outside of permitted limits Ana: Carbon dioxide Analysis: Carbon dioxide content outside of permitted limits Ana: Ethane Analysis: Ethane content outside of permitted limits Ana: Propane Analysis: Propane content outside of permitted limits Ana: i-Butane Analysis: i-Butane content outside of permitted limits Ana: n-Butane Analysis: n-Butane content outside of permitted limits Ana: Neopentane Analysis: Neopentane content outside of permitted limits Ana: i-Pentane Analysis: i-Pentane content outside of permitted limits Ana: n-Pentane Analysis: n-Pentane content outside of permitted limits Ana: C6+ Analysis: C6+ content outside of permitted limits Ana: n-Hexane Analysis: n-Hexane content outside of permitted limits Ana: n-Heptane Analysis: n-Heptane content outside of permitted limits Ana: n-Octane Analysis: n-Octane content outside of permitted limits Ana: n-Nonane Analysis: n-Nonane content outside of permitted limits Ana: Oxygen Analysis: Oxygen content outside of permitted limits Ana: Helium Analysis: Helium content outside of permitted limits Ana: Hydrogen Analysis: Hydrogen content outside of permitted limits

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


OPERATION

...............................................................................................................................................................................................................

98 99 100

7098 7099 609

A A A

Ana: Argon Ana: Reserve Cal: Retention time

101

610

A

Cal: Response factor

102

608

A

Cal: Unnorm. sum.

103 104

7103 7104

A A

Cal: Total area Cal: Concentration

105

7105

A

Cal: Hs limit value

106 107 120

7106 7107 7120

A A A

Cal: Rho limit value Cal: CO2 limit value Ana: Retention time

121 122

7121 7122

A A

Ana: Unnorm. sum. Ana: Concentration

123

7123

A

Ana: Hs min/max

124 125 126 127 130 131

7124 7125 7126 7127 7130 7131

A A A A A A

Ana: Wo min/max Ana: MN min/max Ana: rd min/max Ana: Rho min/max Meas. gas P-min/max Carrier gas pressure-I

132

7132

A

Carrier gas pressure-II

Analysis: Argon content outside of permitted limits (reserve for future functions) Calibration: At least one retention time outside of permitted limits Calibration: At least one response factor outside of permitted limits Calibration: Unnormalized sum outside of permitted limits Calibration: Total area outside of permitted limits Calibration: Collective message for limit value violation of components Calibration: Superior calorific value outside of permitted limits Calibration: Standard density outside of permitted limits Calibration: CO2 content outside of permitted limits Analysis: At least one retention time outside of permitted limits Analysis: Unnormalized sum outside of permitted limits Analysis: Collective message for limit value violation of components Analysis: Superior calorific value outside of permitted limits Analysis: Standard density outside of permitted limits Analysis: Methane number outside of permitted limits Analysis: Relative density outside of permitted limits Analysis: Standard density outside of permitted limits Measuring gas pressure outside of permitted limits Carrier gas pressure 1 (helium) outside of permitted limits Carrier gas pressure 2 (argon) outside of permitted limits

27

Warnings Fault number Internal DSfG 150 7150

Type

Text

Description

W

Cal: Concentration

Calibration: Collective message for limit value violation of components Analysis: Collective message for limit value violation of components Room temperature measurement error (reserve for future functions) Current output 1: Measured value outside of limits Current output 2: Measured value outside of limits Current output 3: Measured value outside of limits Current output 4: Measured value outside of limits Warning for digital input 1, text programmable Warning for digital input 2, text programmable Warning for digital input 3, text programmable Warning for digital input 4, text programmable Warning for digital input 5, text programmable Warning for digital input 6, text programmable Warning for digital input 7, text programmable Warning for digital input 8, text programmable Warning for digital input 9, text programmable Warning for digital input 10, text programmable

151

7151

W

Ana: Concentration

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167

W W W W W W W W W W W W W W W W

Temp.-1 min / max Temp.-2 min / max Current out.-1 limit Current out.-2 limit Current out.-3 limit Current out.-4 limit #DiWarnText_0 #DiWarnText_1 #DiWarnText_2 #DiWarnText_3 #DiWarnText_4 #DiWarnText_5 #DiWarnText_6 #DiWarnText_7 #DiWarnText_8 #DiWarnText_9

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


OPERATION

...............................................................................................................................................................................................................

28

168 169 170 171 172 173 174 175 176 177 178

7168 7169

179

W W W W W W W W W W W W

180 181 182

7180 7181 7182

W W W

183 184 185 186 187

7183 7184 7185 7186 7187

W W W W W

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199

W W W W W W W W W W W W W W W

#DiWarnText_10 #DiWarnText_11 #DiWarnText_12 #DiWarnText_13 #DiWarnText_14 #DiWarnText_15 #DiWarnText_16 #DiWarnText_17 #DiWarnText_18 #DiWarnText_19 Analog in limit value

Warning for digital input 11, text programmable Warning for digital input 12, text programmable Warning for digital input 13, text programmable Warning for digital input 14, text programmable Warning for digital input 15, text programmable Warning for digital input 16, text programmable Warning for digital input 17, text programmable Warning for digital input 18, text programmable Warning for digital input 19, text programmable Warning for digital input 20, text programmable For analog values (Specialties 10.1.x), a contact can be set or a warning can be generated. Limit value H2S sum Hydrogen sulfide value (analog input) above permitted limit Ana: Nitrogen Analysis: Nitrogen content outside of permitted limits Ana: Methane Analysis: Methane content outside of permitted limits Ana: Carbon dioxide Analysis: Carbon dioxide content outside of permitted limits Ana: Ethane Analysis: Ethane content outside of permitted limits Ana: Propane Analysis: Propane content outside of permitted limits Ana: i-Butane Analysis: i-Butane content outside of permitted limits Ana: n-Butane Analysis: n-Butane content outside of permitted limits Ana: Neopentane Analysis: Neopentane content outside of permitted limits Ana: i-Pentane Analysis: i-Pentane content outside of permitted limits Ana: n-Pentane Analysis: n-Pentane content outside of permitted limits Ana: C6+ Analysis: C6+ content outside of permitted limits Ana: n-Hexane Analysis: n-Hexane content outside of permitted limits Ana: n-Heptane Analysis: n-Heptane content outside of permitted limits Ana: n-Octane Analysis: n-Octane content outside of permitted limits Ana: n-Nonane Analysis: n-Nonane content outside of permitted limits Ana: Oxygen Analysis: Oxygen content outside of permitted limits Ana: Helium Analysis: Helium content outside of permitted limits Ana: Hydrogen Analysis: Hydrogen content outside of permitted limits Ana: Argon Analysis: Argon content outside of permitted limits Ana: Reserve (reserve for future functions) Measuring gas pressure Measuring gas pressure outside of permitted limits Measuring element timeout Measuring element not responding Calib. C6p start time No start condition for C6+ was found in the calibration gas.

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


OPERATION

...............................................................................................................................................................................................................

Hints Fault number Internal DSfG 220 221 7201 222 223 230 231 232 233

Type H H H H H H H H

Text

Description

MN input values Valves fixed Test mode Cal: Default values Calibration lock Codeword Old time New time

Input values for methane number calculation incorrect Mode with fixed valves (for service only) is set PGC runs with recorded data; no analysis Sum of components in calibration gas not 100% Calibration switch open Codeword entered Last time before the change First time after the change

29

Some messages are listed as both alarms and warnings. − For the current outputs, you can specify whether they are to be used for custody transfer (alarm) or not (warning). − For the limit values there are both warning limits (can be set freely via user code) and alarm limits (can only be set via calibration switch).

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


TECHNICAL DATA

...............................................................................................................................................................................................................

Technical Data

30

Housing 19“ slot Dimensions Ambient temperature

W x H x D = 213 x 128.4 x 310 mm (42 DU / 3 HU) -20 to 55 °C

Power Power supply Power requirement

24 V/DC -10%/+15% 25 W

Control panel Control buttons Display

Hardware Embedded PC Display

Memory SD card

1 button (HOME) LCD touchscreen 640 x 240 dots 256 colors CPU ARM1176 533 MHz 128 MB RAM 64 MB Flash 4 GB

Operating system Windows CE 6.0 Digital inputs Number Umax Imax fmax Surge protection

20 5V 13 mA 10 Hz 6.8 V

Digital outputs Number Umax Imax Pmax Surge protection

12 24 V 100 mA 100 mW 33 V

Current inputs Number Resolution Umax Ri Surge protection

8 20-bit 2.5 V 250 ohms 6.8 V

............................................................................................................................................................................................................... Manual GC 9300 · EN06 · 2013-03


TECHNICAL DATA

...............................................................................................................................................................................................................

Current outputs Number Resolution Load Surge protection Data interfaces Ethernet (2x) LAN 1 LAN 2

4 12-bit 700 ohms 33 V

RMG network, measuring element connection DHCP server, DHCP client or fixed IP address Operator network DHCP client or fixed IP address

USB (2x) Front Rear panel

For mouse, ext. hard disk or keyboard For connection of a PC

Serial (7x) COM 1 to COM 4 COM 5 COM 6 and COM 7

RS 232 / RS 485, configurable by jumpers RS 232, with handshake for modem or printer RS 232

31

............................................................................................................................................................................................................... Manual GC 9300 路 EN06 路 2013-03


01 GC9300 Mode

ANNEX

...............................................................................................................................................................................................................

Annex List of Parameters The following table lists all parameters, which can be found on the "Details" tab. The first column shows exactly the same tree structure as found in the device. The letters in the second column represent the access variants of the respective parameter. They have the following meanings:

32

A: P: E: C: N:

Display values which cannot be changed. Permanent display values which cannot be changed and are retained following a restart. Custody transfer parameters which can only be changed if the calibration switch is open. User parameters which can be changed via the user code. Free parameters which can be changed without calibration switch or user code.

Element

Modb.

Description

A

1000

Heading

├ Operating Mode │ │ │ │ │ │ │ │ │ │ │ │ │ │

C

1001

{AUTORUN|STOP|BASIC-CAL|NORM­CAL|REFGAS} Setting for the operating mode of the PGC 9300. Changes do not take effect until the current analysis has been completed. AUTORUN: Normal analysis operation, interrupted by automatic calibration STOP: Analyses are stopped BASIC-CAL: Only on startup or after service activity (requires open calibration switch). Calculates comparison variables for "normal" calibration. NORM-CAL.: Non-standard manual calibration. Ref-Gas: Analysis of the gas connected to the reference gas input, e.g. test gas.

├ Curr. Op. Mode │ │ │ │ │

A

1002

{AUTORUN|STOP|BASIC-CAL| NORMCAL|REF-GAS|READY| WAIT} Current operating mode of the PGC. Also: READY: Device is ready WAIT: Device is currently executing computing processes, e.g. initialization.

├ First Cal. Successful │ │

A

1003

{NO|YES} Indicates whether the first calibration after startup was successful (YES/NO).

├ Failed Cal. Cycles

A

1004

Number of failed calibrations.

├ First Analysis Completed │ │ │

A

1005

{NO|YES} Indicates whether the first measuring gas analysis after startup is completed (YES/NO, irrespective of fault status).

└ First Ref. Gas Analysis

A

1006

{NO|YES} Indicates whether the first reference gas analysis after startup is completed (YES/NO, irrespective of fault status).

" 01 GC9300 Mode

Unit

............................................................................................................................................................................................................... -


01 GC9300 Mode

ANNEX

...............................................................................................................................................................................................................

Element

Modb.

Description

A

1007

Heading

├ Multistream Mode │ │ │ │ │ │ │ │

E

1008

{OFF|ON} Multistream operating mode OFF or ON. For Multistream ON, the parameters for stream 1 through stream 4 (Skip and Measurements) must be entered. For Multistream, the list is processed from the top down. Stream-1 Skip, Stream-1 Measurements, Stream-2 Skip, Stream-2 Measurements etc.

├ Stream-1 Skip │ │ │

E

1009

Number of sample measurements for stream 1. Skip refers to the number of measurements that do not have to be taken into account after a stream change (can also be zero).

├ Stream-1 Measurements │ │

E

1010

Number of measurements for stream 1. Measurements refers to the number of actual measurements (can also be zero).

├ Stream-2 Skip │ │ │

E

1011

Number of sample measurements for stream 2. Skip refers to the number of measurements that do not have to be taken into account after a stream change (can also be zero).

├ Stream-2 Measurements │ │

E

1012

Number of measurements for stream 2. Measurements refers to the number of actual measurements (can also be zero).

├ Stream-3 Skip │ │ │

E

1013

Number of sample measurements for stream 3. Skip refers to the number of measurements that do not have to be taken into account after a stream change (can also be zero).

├ Stream-3 Measurements │ │

E

1014

Number of measurements for stream 3. Measurements refers to the number of actual measurements (can also be zero).

├ Stream-4 Skip │ │ │

E

1015

Number of sample measurements for stream 4. Skip refers to the number of measurements that do not have to be taken into account after a stream change (can also be zero).

├ Stream-4 Measurements │ │

E

1016

Number of measurements for stream 4. Measurements refers to the number of actual measurements (can also be zero).

├ Seq. Number │ │ │

A

1017

Counts the number of measurements for the currently active stream. (Skip or Measurements) The next stream change is triggered with this number.

└ Multistream Info

A

5820

Information as to which stream is currently being measured.

A

1018

Heading

E

1019

Maximum number of reference gas analyses. The measuring gas analysis is then continued.

" Multistream

" Ref.-Gas ├ Maximum Number │

Unit

33

............................................................................................................................................................................................................... -


01 GC9300 Mode

ANNEX

...............................................................................................................................................................................................................

Element

Modb.

Description

A

1020

Number of reference gas analyses already performed.

A

1021

Heading

├ Averaging from │

E

1022

First calibration gas analysis used for calibration. The previous analyses are discarded.

├ Number of Calibration │ Runs

E

1023

Specified number of all calibration gas analyses per calibration.

├ Seq. Number │

A

1024

Number of calibration gas analyses already performed.

└ Cal. Runs Used

A

1025

Number of calibration gas analyses already performed used for calibration.

A

1026

Heading

1027

Binary display of the channel whose results are currently displayed.

└ Seq. Number " Cal.-Gas

34

" Status

Unit

├ Calculated Channel │

A

hex

├ Activated Valve │ │ │

A

1028

{Stream-1|Stream-2|Stream-3|Stream-4|REFGAS|Cal.-Gas|OFF} Currently activated gas (Stream­1/Stream­2/ Stream-3/Stream-4/REF-GAS/Cal.-Gas/OFF).

├ Current Channel │ │ │ │

A

1029

{Stream-1|Stream-2|Stream-3|Stream-4|REFGAS|Cal.-Gas|None} Display of the channel currently being measured (Stream-1/Stream-2/Stream-3/Stream-4/REFGAS/Cal.-Gas/None).

├ Number of Analyses │ │ │ │ │ │ │

P

3000

Number of measuring gas, reference gas and calibration gas analyses. (0 - 99999999) This counter is incremented at the end of the mathematics (evaluation of the analysis). All results for this analysis are available after the counter has been increased. The stream number of the current analysis provides further information.

├ Analyis finished │ │ │

C

1922

{NO|YES} This flag shows that an analysis is finished. This flag can be resetted by the user or by the GC9300 after a specified time (FlagResetTime).

├ Resettime analysis-flag │ │ │ │

C

1923

After the time specified here (in seconds), the analysis flag (AnalyisFinished) is resetted. If this time is set to zero, the flag will not be resetted automatically. In this case it must be resetted by the user.

├ Stream-1 Pressure │ │ │

A

1619

{OK, ERROR} Measuring gas pressure for stream 1. This value is only updated when the valve for stream 1 is connected.

├ Stream-2 Pressure │ │ │

A

1620

{OK, ERROR} Measuring gas pressure for stream 2. This value is only updated when the valve for stream 2 is connected.

............................................................................................................................................................................................................... -


02 Current Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ Stream-3 Pressure │ │ │

A

1621

{OK, ERROR} Measuring gas pressure for stream 3. This value is only updated when the valve for stream 3 is connected.

├ Stream-4 Pressure │ │ │

A

1622

{OK, ERROR} Measuring gas pressure for stream 4. This value is only updated when the valve for stream 4 is connected.

├ Ref.Gas Pressure │ │ │

A

1623

{OK, ERROR} Reference gas pressure: This value is only updated when the valve for reference gas is connected.

└ Cal.-Gas Pressure

A

1624

{OK, ERROR} Calibration gas pressure: This value is only updated when the valve for calibration gas is connected.

A

1618

Heading

├ LastValveTime

A

3200

Timestamp: Valve was connected

├ Analysis started

A

3202

Timestamp: Analysis was started

├ Analysis finished

A

3204

Timestamp: Analysis was ended

├ Analysis finished: hours

A

1916

Timestamp (hour): Analysis was ended

├ Analysis finished: minutes

A

1917

Timestamp (minute): Analysis was ended

├ Analysis finished: seconds

A

1918

Timestamp (second): Analysis was ended

├ Analysis finished: day

A

1919

Timestamp (day): Analysis was ended

├ Analysis finished: month

A

1920

Timestamp (month): Analysis was ended

├ Analysis finished: year

A

1921

Timestamp (year): Analysis was ended

└ GC Thread

A

3194

Timestamp: GC Thread was called (utility for fault diagnosis)

A

1030

Heading

├ Stream # │ │ │

A

1031

{Stream-1|Stream-2|Stream-3|Stream-4| REFGAS|Cal.-Gas|OFF} Channel (stream or gas) for which the current values are valid.

├ Timestamp

A

5000

Date and time of last measurement

├ Filename │ │

A

5020

Filename under which the chromatogram for the last measurement is saved (= date and time of this measurement).

├ Stream Status │ │ │ │ │ │

A

1032

{OK|FAULT|UNPROCESSED} Status of the last measurement for this channel OK: Last measurement was successful FAULT: A fault occurred during the last measurement UNPROCESSED: This stream was not yet measured.

" Times

" 02 Current Values

YMDhms

35

............................................................................................................................................................................................................... -


02 Current Values

ANNEX

...............................................................................................................................................................................................................

Element

36

Unit

Modb.

Description

├ Superior Calorific Value │

A

&UnitHs

7000

Superior calorific value from the last analysis performed

├ Wobbe Index

A

&UnitHs

7002

Wobbe index from the last analysis performed

├ rho │

A

kg/m3

7004

Standard density from the last analysis performed

├ rd │ │

A

7006

Relative density (standard density divided by standard density of air) from the last analysis performed

├ Hi │

A

&UnitHs

7008

Inferior calorific value from the last analysis performed

├ Wl │

A

&UnitHs

7010

Lower Wobbe index (calculated from the inferior calorific value) from the last analysis performed

├ Zn │

A

7012

Real gas factor (in standard condition) from the last analysis performed

├ Methane Number │

A

7014

Methane number from the last analysis performed

└ Unnorm. Sum

A

7016

Unnormalized sum of the components (before normalization to 100%) from the last analysis performed

" Current Content

A

1033

Heading

├ Nitrogen │

A

mol%

8000

Molar content of nitrogen (after normalization) from the last analysis performed

├ Methane │

A

mol%

8002

Molar content of methane (after normalization) from the last analysis performed

├ Carbon Dioxide │

A

mol%

8004

Molar content of carbon dioxide (after normalization) from the last analysis performed

├ Ethane │

A

mol%

8006

Molar content of ethane (after normalization) from the last analysis performed

├ Propane │

A

mol%

8008

Molar content of propane (after normalization) from the last analysis performed

├ i-Butane │

A

mol%

8010

Molar content of i-butane (after normalization) from the last analysis performed

├ n-Butane │

A

mol%

8012

Molar content of n-butane (after normalization) from the last analysis performed

├ Neopentane │

A

mol%

8014

Molar content of neopentane (after normalization) from the last analysis performed

├ i-Pentane │

A

mol%

8016

Molar content of i-pentane (after normalization) from the last analysis performed

├ n-Pentane │

A

mol%

8018

Molar content of n-pentane (after normalization) from the last analysis performed

├ C6+ │

A

mol%

8020

Molar content of C6+ (after normalization) from the last analysis performed

├ n-Hexane │

A

mol%

8022

Molar content of n-hexane (after normalization) from the last analysis performed

............................................................................................................................................................................................................... -


02 Current Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ n-Heptane │

A

mol%

8024

Molar content of n-heptane (after normalization) from the last analysis performed

├ n-Octane │

A

mol%

8026

Molar content of n-octane (after normalization) from the last analysis performed

├ n-Nonane │

A

mol%

8028

Molar content of n-nonane (after normalization) from the last analysis performed

├ Oxygen │

A

mol%

8030

Molar content of oxygen (after normalization) from the last analysis performed

├ Helium │

A

mol%

8032

Molar content of helium (after normalization) from the last analysis performed

├ Hydrogen │

A

mol%

8034

Molar content of hydrogen (after normalization) from the last analysis performed

├ Argon │

A

mol%

8036

Molar content of argon (after normalization) from the last analysis performed

└ Reserve

A

mol%

8038

Molar content of reserve (after normalization) from the last analysis performed

" Current Areas

A

1034

Heading

├ Nitrogen

A

8050

Peak area for nitrogen in the chromatogram

├ Methane

A

8052

Peak area for methane in the chromatogram

├ Carbon Dioxide │

A

8054

Peak area for carbon dioxide in the chromatogram

├ Ethane

A

8056

Peak area for ethane in the chromatogram

├ Propane

A

8058

Peak area for propane in the chromatogram

├ i-Butane

A

8060

Peak area for i-butane in the chromatogram

├ n-Butane

A

8062

Peak area for n-butane in the chromatogram

├ Neopentane

A

8064

Peak area for neopentane in the chromatogram

├ i-Pentane

A

8066

Peak area for i-pentane in the chromatogram

├ n-Pentane

A

8068

Peak area for n-pentane in the chromatogram

├ C6+

A

8070

Peak area for C6+ in the chromatogram

├ n-Hexane

A

8072

Peak area for n-hexane in the chromatogram

├ n-Heptane

A

8074

Peak area for n-heptane in the chromatogram

├ n-Octane

A

8076

Peak area for n-octane in the chromatogram

├ n-Nonane

A

8078

Peak area for n-nonane in the chromatogram

├ Oxygen

A

8080

Peak area for oxygen in the chromatogram

├ Helium

A

8082

Peak area for helium in the chromatogram

├ Hydrogen

A

8084

Peak area for hydrogen in the chromatogram

├ Argon

A

8086

Peak area for argon in the chromatogram

└ Reserve

A

8088

Peak area for reserve in the chromatogram

" Current Times

A

1035

Heading

├ ST Nitrogen │

A

s

8100

Peak start time for nitrogen (lower limit of integration)

├ RT Nitrogen │

A

s

8150

Retention time (cycle time through the column) for nitrogen

37

............................................................................................................................................................................................................... -


02 Current Values

ANNEX

...............................................................................................................................................................................................................

Element

38

Unit

Modb.

Description

├ ET Nitrogen │

A

s

8200

Peak end time for nitrogen (upper limit of integration)

├ ST Methane │

A

s

8102

Peak start time for methane (lower limit of integration)

├ RT Methane │

A

s

8152

Retention time (cycle time through the column) for methane

├ ET Methane │

A

s

8202

Peak end time for methane (upper limit of integration)

├ ST Carbon Dioxide │

A

s

8104

Peak start time for carbon dioxide (lower limit of integration)

├ RT Carbon Dioxide │

A

s

8154

Retention time (cycle time through the column) for carbon dioxide

├ ET Carbon Dioxide │

A

s

8204

Peak end time for carbon dioxide (upper limit of integration)

├ ST Ethane │

A

s

8106

Peak start time for ethane (lower limit of integration)

├ RT Ethane │

A

s

8156

Retention time (cycle time through the column) for ethane

├ ET Ethane │

A

s

8206

Peak end time for ethane (upper limit of integration)

├ ST Propane │

A

s

8108

Peak start time for propane (lower limit of integration)

├ RT Propane │

A

s

8158

Retention time (cycle time through the column) for propane

├ ET Propane │

A

s

8208

Peak end time for propane (upper limit of integration)

├ ST i-Butane │

A

s

8110

Peak start time for i-butane (lower limit of integration)

├ RT i-Butane │

A

s

8160

Retention time (cycle time through the column) for i-butane

├ ET i-Butane │

A

s

8210

Peak end time for i-butane (upper limit of integration)

├ ST n-Butane │

A

s

8112

Peak start time for n-butane (lower limit of integration)

├ RT n-Butane │

A

s

8162

Retention time (cycle time through the column) for n-butane

├ ET n-Butane │

A

s

8212

Peak end time for n-butane (upper limit of integration)

├ ST Neopentane │

A

s

8114

Peak start time for neopentane (lower limit of integration)

├ RT Neopentane │

A

s

8164

Retention time (cycle time through the column) for neopentane

├ ET Neopentane │

A

s

8214

Peak end time for neopentane (upper limit of integration)

............................................................................................................................................................................................................... -


02 Current Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ ST i-Pentane │

A

s

8116

Peak start time for i-pentane (lower limit of integration)

├ RT i-Pentane │

A

s

8166

Retention time (cycle time through the column) for i-pentane

├ ET i-Pentane │

A

s

8216

Peak end time for i-pentane (upper limit of integration)

├ ST n-Pentane │

A

s

8118

Peak start time for n-pentane (lower limit of integration)

├ RT n-Pentane │

A

s

8168

Retention time (cycle time through the column) for n-pentane

├ ET n-Pentane │

A

s

8218

Peak end time for n-pentane (upper limit of integration)

├ ST C6+ │

A

s

8120

Peak start time for C6+ (lower limit of integration)

├ RT C6+ │

A

s

8170

Retention time (cycle time through the column) for C6+

├ ET C6+ │

A

s

8220

Peak end time for C6+ (upper limit of integration)

├ ST n-Hexane │

A

s

8122

Peak start time for n-hexane (lower limit of integration)

├ RT n-Hexane │

A

s

8172

Retention time (cycle time through the column) for n-hexane

├ ET n-Hexane │

A

s

8222

Peak end time for n-hexane (upper limit of integration)

├ ST n-Heptane │

A

s

8124

Peak start time for n-heptane (lower limit of integration)

├ RT n-Heptane │

A

s

8174

Retention time (cycle time through the column) for n-heptane

├ ET n-Heptane │

A

s

8224

Peak end time for n-heptane (upper limit of integration)

├ ST n-Octane │

A

s

8126

Peak start time for n-octane (lower limit of integration)

├ RT n-Octane │

A

s

8176

Retention time (cycle time through the column) for n-octane

├ ET n-Octane │

A

s

8226

Peak end time for n-octane (upper limit of integration)

├ ST n-Nonane │

A

s

8128

Peak start time for n-nonane (lower limit of integration)

├ RT n-Nonane │

A

s

8178

Retention time (cycle time through the column) for n-nonane

├ ET n-Nonane │

A

s

8228

Peak end time for n-nonane (upper limit of integration)

├ ST Oxygen │

A

s

8130

Peak start time for oxygen (lower limit of integration)

39

............................................................................................................................................................................................................... -


03 Stream-1 Values

ANNEX

...............................................................................................................................................................................................................

Element

40

Unit

Modb.

Description

├ RT Oxygen │

A

s

8180

Retention time (cycle time through the column) for oxygen

├ ET Oxygen │

A

s

8230

Peak end time for oxygen (upper limit of integration)

├ ST Helium │

A

s

8132

Peak start time for helium (lower limit of integration)

├ RT Helium │

A

s

8182

Retention time (cycle time through the column) for helium

├ ET Helium │

A

s

8232

Peak end time for helium (upper limit of integration)

├ ST Hydrogen │

A

s

8134

Peak start time for hydrogen (lower limit of integration)

├ RT Hydrogen │

A

s

8184

Retention time (cycle time through the column) for hydrogen

├ ET Hydrogen │

A

s

8234

Peak end time for hydrogen (upper limit of integration)

├ ST Argon │

A

s

8136

Peak start time for argon (lower limit of integration)

├ RT Argon │

A

s

8186

Retention time (cycle time through the column) for argon

├ ET Argon │

A

s

8236

Peak end time for argon (upper limit of integration)

├ ST Reserve │

A

s

8138

Peak start time for reserve (lower limit of integration)

├ RT Reserve │

A

s

8188

Retention time (cycle time through the column) for reserve

└ ET Reserve

A

s

8238

Peak end time for reserve (upper limit of integration)

A

1036

Heading

├ Stream # │ │ │ │

A

1037

{Stream-1|Stream-2|Stream-3|Stream4|REF­GAS|Cal.-Gas|OFF} Channel (stream or gas) for which the following values are valid (Stream-1 /OFF) For Modbus calls.

├ Timestamp

A

5040

Date and time of last measurement for stream 1

├ Filename │ │

A

5060

Filename under which the chromatogram for the last measurement for stream 1 is saved (= date and time of this measurement).

├ Stream Status │ │ │ │ │ │

A

1038

{OK|FAULT|UNPROCESSED} Status of the last measurement for stream 1 OK: Last measurement was successful FAULT: A fault occurred during the last measurement UNPROCESSED: This stream was not yet measured.

" 03 Stream-1 Values

YMDhms

............................................................................................................................................................................................................... -


03 Stream-1 Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ Superior Calorific Value │

A

&UnitHs

7020

Superior calorific value from the last measuring gas analysis performed for stream 1

├ Wobbe Index │

A

&UnitHs

7022

Wobbe index from the last measuring gas analysis performed for stream 1

├ rho │

A

kg/m3

7024

Standard density from the last measuring gas analysis performed for stream 1

├ rd │ │

A

7026

Relative density (standard density divided by standard density of air) from the last measuring gas analysis performed for stream 1

├ Hi │

A

&UnitHs

7028

Inferior calorific value from the last measuring gas analysis performed for stream 1

├ Wl │ │

A

&UnitHs

7030

Lower Wobbe index (calculated from the inferior calorific value) from the last measuring gas analysis performed for stream 1

├ Zn │ │

A

7032

Real gas factor (in standard condition) from the last measuring gas analysis performed for stream 1

├ Methane Number │

A

7034

Methane number from the last measuring gas analysis performed for stream 1

└ Unnorm. Sum

A

7036

Unnormalized sum of the components (before normalization to 100%) from the last measuring gas analysis performed for stream 1

" Content

A

1039

Heading

├ Nitrogen │ │

A

mol%

8250

Molar content of nitrogen (after normalization) from the last measuring gas analysis performed for stream 1

├ Methane │ │

A

mol%

8252

Molar content of methane (after normalization) from the last measuring gas analysis performed for stream 1

├ Carbon Dioxide │ │

A

mol%

8254

Molar content of carbon dioxide (after normalization) from the last measuring gas analysis performed for stream 1

├ Ethane │ │

A

mol%

8256

Molar content of ethane (after normalization) from the last measuring gas analysis performed for stream 1

├ Propane │ │

A

mol%

8258

Molar content of propane (after normalization) from the last measuring gas analysis performed for stream 1

├ i-Butane │ │

A

mol%

8260

Molar content of i-butane (after normalization) from the last measuring gas analysis performed for stream 1

├ n-Butane │ │

A

mol%

8262

Molar content of n-butane (after normalization) from the last measuring gas analysis performed for stream 1

├ Neopentane │ │

A

mol%

8264

Molar content of neopentane (after normalization) from the last measuring gas analysis performed for stream 1

41

............................................................................................................................................................................................................... -


03 Stream-1 Values

ANNEX

...............................................................................................................................................................................................................

Element

42

Unit

Modb.

Description

├ i-Pentane │ │

A

mol%

8266

Molar content of i-pentane (after normalization) from the last measuring gas analysis performed for stream 1

├ n-Pentane │ │

A

mol%

8268

Molar content of n-pentane (after normalization) from the last measuring gas analysis performed for stream 1

├ C6+ │ │

A

mol%

8270

Molar content of C6+ (after normalization) from the last measuring gas analysis performed for stream 1

├ n-Hexane │ │

A

mol%

8272

Molar content of n-hexane (after normalization) from the last measuring gas analysis performed for stream 1

├ n-Heptane │ │

A

mol%

8274

Molar content of n-heptane (after normalization) from the last measuring gas analysis performed for stream 1

├ n-Octane │ │

A

mol%

8276

Molar content of n-octane (after normalization) from the last measuring gas analysis performed for stream 1

├ n-Nonane │ │

A

mol%

8278

Molar content of n-nonane (after normalization) from the last measuring gas analysis performed for stream 1

├ Oxygen │ │

A

mol%

8280

Molar content of oxygen (after normalization) from the last measuring gas analysis performed for stream 1

├ Helium │ │

A

mol%

8282

Molar content of helium (after normalization) from the last measuring gas analysis performed for stream 1

├ Hydrogen │ │

A

mol%

8284

Molar content of hydrogen (after normalization) from the last measuring gas analysis performed for stream 1

├ Argon │ │

A

mol%

8286

Molar content of argon (after normalization) from the last measuring gas analysis performed for stream 1

└ Reserve

A

mol%

8288

Molar content of reserve (after normalization) from the last measuring gas analysis performed for stream 1

A

1040

Heading

├ Nitrogen │

A

8300

Peak area for nitrogen in the chromatogram from the last analysis for stream 1

├ Methane │

A

8302

Peak area for methane in the chromatogram from the last analysis for stream 1

├ Carbon Dioxide │ │

A

8304

Peak area for carbon dioxide in the chromatogram from the last analysis for stream 1

├ Ethane │

A

8306

Peak area for ethane in the chromatogram from the last analysis for stream 1

" Areas

............................................................................................................................................................................................................... -


03 Stream-1 Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ Propane │

A

8308

Peak area for propane in the chromatogram from the last analysis for stream 1

├ i-Butane │

A

8310

Peak area for i-butane in the chromatogram from the last analysis for stream 1

├ n-Butane │

A

8312

Peak area for n-butane in the chromatogram from the last analysis for stream 1

├ Neopentane │

A

8314

Peak area for neopentane in the chromatogram from the last analysis for stream 1

├ i-Pentane │

A

8316

Peak area for i-pentane in the chromatogram from the last analysis for stream 1

├ n-Pentane │

A

8318

Peak area for n-pentane in the chromatogram from the last analysis for stream 1

├ C6+ │

A

8320

Peak area for C6+ in the chromatogram from the last analysis for stream 1

├ n-Hexane │

A

8322

Peak area for n-hexane in the chromatogram from the last analysis for stream 1

├ n-Heptane │

A

8324

Peak area for n-heptane in the chromatogram from the last analysis for stream 1

├ n-Octane │

A

8326

Peak area for n-octane in the chromatogram from the last analysis for stream 1

├ n-Nonane │

A

8328

Peak area for n-nonane in the chromatogram from the last analysis for stream 1

├ Oxygen │

A

8330

Peak area for oxygen in the chromatogram from the last analysis for stream 1

├ Helium │

A

8332

Peak area for helium in the chromatogram from the last analysis for stream 1

├ Hydrogen │

A

8334

Peak area for hydrogen in the chromatogram from the last analysis for stream 1

├ Argon │

A

8336

Peak area for argon in the chromatogram from the last analysis for stream 1

└ Reserve

A

8338

Peak area for reserve in the chromatogram from the last analysis for stream 1

A

1041

Heading

" Times ├ ST Nitrogen │

A

s

8350

Peak start time for nitrogen (lower limit of integration) from the last analysis for stream 1

├ RT Nitrogen │

A

s

8400

Retention time (cycle time through the column) for nitrogen from the last analysis for stream 1

├ ET Nitrogen │

A

s

8450

Peak end time for nitrogen (upper limit of integration) from the last analysis for stream 1

├ ST Methane │

A

s

8352

Peak start time for methane (lower limit of integration) from the last analysis for stream 1

├ RT Methane │

A

s

8402

Retention time (cycle time through the column) for methane from the last analysis for stream 1

├ ET Methane │

A

s

8452

Peak end time for methane (upper limit of integration) from the last analysis for stream 1

43

............................................................................................................................................................................................................... -


03 Stream-1 Values

ANNEX

...............................................................................................................................................................................................................

Element

44

Unit

Modb.

Description

├ ST Carbon Dioxide │

A

s

8354

Peak start time for carbon dioxide (lower limit of integration) from the last analysis for stream 1

├ RT Carbon Dioxide │ │

A

s

8404

Retention time (cycle time through the column) for carbon dioxide from the last analysis for stream 1

├ ET Carbon Dioxide │

A

s

8454

Peak end time for carbon dioxide (upper limit of integration) from the last analysis for stream 1

├ ST Ethane │

A

s

8356

Peak start time for ethane (lower limit of integration) from the last analysis for stream 1

├ RT Ethane │

A

s

8406

Retention time (cycle time through the column) for ethane from the last analysis for stream 1

├ ET Ethane │

A

s

8456

Peak end time for ethane (upper limit of integration) from the last analysis for stream 1

├ ST Propane │

A

s

8358

Peak start time for propane (lower limit of integration) from the last analysis for stream 1

├ RT Propane │

A

s

8408

Retention time (cycle time through the column) for propane from the last analysis for stream 1

├ ET Propane │

A

s

8458

Peak end time for propane (upper limit of integration) from the last analysis for stream 1

├ ST i-Butane │

A

s

8360

Peak start time for i-butane (lower limit of integration) from the last analysis for stream 1

├ RT i-Butane │

A

s

8410

Retention time (cycle time through the column) for i-butane from the last analysis for stream 1

├ ET i-Butane │

A

s

8460

Peak end time for i-butane (upper limit of integration) from the last analysis for stream 1

├ ST n-Butane │

A

s

8362

Peak start time for n-butane (lower limit of integration) from the last analysis for stream 1

├ RT n-Butane │

A

s

8412

Retention time (cycle time through the column) for n-butane from the last analysis for stream 1

├ ET n-Butane │

A

s

8462

Peak end time for n-butane (upper limit of integration) from the last analysis for stream 1

├ ST Neopentane │

A

s

8364

Peak start time for neopentane (lower limit of integration) from the last analysis for stream 1

├ RT Neopentane │ │

A

s

8414

Retention time (cycle time through the column) for neopentane from the last analysis for stream 1

├ ET Neopentane │

A

s

8464

Peak end time for neopentane (upper limit of integration) from the last analysis for stream 1

├ ST i-Pentane │

A

s

8366

Peak start time for i-pentane (lower limit of integration) from the last analysis for stream 1

├ RT i-Pentane │

A

s

8416

Retention time (cycle time through the column) for i-pentane from the last analysis for stream 1

├ ET i-Pentane │

A

s

8466

Peak end time for i-pentane (upper limit of integration) from the last analysis for stream 1

├ ST n-Pentane │

A

s

8368

Peak start time for n-pentane (lower limit of integration) from the last analysis for stream 1

............................................................................................................................................................................................................... -


03 Stream-1 Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ RT n-Pentane │

A

s

8418

Retention time (cycle time through the column) for n-pentane from the last analysis for stream 1

├ ET n-Pentane │

A

s

8468

Peak end time for n-pentane (upper limit of integration) from the last analysis for stream 1

├ ST C6+ │

A

s

8370

Peak start time for C6+ (lower limit of integration) from the last analysis for stream 1

├ RT C6+ │

A

s

8420

Retention time (cycle time through the column) for C6+ from the last analysis for stream 1

├ ET C6+ │

A

s

8470

Peak end time for C6+ (upper limit of integration) from the last analysis for stream 1

├ ST n-Hexane │

A

s

8372

Peak start time for n-hexane (lower limit of integration) from the last analysis for stream 1

├ RT n-Hexane │

A

s

8422

Retention time (cycle time through the column) for n-hexane from the last analysis for stream 1

├ ET n-Hexane │

A

s

8472

Peak end time for n-hexane (upper limit of integration) from the last analysis for stream 1

├ ST n-Heptane │

A

s

8374

Peak start time for n-heptane (lower limit of integration) from the last analysis for stream 1

├ RT n-Heptane │

A

s

8424

Retention time (cycle time through the column) for n-heptane from the last analysis for stream 1

├ ET n-Heptane │

A

s

8474

Peak end time for n-heptane (upper limit of integration) from the last analysis for stream 1

├ ST n-Octane │

A

s

8376

Peak start time for n-octane (lower limit of integration) from the last analysis for stream 1

├ RT n-Octane │

A

s

8426

Retention time (cycle time through the column) for n-octane from the last analysis for stream 1

├ ET n-Octane │

A

s

8476

Peak end time for n-octane (upper limit of integration) from the last analysis for stream 1

├ ST n-Nonane │

A

s

8378

Peak start time for n-nonane (lower limit of integration) from the last analysis for stream 1

├ RT n-Nonane │

A

s

8428

Retention time (cycle time through the column) for n-nonane from the last analysis for stream 1

├ ET n-Nonane │

A

s

8478

Peak end time for n-nonane (upper limit of integration) from the last analysis for stream 1

├ ST Oxygen │

A

s

8380

Peak start time for oxygen (lower limit of integration) from the last analysis for stream 1

├ RT Oxygen │

A

s

8430

Retention time (cycle time through the column) for oxygen from the last analysis for stream 1

├ ET Oxygen │

A

s

8480

Peak end time for oxygen (upper limit of integration) from the last analysis for stream 1

├ ST Helium │

A

s

8382

Peak start time for helium (lower limit of integration) from the last analysis for stream 1

├ RT Helium │

A

s

8432

Retention time (cycle time through the column) for helium from the last analysis for stream 1

45

............................................................................................................................................................................................................... -


04 Stream-2 Values

ANNEX

...............................................................................................................................................................................................................

Element

46

Unit

Modb.

Description

├ ET Helium │

A

s

8482

Peak end time for helium (upper limit of integration) from the last analysis for stream 1

├ ST Hydrogen │

A

s

8384

Peak start time for hydrogen (lower limit of integration) from the last analysis for stream 1

├ RT Hydrogen │

A

s

8434

Retention time (cycle time through the column) for hydrogen from the last analysis for stream 1

├ ET Hydrogen │

A

s

8484

Peak end time for hydrogen (upper limit of integration) from the last analysis for stream 1

├ ST Argon │

A

s

8386

Peak start time for argon (lower limit of integration) from the last analysis for stream 1

├ RT Argon │

A

s

8436

Retention time (cycle time through the column) for argon from the last analysis for stream 1

├ ET Argon │

A

s

8486

Peak end time for argon (upper limit of integration) from the last analysis for stream 1

├ ST Reserve │

A

s

8388

Peak start time for reserve (lower limit of integration) from the last analysis for stream 1

├ RT Reserve │

A

s

8438

Retention time (cycle time through the column) for reserve from the last analysis for stream 1

└ ET Reserve

A

s

8488

Peak end time for reserve (upper limit of integration) from the last analysis for stream 1

" 04 Stream-2 Values

A

1042

Heading

├ Stream # │ │ │ │

A

1043

{Stream-1|Stream-2|Stream-3|Stream-4|REFGAS|Cal.-Gas|OFF} Channel (stream or gas) for which the current values are valid (Stream-2/OFF) For Modbus calls.

├ Timestamp

A

5080

Date and time of last measurement for stream 2

├ Filename │ │

A

5100

Filename under which the chromatogram for the last measurement for stream 2 is saved. (= date and time of this measurement)

├ Stream Status │ │ │ │ │ │

A

1044

{OK|FAULT|UNPROCESSED} Status of the last measurement for stream 2 OK: Last measurement was successful FAULT: A fault occurred during the last measurement UNPROCESSED: This stream was not yet measured.

├ Superior Calorific Value │

A

&UnitHs

7040

Superior calorific value from the last measuring gas analysis performed for stream 2

├ Wobbe Index │

A

&UnitHs

7042

Wobbe index from the last measuring gas analysis performed for stream 2

├ rho │

A

kg/m3

7044

Standard density from the last measuring gas analysis performed for stream 2

├ rd │ │

A

7046

Relative density (standard density divided by standard density of air) from the last measuring gas analysis performed for stream 2

YMDhms

............................................................................................................................................................................................................... -


04 Stream-2 Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ Hi │

A

&UnitHs

7048

Inferior calorific value from the last measuring gas analysis performed for stream 2

├ Wl │ │

A

&UnitHs

7050

Lower Wobbe index (calculated from the inferior calorific value) from the last measuring gas analysis performed for stream 2

├ Zn │ │

A

7052

Real gas factor (in standard condition) from the last measuring gas analysis performed for stream 2

├ Methane Number │

A

7054

Methane number from the last measuring gas analysis performed for stream 2

└ Unnorm. Sum

A

7056

Unnormalized sum of the components (before normalization to 100%) from the last measuring gas analysis performed for stream 2

" Content

A

1045

Heading

├ Nitrogen │ │

A

mol%

8500

Molar content of nitrogen (after normalization) from the last measuring gas analysis performed for stream 2

├ Methane │ │

A

mol%

8502

Molar content of methane (after normalization) from the last measuring gas analysis performed for stream 2

├ Carbon Dioxide │ │

A

mol%

8504

Molar content of carbon dioxide (after normalization) from the last measuring gas analysis performed for stream 2

├ Ethane │ │

A

mol%

8506

Molar content of ethane (after normalization) from the last measuring gas analysis performed for stream 2

├ Propane │ │

A

mol%

8508

Molar content of propane (after normalization) from the last measuring gas analysis performed for stream 2

├ i-Butane │ │

A

mol%

8510

Molar content of i-butane (after normalization) from the last measuring gas analysis performed for stream 2

├ n-Butane │ │

A

mol%

8512

Molar content of n-butane (after normalization) from the last measuring gas analysis performed for stream 2

├ Neopentane │ │

A

mol%

8514

Molar content of neopentane (after normalization) from the last measuring gas analysis performed for stream 2

├ i-Pentane │ │

A

mol%

8516

Molar content of i-pentane (after normalization) from the last measuring gas analysis performed for stream 2

├ n-Pentane │ │

A

mol%

8518

Molar content of n-pentane (after normalization) from the last measuring gas analysis performed for stream 2

├ C6+ │ │

A

mol%

8520

Molar content of C6+ (after normalization) from the last measuring gas analysis performed for stream 2

47

............................................................................................................................................................................................................... -


04 Stream-2 Values

ANNEX

...............................................................................................................................................................................................................

Element

48

Unit

Modb.

Description

├ n-Hexane │ │

A

mol%

8522

Molar content of n-hexane (after normalization) from the last measuring gas analysis performed for stream 2

├ n-Heptane │ │

A

mol%

8524

Molar content of n-heptane (after normalization) from the last measuring gas analysis performed for stream 2

├ n-Octane │ │

A

mol%

8526

Molar content of n-octane (after normalization) from the last measuring gas analysis performed for stream 2

├ n-Nonane │ │

A

mol%

8528

Molar content of n-nonane (after normalization) from the last measuring gas analysis performed for stream 2

├ Oxygen │ │

A

mol%

8530

Molar content of oxygen (after normalization) from the last measuring gas analysis performed for stream 2

├ Helium │ │

A

mol%

8532

Molar content of helium (after normalization) from the last measuring gas analysis performed for stream 2

├ Hydrogen │ │

A

mol%

8534

Molar content of hydrogen (after normalization) from the last measuring gas analysis performed for stream 2

├ Argon │ │

A

mol%

8536

Molar content of argon (after normalization) from the last measuring gas analysis performed for stream 2

└ Reserve

A

mol%

8538

Molar content of reserve (after normalization) from the last measuring gas analysis performed for stream 2

A

1046

Heading

├ Nitrogen │

A

8550

Peak area for nitrogen in the chromatogram from the last analysis for stream 2

├ Methane │

A

8552

Peak area for methane in the chromatogram from the last analysis for stream 2

├ Carbon Dioxide │ │

A

8554

Peak area for carbon dioxide in the chromatogram from the last analysis for stream 2

├ Ethane │

A

8556

Peak area for ethane in the chromatogram from the last analysis for stream 2

├ Propane │

A

8558

Peak area for propane in the chromatogram from the last analysis for stream 2

├ i-Butane │

A

8560

Peak area for i-butane in the chromatogram from the last analysis for stream 2

├ n-Butane │

A

8562

Peak area for n-butane in the chromatogram from the last analysis for stream 2

├ Neopentane │

A

8564

Peak area for neopentane in the chromatogram from the last analysis for stream 2

├ i-Pentane │

A

8566

Peak area for i-pentane in the chromatogram from the last analysis for stream 2

" Areas

............................................................................................................................................................................................................... -


04 Stream-2 Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ n-Pentane │

A

8568

Peak area for n-pentane in the chromatogram from the last analysis for stream 2

├ C6+ │

A

8570

Peak area for C6+ in the chromatogram from the last analysis for stream 2

├ n-Hexane │

A

8572

Peak area for n-hexane in the chromatogram from the last analysis for stream 2

├ n-Heptane │

A

8574

Peak area for n-heptane in the chromatogram from the last analysis for stream 2

├ n-Octane │

A

8576

Peak area for n-octane in the chromatogram from the last analysis for stream 2

├ n-Nonane │

A

8578

Peak area for n-nonane in the chromatogram from the last analysis for stream 2

├ Oxygen │

A

8580

Peak area for oxygen in the chromatogram from the last analysis for stream 2

├ Helium │

A

8582

Peak area for helium in the chromatogram from the last analysis for stream 2

├ Hydrogen │

A

8584

Peak area for hydrogen in the chromatogram from the last analysis for stream 2

├ Argon │

A

8586

Peak area for argon in the chromatogram from the last analysis for stream 2

└ Reserve

A

8588

Peak area for reserve in the chromatogram from the last analysis for stream 2

A

1047

Heading

" Times ├ ST Nitrogen │

A

s

8600

Peak start time for nitrogen (lower limit of integration) from the last analysis for stream 2

├ RT Nitrogen │

A

s

8650

Retention time (cycle time through the column) for nitrogen from the last analysis for stream 2

├ ET Nitrogen │

A

s

8700

Peak end time for nitrogen (upper limit of integration) from the last analysis for stream 2

├ ST Methane │

A

s

8602

Peak start time for methane (lower limit of integration) from the last analysis for stream 2

├ RT Methane │

A

s

8652

Retention time (cycle time through the column) for methane from the last analysis for stream 2

├ ET Methane │

A

s

8702

Peak end time for methane (upper limit of integration) from the last analysis for stream 2

├ ST Carbon Dioxide │

A

s

8604

Peak start time for carbon dioxide (lower limit of integration) from the last analysis for stream 2

├ RT Carbon Dioxide │ │

A

s

8654

Retention time (cycle time through the column) for carbon dioxide from the last analysis for stream 2

├ ET Carbon Dioxide │

A

s

8704

Peak end time for carbon dioxide (upper limit of integration) from the last analysis for stream 2

├ ST Ethane │

A

s

8606

Peak start time for ethane (lower limit of integration) from the last analysis for stream 2

49

............................................................................................................................................................................................................... -


04 Stream-2 Values

ANNEX

...............................................................................................................................................................................................................

Element

50

Unit

Modb.

Description

├ RT Ethane │

A

s

8656

Retention time (cycle time through the column) for ethane from the last analysis for stream 2

├ ET Ethane │

A

s

8706

Peak end time for ethane (upper limit of integration) from the last analysis for stream 2

├ ST Propane │

A

s

8608

Peak start time for propane (lower limit of integration) from the last analysis for stream 2

├ RT Propane │

A

s

8658

Retention time (cycle time through the column) for propane from the last analysis for stream 2

├ ET Propane │

A

s

8708

Peak end time for propane (upper limit of integration) from the last analysis for stream 2

├ ST i-Butane │

A

s

8610

Peak start time for i-butane (lower limit of integration) from the last analysis for stream 2

├ RT i-Butane │

A

s

8660

Retention time (cycle time through the column) for i-butane from the last analysis for stream 2

├ ET i-Butane │

A

s

8710

Peak end time for i-butane (upper limit of integration) from the last analysis for stream 2

├ ST n-Butane │

A

s

8612

Peak start time for n-butane (lower limit of integration) from the last analysis for stream 2

├ RT n-Butane │

A

s

8662

Retention time (cycle time through the column) for n-butane from the last analysis for stream 2

├ ET n-Butane │

A

s

8712

Peak end time for n-butane (upper limit of integration) from the last analysis for stream 2

├ ST Neopentane │

A

s

8614

Peak start time for neopentane (lower limit of integration) from the last analysis for stream 2

├ RT Neopentane │ │

A

s

8664

Retention time (cycle time through the column) for neopentane from the last analysis for stream 2

├ ET Neopentane │

A

s

8714

Peak end time for neopentane (upper limit of integration) from the last analysis for stream 2

├ ST i-Pentane │

A

s

8616

Peak start time for i-pentane (lower limit of integration) from the last analysis for stream 2

├ RT i-Pentane │

A

s

8666

Retention time (cycle time through the column) for i-pentane from the last analysis for stream 2

├ ET i-Pentane │

A

s

8716

Peak end time for i-pentane (upper limit of integration) from the last analysis for stream 2

├ ST n-Pentane │

A

s

8618

Peak start time for n-pentane (lower limit of integration) from the last analysis for stream 2

├ RT n-Pentane │

A

s

8668

Retention time (cycle time through the column) for n-pentane from the last analysis for stream 2

├ ET n-Pentane │

A

s

8718

Peak end time for n-pentane (upper limit of integration) from the last analysis for stream 2

├ ST C6+ │

A

s

8620

Peak start time for C6+ (lower limit of integration) from the last analysis for stream 2

├ RT C6+ │

A

s

8670

Retention time (cycle time through the column) for C6+ from the last analysis for stream 2

............................................................................................................................................................................................................... -


04 Stream-2 Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ ET C6+ │

A

s

8720

Peak end time for C6+ (upper limit of integration) from the last analysis for stream 2

├ ST n-Hexane │

A

s

8622

Peak start time for n-hexane (lower limit of integration) from the last analysis for stream 2

├ RT n-Hexane │

A

s

8672

Retention time (cycle time through the column) for n-hexane from the last analysis for stream 2

├ ET n-Hexane │

A

s

8722

Peak end time for n-hexane (upper limit of integration) from the last analysis for stream 2

├ ST n-Heptane │

A

s

8624

Peak start time for n-heptane (lower limit of integration) from the last analysis for stream 2

├ RT n-Heptane │

A

s

8674

Retention time (cycle time through the column) for n-heptane from the last analysis for stream 2

├ ET n-Heptane │

A

s

8724

Peak end time for n-heptane (upper limit of integration) from the last analysis for stream 2

├ ST n-Octane │

A

s

8626

Peak start time for n-octane (lower limit of integration) from the last analysis for stream 2

├ RT n-Octane │

A

s

8676

Retention time (cycle time through the column) for n-octane from the last analysis for stream 2

├ ET n-Octane │

A

s

8726

Peak end time for n-octane (upper limit of integration) from the last analysis for stream 2

├ ST n-Nonane │

A

s

8628

Peak start time for n-nonane (lower limit of integration) from the last analysis for stream 2

├ RT n-Nonane │

A

s

8678

Retention time (cycle time through the column) for n-nonane from the last analysis for stream 2

├ ET n-Nonane │

A

s

8728

Peak end time for n-nonane (upper limit of integration) from the last analysis for stream 2

├ ST Oxygen │

A

s

8630

Peak start time for oxygen (lower limit of integration) from the last analysis for stream 2

├ RT Oxygen │

A

s

8680

Retention time (cycle time through the column) for oxygen from the last analysis for stream 2

├ ET Oxygen │

A

s

8730

Peak end time for oxygen (upper limit of integration) from the last analysis for stream 2

├ ST Helium │

A

s

8632

Peak start time for helium (lower limit of integration) from the last analysis for stream 2

├ RT Helium │

A

s

8682

Retention time (cycle time through the column) for helium from the last analysis for stream 2

├ ET Helium │

A

s

8732

Peak end time for helium (upper limit of integration) from the last analysis for stream 2

├ ST Hydrogen │

A

s

8634

Peak start time for hydrogen (lower limit of integration) from the last analysis for stream 2

├ RT Hydrogen │

A

s

8684

Retention time (cycle time through the column) for hydrogen from the last analysis for stream 2

├ ET Hydrogen │

A

s

8734

Peak end time for hydrogen (upper limit of integration) from the last analysis for stream 2

51

............................................................................................................................................................................................................... -


05 Stream-3 Values

ANNEX

...............................................................................................................................................................................................................

Element

52

Unit

Modb.

Description

├ ST Argon │

A

s

8636

Peak start time for argon (lower limit of integration) from the last analysis for stream 2

├ RT Argon │

A

s

8686

Retention time (cycle time through the column) for argon from the last analysis for stream 2

├ ET Argon │

A

s

8736

Peak end time for argon (upper limit of integration) from the last analysis for stream 2

├ ST Reserve │

A

s

8638

Peak start time for reserve (lower limit of integration) from the last analysis for stream 2

├ RT Reserve │

A

s

8688

Retention time (cycle time through the column) for reserve from the last analysis for stream 2

└ ET Reserve

A

s

8738

Peak end time for reserve (upper limit of integration) from the last analysis for stream 2

A

1048

Heading

├ Stream # │ │ │ │

A

1049

{Stream-1|Stream-2|Stream-3|Stream4|REF­GAS|Cal.-Gas|OFF} Channel (stream or gas) for which the current values are valid (Stream-3/OFF) For Modbus calls.

├ Timestamp

A

5120

Date and time of last measurement for stream 3

├ Filename │ │

A

5140

Filename under which the chromatogram for the last measurement for stream 3 is saved (= date and time of this measurement).

├ Stream Status │ │ │ │ │ │

A

1050

{OK|FAULT|UNPROCESSED} Status of the last measurement for stream 3 OK: Last measurement was successful FAULT: A fault occurred during the last measurement UNPROCESSED: This stream was not yet measured.

├ Superior Calorific Value │

A

&UnitHs

7060

Superior calorific value from the last measuring gas analysis performed for stream 3

├ Wobbe Index │

A

&UnitHs

7062

Wobbe index from the last measuring gas analysis performed for stream 3

├ rho │

A

kg/m3

7064

Standard density from the last measuring gas analysis performed for stream 3

├ rd │ │

A

7066

Relative density (standard density divided by standard density of air) from the last measuring gas analysis performed for stream 3

├ Hi │

A

&UnitHs

7068

Inferior calorific value from the last measuring gas analysis performed for stream 3

├ Wl │ │

A

&UnitHs

7070

Lower Wobbe index (calculated from the inferior calorific value) from the last measuring gas analysis performed for stream 3

├ Zn │ │

A

7072

Real gas factor (in standard condition) from the last measuring gas analysis performed for stream 3

" 05 Stream-3 Values

YMDhms

............................................................................................................................................................................................................... -


05 Stream-3 Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ Methane Number │

A

7074

Methane number from the last measuring gas analysis performed for stream 3

└ Unnorm. Sum

A

7076

Unnormalized sum of the components (before normalization to 100%) from the last measuring gas analysis performed for stream 3

" Content

A

1051

Heading

├ Nitrogen │ │

A

mol%

8750

Molar content of nitrogen (after normalization) from the last measuring gas analysis performed for stream 3

├ Methane │ │

A

mol%

8752

Molar content of methane (after normalization) from the last measuring gas analysis performed for stream 3

├ Carbon Dioxide │ │

A

mol%

8754

Molar content of carbon dioxide (after normalization) from the last measuring gas analysis performed for stream 3

├ Ethane │ │

A

mol%

8756

Molar content of ethane (after normalization) from the last measuring gas analysis performed for stream 3

├ Propane │ │

A

mol%

8758

Molar content of propane (after normalization) from the last measuring gas analysis performed for stream 3

├ i-Butane │ │

A

mol%

8760

Molar content of i-butane (after normalization) from the last measuring gas analysis performed for stream 3

├ n-Butane │ │

A

mol%

8762

Molar content of n-butane (after normalization) from the last measuring gas analysis performed for stream 3

├ Neopentane │ │

A

mol%

8764

Molar content of neopentane (after normalization) from the last measuring gas analysis performed for stream 3

├ i-Pentane │ │

A

mol%

8766

Molar content of i-pentane (after normalization) from the last measuring gas analysis performed for stream 3

├ n-Pentane │ │

A

mol%

8768

Molar content of n-pentane (after normalization) from the last measuring gas analysis performed for stream 3

├ C6+ │ │

A

mol%

8770

Molar content of C6+ (after normalization) from the last measuring gas analysis performed for stream 3

├ n-Hexane │ │

A

mol%

8772

Molar content of n-hexane (after normalization) from the last measuring gas analysis performed for stream 3

├ n-Heptane │ │

A

mol%

8774

Molar content of n-heptane (after normalization) from the last measuring gas analysis performed for stream 3

53

............................................................................................................................................................................................................... -


05 Stream-3 Values

ANNEX

...............................................................................................................................................................................................................

Element

54

Unit

Modb.

Description

├ n-Octane │ │

A

mol%

8776

Molar content of n-octane (after normalization) from the last measuring gas analysis performed for stream 3

├ n-Nonane │ │

A

mol%

8778

Molar content of n-nonane (after normalization) from the last measuring gas analysis performed for stream 3

├ Oxygen │ │

A

mol%

8780

Molar content of oxygen (after normalization) from the last measuring gas analysis performed for stream 3

├ Helium │ │

A

mol%

8782

Molar content of helium (after normalization) from the last measuring gas analysis performed for stream 3

├ Hydrogen │ │

A

mol%

8784

Molar content of hydrogen (after normalization) from the last measuring gas analysis performed for stream 3

├ Argon │ │

A

mol%

8786

Molar content of argon (after normalization) from the last measuring gas analysis performed for stream 3

└ Reserve

A

mol%

8788

Molar content of reserve (after normalization) from the last measuring gas analysis performed for stream 3

A

1052

Heading

├ Nitrogen │

A

8800

Peak area for nitrogen in the chromatogram from the last analysis for stream 3

├ Methane │

A

8802

Peak area for methane in the chromatogram from the last analysis for stream 3

├ Carbon Dioxide │ │

A

8804

Peak area for carbon dioxide in the chromatogram from the last analysis for stream 3

├ Ethane │

A

8806

Peak area for ethane in the chromatogram from the last analysis for stream 3

├ Propane │

A

8808

Peak area for propane in the chromatogram from the last analysis for stream 3

├ i-Butane │

A

8810

Peak area for i-butane in the chromatogram from the last analysis for stream 3

├ n-Butane │

A

8812

Peak area for n-butane in the chromatogram from the last analysis for stream 3

├ Neopentane │

A

8814

Peak area for neopentane in the chromatogram from the last analysis for stream 3

├ i-Pentane │

A

8816

Peak area for i-pentane in the chromatogram from the last analysis for stream 3

├ n-Pentane │

A

8818

Peak area for n-pentane in the chromatogram from the last analysis for stream 3

├ C6+ │

A

8820

Peak area for C6+ in the chromatogram from the last analysis for stream 3

" Areas

............................................................................................................................................................................................................... -


05 Stream-3 Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ n-Hexane │

A

8822

Peak area for n-hexane in the chromatogram from the last analysis for stream 3

├ n-Heptane │

A

8824

Peak area for n-heptane in the chromatogram from the last analysis for stream 3

├ n-Octane │

A

8826

Peak area for n-octane in the chromatogram from the last analysis for stream 3

├ n-Nonane │

A

8828

Peak area for n-nonane in the chromatogram from the last analysis for stream 3

├ Oxygen │

A

8830

Peak area for oxygen in the chromatogram from the last analysis for stream 3

├ Helium │

A

8832

Peak area for helium in the chromatogram from the last analysis for stream 3

├ Hydrogen │

A

8834

Peak area for hydrogen in the chromatogram from the last analysis for stream 3

├ Argon │

A

8836

Peak area for argon in the chromatogram from the last analysis for stream 3

└ Reserve

A

8838

Peak area for reserve in the chromatogram from the last analysis for stream 3

A

1053

Heading

" Times ├ ST Nitrogen │

A

s

8850

Peak start time for nitrogen (lower limit of integration) from the last analysis for stream 3

├ RT Nitrogen │

A

s

8900

Retention time (cycle time through the column) for nitrogen from the last analysis for stream 3

├ ET Nitrogen │

A

s

8950

Peak end time for nitrogen (upper limit of integration) from the last analysis for stream 3

├ ST Methane │

A

s

8852

Peak start time for methane (lower limit of integration) from the last analysis for stream 3

├ RT Methane │

A

s

8902

Retention time (cycle time through the column) for methane from the last analysis for stream 3

├ ET Methane │

A

s

8952

Peak end time for methane (upper limit of integration) from the last analysis for stream 3

├ ST Carbon Dioxide │

A

s

8854

Peak start time for carbon dioxide (lower limit of integration) from the last analysis for stream 3

├ RT Carbon Dioxide │ │

A

s

8904

Retention time (cycle time through the column) for carbon dioxide from the last analysis for stream 3

├ ET Carbon Dioxide │

A

s

8954

Peak end time for carbon dioxide (upper limit of integration) from the last analysis for stream 3

├ ST Ethane │

A

s

8856

Peak start time for ethane (lower limit of integration) from the last analysis for stream 3

├ RT Ethane │

A

s

8906

Retention time (cycle time through the column) for ethane from the last analysis for stream 3

├ ET Ethane │

A

s

8956

Peak end time for ethane (upper limit of integration) from the last analysis for stream 3

55

............................................................................................................................................................................................................... -


05 Stream-3 Values

ANNEX

...............................................................................................................................................................................................................

Element

56

Unit

Modb.

Description

├ ST Propane │

A

s

8858

Peak start time for propane (lower limit of integration) from the last analysis for stream 3

├ RT Propane │

A

s

8908

Retention time (cycle time through the column) for propane from the last analysis for stream 3

├ ET Propane │

A

s

8958

Peak end time for propane (upper limit of integration) from the last analysis for stream 3

├ ST i-Butane │

A

s

8860

Peak start time for i-butane (lower limit of integration) from the last analysis for stream 3

├ RT i-Butane │

A

s

8910

Retention time (cycle time through the column) for i-butane from the last analysis for stream 3

├ ET i-Butane │

A

s

8960

Peak end time for i-butane (upper limit of integration) from the last analysis for stream 3

├ ST n-Butane │

A

s

8862

Peak start time for n-butane (lower limit of integration) from the last analysis for stream 3

├ RT n-Butane │

A

s

8912

Retention time (cycle time through the column) for n-butane from the last analysis for stream 3

├ ET n-Butane │

A

s

8962

Peak end time for n-butane (upper limit of integration) from the last analysis for stream 3

├ ST Neopentane │

A

s

8864

Peak start time for neopentane (lower limit of integration) from the last analysis for stream 3

├ RT Neopentane │ │

A

s

8914

Retention time (cycle time through the column) for neopentane from the last analysis for stream 3

├ ET Neopentane │

A

s

8964

Peak end time for neopentane (upper limit of integration) from the last analysis for stream 3

├ ST i-Pentane │

A

s

8866

Peak start time for i-pentane (lower limit of integration) from the last analysis for stream 3

├ RT i-Pentane │

A

s

8916

Retention time (cycle time through the column) for i-pentane from the last analysis for stream 3

├ ET i-Pentane │

A

s

8966

Peak end time for i-pentane (upper limit of integration) from the last analysis for stream 3

├ ST n-Pentane │

A

s

8868

Peak start time for n-pentane (lower limit of integration) from the last analysis for stream 3

├ RT n-Pentane │

A

s

8918

Retention time (cycle time through the column) for n-pentane from the last analysis for stream 3

├ ET n-Pentane │

A

s

8968

Peak end time for n-pentane (upper limit of integration) from the last analysis for stream 3

├ ST C6+ │

A

s

8870

Peak start time for C6+ (lower limit of integration) from the last analysis for stream 3

├ RT C6+ │

A

s

8920

Retention time (cycle time through the column) for C6+ from the last analysis for stream 3

├ ET C6+ │

A

s

8970

Peak end time for C6+ (upper limit of integration) from the last analysis for stream 3

├ ST n-Hexane │

A

s

8872

Peak start time for n-hexane (lower limit of integration) from the last analysis for stream 3

............................................................................................................................................................................................................... -


05 Stream-3 Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ RT n-Hexane │

A

s

8922

Retention time (cycle time through the column) for n-hexane from the last analysis for stream 3

├ ET n-Hexane │

A

s

8972

Peak end time for n-hexane (upper limit of integration) from the last analysis for stream 3

├ ST n-Heptane │

A

s

8874

Peak start time for n-heptane (lower limit of integration) from the last analysis for stream 3

├ RT n-Heptane │

A

s

8924

Retention time (cycle time through the column) for n-heptane from the last analysis for stream 3

├ ET n-Heptane │

A

s

8974

Peak end time for n-heptane (upper limit of integration) from the last analysis for stream 3

├ ST n-Octane │

A

s

8876

Peak start time for n-octane (lower limit of integration) from the last analysis for stream 3

├ RT n-Octane │

A

s

8926

Retention time (cycle time through the column) for n-octane from the last analysis for stream 3

├ ET n-Octane │

A

s

8976

Peak end time for n-octane (upper limit of integration) from the last analysis for stream 3

├ ST n-Nonane │

A

s

8878

Peak start time for n-nonane (lower limit of integration) from the last analysis for stream 3

├ RT n-Nonane │

A

s

8928

Retention time (cycle time through the column) for n-nonane from the last analysis for stream 3

├ ET n-Nonane │

A

s

8978

Peak end time for n-nonane (upper limit of integration) from the last analysis for stream 3

├ ST Oxygen │

A

s

8880

Peak start time for oxygen (lower limit of integration) from the last analysis for stream 3

├ RT Oxygen │

A

s

8930

Retention time (cycle time through the column) for oxygen from the last analysis for stream 3

├ ET Oxygen │

A

s

8980

Peak end time for oxygen (upper limit of integration) from the last analysis for stream 3

├ ST Helium │

A

s

8882

Peak start time for helium (lower limit of integration) from the last analysis for stream 3

├ RT Helium │

A

s

8932

Retention time (cycle time through the column) for helium from the last analysis for stream 3

├ ET Helium │

A

s

8982

Peak end time for helium (upper limit of integration) from the last analysis for stream 3

├ ST Hydrogen │

A

s

8884

Peak start time for hydrogen (lower limit of integration) from the last analysis for stream 3

├ RT Hydrogen │

A

s

8934

Retention time (cycle time through the column) for hydrogen from the last analysis for stream 3

├ ET Hydrogen │

A

s

8984

Peak end time for hydrogen (upper limit of integration) from the last analysis for stream 3

├ ST Argon │

A

s

8886

Peak start time for argon (lower limit of integration) from the last analysis for stream 3

├ RT Argon │

A

s

8936

Retention time (cycle time through the column) for argon from the last analysis for stream 3

57

............................................................................................................................................................................................................... -


06 Stream-4 Values

ANNEX

...............................................................................................................................................................................................................

Element

58

Unit

Modb.

Description

├ ET Argon │

A

s

8986

Peak end time for argon (upper limit of integration) from the last analysis for stream 3

├ ST Reserve │

A

s

8888

Peak start time for reserve (lower limit of integration) from the last analysis for stream 3

├ RT Reserve │

A

s

8938

Retention time (cycle time through the column) for reserve from the last analysis for stream 3

└ ET Reserve

A

s

8988

Peak end time for reserve (upper limit of integration) from the last analysis for stream 3

A

1054

Heading

├ Stream # │ │ │ │

A

1055

{Stream-1|Stream-2|Stream-3|Stream-4|REFGAS|Cal.-Gas|OFF} Channel (stream or gas) for which the current values are valid (Stream-4/OFF) For Modbus calls.

├ Timestamp

A

5160

Date and time of last measurement for stream 4

├ Filename │ │

A

5180

Filename under which the chromatogram for the last measurement for stream 4 is saved (= date and time of this measurement).

├ Stream Status │ │ │ │ │ │

A

1056

{OK|FAULT|UNPROCESSED} Status of the last measurement for stream 4 OK: Last measurement was successful FAULT: A fault occurred during the last measurement UNPROCESSED: This stream was not yet measured.

├ Superior Calorific Value │

A

&UnitHs

7080

Superior calorific value from the last measuring gas analysis performed for stream 4

├ Wobbe Index │

A

&UnitHs

7082

Wobbe index from the last measuring gas analysis performed for stream 4

├ rho │

A

kg/m3

7084

Standard density from the last measuring gas analysis performed for stream 4

├ rd │ │

A

7086

Relative density (standard density divided by standard density of air) from the last measuring gas analysis performed for stream 4

├ Hi │

A

&UnitHs

7088

Inferior calorific value from the last measuring gas analysis performed for stream 4

├ Wl │ │

A

&UnitHs

7090

Lower Wobbe index (calculated from the inferior calorific value) from the last measuring gas analysis performed for stream 4

├ Zn │ │

A

7092

Real gas factor (in standard condition) from the last measuring gas analysis performed for stream 4

├ Methane Number │

A

7094

Methane number from the last measuring gas analysis performed for stream 4

└ Unnorm. Sum

A

7096

Unnormalized sum of the components (before normalization to 100%) from the last measuring gas analysis performed for stream 4

" 06 Stream-4 Values

YMDhms

............................................................................................................................................................................................................... -


06 Stream-4 Values

ANNEX

...............................................................................................................................................................................................................

Element " Content

Unit A

Modb.

Description

1057

Heading

├ Nitrogen │ │

A

mol%

9000

Molar content of nitrogen (after normalization) from the last measuring gas analysis performed for stream 4

├ Methane │ │

A

mol%

9002

Molar content of methane (after normalization) from the last measuring gas analysis performed for stream 4

├ Carbon Dioxide │ │

A

mol%

9004

Molar content of carbon dioxide (after normalization) from the last measuring gas analysis performed for stream 4

├ Ethane │ │

A

mol%

9006

Molar content of ethane (after normalization) from the last measuring gas analysis performed for stream 4

├ Propane │ │

A

mol%

9008

Molar content of propane (after normalization) from the last measuring gas analysis performed for stream 4

├ i-Butane │ │

A

mol%

9010

Molar content of i-butane (after normalization) from the last measuring gas analysis performed for stream 4

├ n-Butane │ │

A

mol%

9012

Molar content of n-butane (after normalization) from the last measuring gas analysis performed for stream 4

├ Neopentane │ │

A

mol%

9014

Molar content of neopentane (after normalization) from the last measuring gas analysis performed for stream 4

├ i-Pentane │ │

A

mol%

9016

Molar content of i-pentane (after normalization) from the last measuring gas analysis performed for stream 4

├ n-Pentane │ │

A

mol%

9018

Molar content of n-pentane (after normalization) from the last measuring gas analysis performed for stream 4

├ C6+ │ │

A

mol%

9020

Molar content of C6+ (after normalization) from the last measuring gas analysis performed for stream 4

├ n-Hexane │ │

A

mol%

9022

Molar content of n-hexane (after normalization) from the last measuring gas analysis performed for stream 4

├ n-Heptane │ │

A

mol%

9024

Molar content of n-heptane (after normalization) from the last measuring gas analysis performed for stream 4

├ n-Octane │ │

A

mol%

9026

Molar content of n-octane (after normalization) from the last measuring gas analysis performed for stream 4

├ n-Nonane │ │

A

mol%

9028

Molar content of n-nonane (after normalization) from the last measuring gas analysis performed for stream 4

59

............................................................................................................................................................................................................... -


06 Stream-4 Values

ANNEX

...............................................................................................................................................................................................................

Element

60

Unit

Modb.

Description

├ Oxygen │ │

A

mol%

9030

Molar content of oxygen (after normalization) from the last measuring gas analysis performed for stream 4

├ Helium │ │

A

mol%

9032

Molar content of helium (after normalization) from the last measuring gas analysis performed for stream 4

├ Hydrogen │ │

A

mol%

9034

Molar content of hydrogen (after normalization) from the last measuring gas analysis performed for stream 4

├ Argon │ │

A

mol%

9036

Molar content of argon (after normalization) from the last measuring gas analysis performed for stream 4

└ Reserve

A

mol%

9038

Molar content of reserve (after normalization) from the last measuring gas analysis performed for stream 4

A

1058

Heading

├ Nitrogen │

A

9050

Peak area for nitrogen in the chromatogram from the last analysis for stream 4

├ Methane │

A

9052

Peak area for methane in the chromatogram from the last analysis for stream 4

├ Carbon Dioxide │ │

A

9054

Peak area for carbon dioxide in the chromatogram from the last analysis for stream 4

├ Ethane │

A

9056

Peak area for ethane in the chromatogram from the last analysis for stream 4

├ Propane │

A

9058

Peak area for propane in the chromatogram from the last analysis for stream 4

├ i-Butane │

A

9060

Peak area for i-butane in the chromatogram from the last analysis for stream 4

├ n-Butane │

A

9062

Peak area for n-butane in the chromatogram from the last analysis for stream 4

├ Neopentane │

A

9064

Peak area for neopentane in the chromatogram from the last analysis for stream 4

├ i-Pentane │

A

9066

Peak area for i-pentane in the chromatogram from the last analysis for stream 4

├ n-Pentane │

A

9068

Peak area for n-pentane in the chromatogram from the last analysis for stream 4

├ C6+ │

A

9070

Peak area for C6+ in the chromatogram from the last analysis for stream 4

├ n-Hexane │

A

9072

Peak area for n-hexane in the chromatogram from the last analysis for stream 4

├ n-Heptane │

A

9074

Peak area for n-heptane in the chromatogram from the last analysis for stream 4

├ n-Octane │

A

9076

Peak area for n-octane in the chromatogram from the last analysis for stream 4

" Areas

............................................................................................................................................................................................................... -


06 Stream-4 Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ n-Nonane │

A

9078

Peak area for n-nonane in the chromatogram from the last analysis for stream 4

├ Oxygen │

A

9080

Peak area for oxygen in the chromatogram from the last analysis for stream 4

├ Helium │

A

9082

Peak area for helium in the chromatogram from the last analysis for stream 4

├ Hydrogen │

A

9084

Peak area for hydrogen in the chromatogram from the last analysis for stream 4

├ Argon │

A

9086

Peak area for argon in the chromatogram from the last analysis for stream 4

└ Reserve

A

9088

Peak area for reserve in the chromatogram from the last analysis for stream 4

A

1059

Heading

" Times ├ ST Nitrogen │

A

s

9100

Peak start time for nitrogen (lower limit of integration) from the last analysis for stream 4

├ RT Nitrogen │

A

s

9150

Retention time (cycle time through the column) for nitrogen from the last analysis for stream 4

├ ET Nitrogen │

A

s

9200

Peak end time for nitrogen (upper limit of integration) from the last analysis for stream 4

├ ST Methane │

A

s

9102

Peak start time for methane (lower limit of integration) from the last analysis for stream 4

├ RT Methane │

A

s

9152

Retention time (cycle time through the column) for methane from the last analysis for stream 4

├ ET Methane │

A

s

9202

Peak end time for methane (upper limit of integration) from the last analysis for stream 4

├ ST Carbon Dioxide │

A

s

9104

Peak start time for carbon dioxide (lower limit of integration) from the last analysis for stream 4

├ RT Carbon Dioxide │ │

A

s

9154

Retention time (cycle time through the column) for carbon dioxide from the last analysis for stream 4

├ ET Carbon Dioxide │

A

s

9204

Peak end time for carbon dioxide (upper limit of integration) from the last analysis for stream 4

├ ST Ethane │

A

s

9106

Peak start time for ethane (lower limit of integration) from the last analysis for stream 4

├ RT Ethane │

A

s

9156

Retention time (cycle time through the column) for ethane from the last analysis for stream 4

├ ET Ethane │

A

s

9206

Peak end time for ethane (upper limit of integration) from the last analysis for stream 4

├ ST Propane │

A

s

9108

Peak start time for propane (lower limit of integration) from the last analysis for stream 4

├ RT Propane │

A

s

9158

Retention time (cycle time through the column) for propane from the last analysis for stream 4

├ ET Propane │

A

s

9208

Peak end time for propane (upper limit of integration) from the last analysis for stream 4

61

............................................................................................................................................................................................................... -


06 Stream-4 Values

ANNEX

...............................................................................................................................................................................................................

Element

62

Unit

Modb.

Description

├ ST i-Butane │

A

s

9110

Peak start time for i-butane (lower limit of integration) from the last analysis for stream 4

├ RT i-Butane │

A

s

9160

Retention time (cycle time through the column) for i-butane from the last analysis for stream 4

├ ET i-Butane │

A

s

9210

Peak end time for i-butane (upper limit of integration) from the last analysis for stream 4

├ ST n-Butane │

A

s

9112

Peak start time for n-butane (lower limit of integration) from the last analysis for stream 4

├ RT n-Butane │

A

s

9162

Retention time (cycle time through the column) for n-butane from the last analysis for stream 4

├ ET n-Butane │

A

s

9212

Peak end time for n-butane (upper limit of integration) from the last analysis for stream 4

├ ST Neopentane │

A

s

9114

Peak start time for neopentane (lower limit of integration) from the last analysis for stream 4

├ RT Neopentane │ │

A

s

9164

Retention time (cycle time through the column) for neopentane from the last analysis for stream 4

├ ET Neopentane │

A

s

9214

Peak end time for neopentane (upper limit of integration) from the last analysis for stream 4

├ ST i-Pentane │

A

s

9116

Peak start time for i-pentane (lower limit of integration) from the last analysis for stream 4

├ RT i-Pentane │

A

s

9166

Retention time (cycle time through the column) for i-pentane from the last analysis for stream 4

├ ET i-Pentane │

A

s

9216

Peak end time for i-pentane (upper limit of integration) from the last analysis for stream 4

├ ST n-Pentane │

A

s

9118

Peak start time for n-pentane (lower limit of integration) from the last analysis for stream 4

├ RT n-Pentane │

A

s

9168

Retention time (cycle time through the column) for n-pentane from the last analysis for stream 4

├ ET n-Pentane │

A

s

9218

Peak end time for n-pentane (upper limit of integration) from the last analysis for stream 4

├ ST C6+ │

A

s

9120

Peak start time for C6+ (lower limit of integration) from the last analysis for stream 4

├ RT C6+ │

A

s

9170

Retention time (cycle time through the column) for C6+ from the last analysis for stream 4

├ ET C6+ │

A

s

9220

Peak end time for C6+ (upper limit of integration) from the last analysis for stream 4

├ ST n-Hexane │

A

s

9122

Peak start time for n-hexane (lower limit of integration) from the last analysis for stream 4

├ RT n-Hexane │

A

s

9172

Retention time (cycle time through the column) for n-hexane from the last analysis for stream 4

├ ET n-Hexane │

A

s

9222

Peak end time for n-hexane (upper limit of integration) from the last analysis for stream 4

├ ST n-Heptane │

A

s

9124

Peak start time for n-heptane (lower limit of integration) from the last analysis for stream 4

............................................................................................................................................................................................................... -


06 Stream-4 Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ RT n-Heptane │

A

s

9174

Retention time (cycle time through the column) for n-heptane from the last analysis for stream 4

├ ET n-Heptane │

A

s

9224

Peak end time for n-heptane (upper limit of integration) from the last analysis for stream 4

├ ST n-Octane │

A

s

9126

Peak start time for n-octane (lower limit of integration) from the last analysis for stream 4

├ RT n-Octane │

A

s

9176

Retention time (cycle time through the column) for n-octane from the last analysis for stream 4

├ ET n-Octane │

A

s

9226

Peak end time for n-octane (upper limit of integration) from the last analysis for stream 4

├ ST n-Nonane │

A

s

9128

Peak start time for n-nonane (lower limit of integration) from the last analysis for stream 4

├ RT n-Nonane │

A

s

9178

Retention time (cycle time through the column) for n-nonane from the last analysis for stream 4

├ ET n-Nonane │

A

s

9228

Peak end time for n-nonane (upper limit of integration) from the last analysis for stream 4

├ ST Oxygen │

A

s

9130

Peak start time for oxygen (lower limit of integration) from the last analysis for stream 4

├ RT Oxygen │

A

s

9180

Retention time (cycle time through the column) for oxygen from the last analysis for stream 4

├ ET Oxygen │

A

s

9230

Peak end time for oxygen (upper limit of integration) from the last analysis for stream 4

├ ST Helium │

A

s

9132

Peak start time for helium (lower limit of integration) from the last analysis for stream 4

├ RT Helium │

A

s

9182

Retention time (cycle time through the column) for helium from the last analysis for stream 4

├ ET Helium │

A

s

9232

Peak end time for helium (upper limit of integration) from the last analysis for stream 4

├ ST Hydrogen │

A

s

9134

Peak start time for hydrogen (lower limit of integration) from the last analysis for stream 4

├ RT Hydrogen │

A

s

9184

Retention time (cycle time through the column) for hydrogen from the last analysis for stream 4

├ ET Hydrogen │

A

s

9234

Peak end time for hydrogen (upper limit of integration) from the last analysis for stream 4

├ ST Argon │

A

s

9136

Peak start time for argon (lower limit of integration) from the last analysis for stream 4

├ RT Argon │

A

s

9186

Retention time (cycle time through the column) for argon from the last analysis for stream 4

├ ET Argon │

A

s

9236

Peak end time for argon (upper limit of integration) from the last analysis for stream 4

├ ST Reserve │

A

s

9138

Peak start time for reserve (lower limit of integration) from the last analysis for stream 4

├ RT Reserve │

A

s

9188

Retention time (cycle time through the column) for reserve from the last analysis for stream 4

63

............................................................................................................................................................................................................... -


07 Ref.-Gas Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

s

9238

Peak end time for reserve (upper limit of integration) from the last analysis for stream 4

A

1060

Heading

├ Stream # │ │ │ │

A

1061

{Stream­1|Stream­2|Stream­3|Stream­4| REF­GAS|Cal.-Gas|OFF} Channel (stream or gas) for which the current values are valid (REF-GAS/OFF) For Modbus calls.

├ Timestamp │

A

5200

Date and time of last measurement for reference gas

├ Filename │ │

A

5220

Filename under which the chromatogram for the last measurement for reference gas is saved (= date and time of this measurement).

├ Stream Status │ │ │ │ │ │

A

1062

{OK|FAULT|UNPROCESSED} Status of the last reference gas measurement OK: Last measurement was successful FAULT: A fault occurred during the last measurement UNPROCESSED: This stream was not yet measured.

├ Superior Calorific Value │

A

&UnitHs

7100

Superior calorific value from the last reference gas analysis performed

├ Wobbe Index │

A

&UnitHs

7102

Wobbe index from the last reference gas analysis performed

├ rho │

A

kg/m3

7104

Standard density from the last reference gas analysis performed

├ rd │ │

A

7106

Relative density (standard density divided by standard density of air) from the last reference gas analysis performed

├ Hi │

A

&UnitHs

7108

Inferior calorific value from the last reference gas analysis performed

├ Wl │ │

A

&UnitHs

7110

Lower Wobbe index (calculated from the inferior calorific value) from the last reference gas analysis performed

├ Zn │

A

7112

Real gas factor (in standard condition) from the last reference gas analysis performed

├ Methane Number │

A

7114

Methane number from the last reference gas analysis performed

└ Unnorm. Sum

A

7116

Unnormalized sum of the components (before normalization to 100%) from the last reference gas analysis

" Content

A

1063

Heading

└ ET Reserve " 07 Ref.-Gas Values

64

A

YMDhms

├ Nitrogen │

A

mol%

9250

Molar content of nitrogen (after normalization) from the last reference gas analysis

├ Methane │

A

mol%

9252

Molar content of methane (after normalization) from the last reference gas analysis

............................................................................................................................................................................................................... -


07 Ref.-Gas Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ Carbon Dioxide │ │

A

mol%

9254

Molar content of carbon dioxide (after normalization) from the last reference gas analysis

├ Ethane │

A

mol%

9256

Molar content of ethane (after normalization) from the last reference gas analysis

├ Propane │

A

mol%

9258

Molar content of propane (after normalization) from the last reference gas analysis

├ i-Butane │

A

mol%

9260

Molar content of i-butane (after normalization) from the last reference gas analysis

├ n-Butane │

A

mol%

9262

Molar content of n-butane (after normalization) from the last reference gas analysis

├ Neopentane │ │

A

mol%

9264

Molar content of neopentane (after normalization) from the last reference gas analysis

├ i-Pentane │

A

mol%

9266

Molar content of i-pentane (after normalization) from the last reference gas analysis

├ n-Pentane │

A

mol%

9268

Molar content of n-pentane (after normalization) from the last reference gas analysis

├ C6+ │

A

mol%

9270

Molar content of C6+ (after normalization) from the last reference gas analysis

├ n-Hexane │

A

mol%

9272

Molar content of n-hexane (after normalization) from the last reference gas analysis

├ n-Heptane │

A

mol%

9274

Molar content of n-heptane (after normalization) from the last reference gas analysis

├ n-Octane │

A

mol%

9276

Molar content of n-octane (after normalization) from the last reference gas analysis

├ n-Nonane │

A

mol%

9278

Molar content of n-nonane (after normalization) from the last reference gas analysis

├ Oxygen │

A

mol%

9280

Molar content of oxygen (after normalization) from the last reference gas analysis

├ Helium │

A

mol%

9282

Molar content of helium (after normalization) from the last reference gas analysis

├ Hydrogen │

A

mol%

9284

Molar content of hydrogen (after normalization) from the last reference gas analysis

├ Argon │

A

mol%

9286

Molar content of argon (after normalization) from the last reference gas analysis

└ Reserve

A

mol%

9288

Molar content of reserve (after normalization) from the last reference gas analysis

A

1064

Heading

├ Nitrogen │

A

9300

Peak area for nitrogen in the chromatogram from the last reference gas analysis

├ Methane │

A

9302

Peak area for methane in the chromatogram from the last reference gas analysis

├ Carbon Dioxide │ │

A

9304

Peak area for carbon dioxide in the chromatogram from the last reference gas analysis

" Areas

65

............................................................................................................................................................................................................... -


07 Ref.-Gas Values

ANNEX

...............................................................................................................................................................................................................

Element

66

Unit

Modb.

Description

├ Ethane │

A

9306

Peak area for ethane in the chromatogram from the last reference gas analysis

├ Propane │

A

9308

Peak area for propane in the chromatogram from the last reference gas analysis

├ i-Butane │

A

9310

Peak area for i-butane in the chromatogram from the last reference gas analysis

├ n-Butane │

A

9312

Peak area for n-butane in the chromatogram from the last reference gas analysis

├ Neopentane │

A

9314

Peak area for neopentane in the chromatogram from the last reference gas analysis

├ i-Pentane │

A

9316

Peak area for i-pentane in the chromatogram from the last reference gas analysis

├ n-Pentane │

A

9318

Peak area for n-pentane in the chromatogram from the last reference gas analysis

├ C6+ │

A

9320

Peak area for C6+ in the chromatogram from the last reference gas analysis

├ n-Hexane │

A

9322

Peak area for n-hexane in the chromatogram from the last reference gas analysis

├ n-Heptane │

A

9324

Peak area for n-heptane in the chromatogram from the last reference gas analysis

├ n-Octane │

A

9326

Peak area for n-octane in the chromatogram from the last reference gas analysis

├ n-Nonane │

A

9328

Peak area for n-nonane in the chromatogram from the last reference gas analysis

├ Oxygen │

A

9330

Peak area for oxygen in the chromatogram from the last reference gas analysis

├ Helium │

A

9332

Peak area for helium in the chromatogram from the last reference gas analysis

├ Hydrogen │

A

9334

Peak area for hydrogen in the chromatogram from the last reference gas analysis

├ Argon │

A

9336

Peak area for argon in the chromatogram from the last reference gas analysis

└ Reserve

A

9338

Peak area for reserve in the chromatogram from the last reference gas analysis

A

1065

Heading

" Times ├ ST Nitrogen │

A

s

9350

Peak start time for nitrogen (lower limit of integration) from the last reference gas analysis

├ RT Nitrogen │

A

s

9400

Retention time (cycle time through the column) for nitrogen from the last reference gas analysis

├ ET Nitrogen │

A

s

9450

Peak end time for nitrogen (upper limit of integration) from the last reference gas analysis

├ ST Methane │

A

s

9352

Peak start time for methane (lower limit of integration) from the last reference gas analysis

├ RT Methane │

A

s

9402

Retention time (cycle time through the column) for methane from the last reference gas analysis

............................................................................................................................................................................................................... -


07 Ref.-Gas Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ ET Methane │

A

s

9452

Peak end time for methane (upper limit of integration) from the last reference gas analysis

├ ST Carbon Dioxide │

A

s

9354

Peak start time for carbon dioxide (lower limit of integration) from the last reference gas analysis

├ RT Carbon Dioxide │ │

A

s

9404

Retention time (cycle time through the column) for carbon dioxide from the last reference gas analysis

├ ET Carbon Dioxide │

A

s

9454

Peak end time for carbon dioxide (upper limit of integration) from the last reference gas analysis

├ ST Ethane │

A

s

9356

Peak start time for ethane (lower limit of integration) from the last reference gas analysis

├ RT Ethane │

A

s

9406

Retention time (cycle time through the column) for ethane from the last reference gas analysis

├ ET Ethane │

A

s

9456

Peak end time for ethane (upper limit of integration) from the last reference gas analysis

├ ST Propane │

A

s

9358

Peak start time for propane (lower limit of integration) from the last reference gas analysis

├ RT Propane │

A

s

9408

Retention time (cycle time through the column) for propane from the last reference gas analysis

├ ET Propane │

A

s

9458

Peak end time for propane (upper limit of integration) from the last reference gas analysis

├ ST i-Butane │

A

s

9360

Peak start time for i-butane (lower limit of integration) from the last reference gas analysis

├ RT i-Butane │

A

s

9410

Retention time (cycle time through the column) for i-butane from the last reference gas analysis

├ ET i-Butane │

A

s

9460

Peak end time for i-butane (upper limit of integration) from the last reference gas analysis

├ ST n-Butane │

A

s

9362

Peak start time for n-butane (lower limit of integration) from the last reference gas analysis

├ RT n-Butane │

A

s

9412

Retention time (cycle time through the column) for n-butane from the last reference gas analysis

├ ET n-Butane │

A

s

9462

Peak end time for n-butane (upper limit of integration) from the last reference gas analysis

├ ST Neopentane │

A

s

9364

Peak start time for neopentane (lower limit of integration) from the last reference gas analysis

├ RT Neopentane │ │

A

s

9414

Retention time (cycle time through the column) for neopentane from the last reference gas analysis

├ ET Neopentane │

A

s

9464

Peak end time for neopentane (upper limit of integration) from the last reference gas analysis

├ ST i-Pentane │

A

s

9366

Peak start time for i-pentane (lower limit of integration) from the last reference gas analysis

├ RT i-Pentane │ │

A

s

9416

Retention time (cycle time through the column) for i-pentane from the last reference gas analysis

67

............................................................................................................................................................................................................... -


07 Ref.-Gas Values

ANNEX

...............................................................................................................................................................................................................

Element

68

Unit

Modb.

Description

├ ET i-Pentane │

A

s

9466

Peak end time for i-pentane (upper limit of integration) from the last reference gas analysis

├ ST n-Pentane │

A

s

9368

Peak start time for n-pentane (lower limit of integration) from the last reference gas analysis

├ RT n-Pentane │ │

A

s

9418

Retention time (cycle time through the column) for n-pentane from the last reference gas analysis

├ ET n-Pentane │

A

s

9468

Peak end time for n-pentane (upper limit of integration) from the last reference gas analysis

├ ST C6+ │

A

s

9370

Peak start time for C6+ (lower limit of integration) from the last reference gas analysis

├ RT C6+ │

A

s

9420

Retention time (cycle time through the column) for C6+ from the last reference gas analysis

├ ET C6+ │

A

s

9470

Peak end time for C6+ (upper limit of integration) from the last reference gas analysis

├ ST n-Hexane │

A

s

9372

Peak start time for n-hexane (lower limit of integration) from the last reference gas analysis

├ RT n-Hexane │ │

A

s

9422

Retention time (cycle time through the column) for n-hexane from the last reference gas analysis

├ ET n-Hexane │

A

s

9472

Peak end time for n-hexane (upper limit of integration) from the last reference gas analysis

├ ST n-Heptane │

A

s

9374

Peak start time for n-heptane (lower limit of integration) from the last reference gas analysis

├ RT n-Heptane │ │

A

s

9424

Retention time (cycle time through the column) for n-heptane from the last reference gas analysis

├ ET n-Heptane │

A

s

9474

Peak end time for n-heptane (upper limit of integration) from the last reference gas analysis

├ ST n-Octane │

A

s

9376

Peak start time for n-octane (lower limit of integration) from the last reference gas analysis

├ RT n-Octane │

A

s

9426

Retention time (cycle time through the column) for n-octane from the last reference gas analysis

├ ET n-Octane │

A

s

9476

Peak end time for n-octane (upper limit of integration) from the last reference gas analysis

├ ST n-Nonane │

A

s

9378

Peak start time for n-nonane (lower limit of integration) from the last reference gas analysis

├ RT n-Nonane │ │

A

s

9428

Retention time (cycle time through the column) for n-nonane from the last reference gas analysis

├ ET n-Nonane │

A

s

9478

Peak end time for n-nonane (upper limit of integration) from the last reference gas analysis

├ ST Oxygen │

A

s

9380

Peak start time for oxygen (lower limit of integration) from the last reference gas analysis

├ RT Oxygen │

A

s

9430

Retention time (cycle time through the column) for oxygen from the last reference gas analysis

............................................................................................................................................................................................................... -


08 Cal.-Gas Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ ET Oxygen │

A

s

9480

Peak end time for oxygen (upper limit of integration) from the last reference gas analysis

├ ST Helium │

A

s

9382

Peak start time for helium (lower limit of integration) from the last reference gas analysis

├ RT Helium │

A

s

9432

Retention time (cycle time through the column) for helium from the last reference gas analysis

├ ET Helium │

A

s

9482

Peak end time for helium (upper limit of integration) from the last reference gas analysis

├ ST Hydrogen │

A

s

9384

Peak start time for hydrogen (lower limit of integration) from the last reference gas analysis

├ RT Hydrogen │ │

A

s

9434

Retention time (cycle time through the column) for hydrogen from the last reference gas analysis

├ ET Hydrogen │

A

s

9484

Peak end time for hydrogen (upper limit of integration) from the last reference gas analysis

├ ST Argon │

A

s

9386

Peak start time for argon (lower limit of integration) from the last reference gas analysis

├ RT Argon │

A

s

9436

Retention time (cycle time through the column) for argon from the last reference gas analysis

├ ET Argon │

A

s

9486

Peak end time for argon (upper limit of integration) from the last reference gas analysis

├ ST Reserve │

A

s

9388

Peak start time for reserve (lower limit of integration) from the last reference gas analysis

├ RT Reserve │

A

s

9438

Retention time (cycle time through the column) for reserve from the last reference gas analysis

└ ET Reserve

A

s

9488

Peak end time for reserve (upper limit of integration) from the last reference gas analysis

A

1066

Heading

├ Stream # │ │ │ │

A

1067

{Stream-1|Stream-2|Stream-3|Stream-4|REFGAS|Cal.-Gas|OFF} Channel (stream or gas) for which the current values are valid (Cal.-Gas/OFF) For Modbus calls.

├ Timestamp │

A

5240

Date and time of last measurement for calibration gas

├ Filename │ │

A

5260

Filename under which the chromatogram for the last measurement for calibration gas is saved (= date and time of this measurement).

├ Stream Status │ │ │ │ │ │

A

1068

{OK|FAULT|UNPROCESSED} Status of the last calibration gas measurement OK: Last measurement was successful FAULT: A fault occurred during the last measurement UNPROCESSED: This stream was not yet measured.

├ Superior Calorific Value │

A

7120

Superior calorific value from the last calibration gas analysis performed

" 08 Cal.-Gas Values

YMDhms

&UnitHs

69

............................................................................................................................................................................................................... -


08 Cal.-Gas Values

ANNEX

...............................................................................................................................................................................................................

Element

70

Unit

Modb.

Description

├ Wobbe Index │

A

&UnitHs

7122

Wobbe index from the last calibration gas analysis performed

├ rho │

A

kg/m3

7124

Standard density from the last calibration gas analysis performed

├ rd │ │

A

7126

Relative density (standard density divided by standard density of air) from the last calibration gas analysis performed

├ Hi │

A

&UnitHs

7128

Inferior calorific value from the last calibration gas analysis performed

├ Wl │ │

A

&UnitHs

7130

Lower Wobbe index (calculated from the inferior calorific value) from the last calibration gas analysis performed

├ Zn │

A

7132

Real gas factor (in standard condition) from the last calibration gas analysis performed

├ Methane Number │

A

7134

Methane number from the last calibration gas analysis performed

└ Unnorm. Sum

A

7136

Unnormalized sum of the components (before normalization to 100%) from the last calibration gas analysis

" Content

A

1069

Heading

├ Nitrogen │

A

mol%

9500

Molar content of nitrogen (after normalization) from the last calibration gas analysis

├ Methane │

A

mol%

9502

Molar content of methane (after normalization) from the last calibration gas analysis

├ Carbon Dioxide │ │

A

mol%

9504

Molar content of carbon dioxide (after normalization) from the last calibration gas analysis

├ Ethane │

A

mol%

9506

Molar content of ethane (after normalization) from the last calibration gas analysis

├ Propane │

A

mol%

9508

Molar content of propane (after normalization) from the last calibration gas analysis

├ i-Butane │

A

mol%

9510

Molar content of i-butane (after normalization) from the last calibration gas analysis

├ n-Butane │

A

mol%

9512

Molar content of n-butane (after normalization) from the last calibration gas analysis

├ Neopentane │ │

A

mol%

9514

Molar content of neopentane (after normalization) from the last calibration gas analysis

├ i-Pentane │

A

mol%

9516

Molar content of i-pentane (after normalization) from the last calibration gas analysis

├ n-Pentane │

A

mol%

9518

Molar content of n-pentane (after normalization) from the last calibration gas analysis

├ C6+ │

A

mol%

9520

Molar content of C6+ (after normalization) from the last calibration gas analysis

├ n-Hexane │

A

mol%

9522

Molar content of n-hexane (after normalization) from the last calibration gas analysis

............................................................................................................................................................................................................... -


08 Cal.-Gas Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ n-Heptane │

A

mol%

9524

Molar content of n-heptane (after normalization) from the last calibration gas analysis

├ n-Octane │

A

mol%

9526

Molar content of n-octane (after normalization) from the last calibration gas analysis

├ n-Nonane │

A

mol%

9528

Molar content of n-nonane (after normalization) from the last calibration gas analysis

├ Oxygen │

A

mol%

9530

Molar content of oxygen (after normalization) from the last calibration gas analysis

├ Helium │

A

mol%

9532

Molar content of helium (after normalization) from the last calibration gas analysis

├ Hydrogen │

A

mol%

9534

Molar content of hydrogen (after normalization) from the last calibration gas analysis

├ Argon │

A

mol%

9536

Molar content of argon (after normalization) from the last calibration gas analysis

└ Reserve

A

mol%

9538

Molar content of reserve (after normalization) from the last calibration gas analysis

A

1070

Heading

├ Nitrogen │

A

9550

Peak area for nitrogen in the chromatogram from the last calibration gas analysis

├ Methane │

A

9552

Peak area for methane in the chromatogram from the last calibration gas analysis

├ Carbon Dioxide │ │

A

9554

Peak area for carbon dioxide in the chromatogram from the last calibration gas analysis

├ Ethane │

A

9556

Peak area for ethane in the chromatogram from the last calibration gas analysis

├ Propane │

A

9558

Peak area for propane in the chromatogram from the last calibration gas analysis

├ i-Butane │

A

9560

Peak area for i-butane in the chromatogram from the last calibration gas analysis

├ n-Butane │

A

9562

Peak area for n-butane in the chromatogram from the last calibration gas analysis

├ Neopentane │

A

9564

Peak area for neopentane in the chromatogram from the last calibration gas analysis

├ i-Pentane │

A

9566

Peak area for i-pentane in the chromatogram from the last calibration gas analysis

├ n-Pentane │

A

9568

Peak area for n-pentane in the chromatogram from the last calibration gas analysis

├ C6+ │

A

9570

Peak area for C6+ in the chromatogram from the last calibration gas analysis

├ n-Hexane │

A

9572

Peak area for n-hexane in the chromatogram from the last calibration gas analysis

├ n-Heptane │

A

9574

Peak area for n-heptane in the chromatogram from the last calibration gas analysis

" Areas

71

............................................................................................................................................................................................................... -


08 Cal.-Gas Values

ANNEX

...............................................................................................................................................................................................................

Element

72

Unit

Modb.

Description

├ n-Octane │

A

9576

Peak area for n-octane in the chromatogram from the last calibration gas analysis

├ n-Nonane │

A

9578

Peak area for n-nonane in the chromatogram from the last calibration gas analysis

├ Oxygen │

A

9580

Peak area for oxygen in the chromatogram from the last calibration gas analysis

├ Helium │

A

9582

Peak area for helium in the chromatogram from the last calibration gas analysis

├ Hydrogen │

A

9584

Peak area for hydrogen in the chromatogram from the last calibration gas analysis

├ Argon │

A

9586

Peak area for argon in the chromatogram from the last calibration gas analysis

└ Reserve

A

9588

Peak area for reserve in the chromatogram from the last calibration gas analysis

A

1071

Heading

" Times ├ ST Nitrogen │

A

s

9600

Peak start time for nitrogen (lower limit of integration) from the last calibration gas analysis

├ RT Nitrogen │ │

A

s

9650

Retention time (cycle time through the column) for nitrogen from the last calibration gas analysis

├ ET Nitrogen │

A

s

9700

Peak end time for nitrogen (upper limit of integration) from the last calibration gas analysis

├ ST Methane │

A

s

9602

Peak start time for methane (lower limit of integration) from the last calibration gas analysis

├ RT Methane │ │

A

s

9652

Retention time (cycle time through the column) for methane from the last calibration gas analysis

├ ET Methane │

A

s

9702

Peak end time for methane (upper limit of integration) from the last calibration gas analysis

├ ST Carbon Dioxide │

A

s

9604

Peak start time for carbon dioxide (lower limit of integration) from the last calibration gas analysis

├ RT Carbon Dioxide │ │

A

s

9654

Retention time (cycle time through the column) for carbon dioxide from the last calibration gas analysis

├ ET Carbon Dioxide │

A

s

9704

Peak end time for carbon dioxide (upper limit of integration) from the last calibration gas analysis

├ ST Ethane │

A

s

9606

Peak start time for ethane (lower limit of integration) from the last calibration gas analysis

├ RT Ethane │

A

s

9656

Retention time (cycle time through the column) for ethane from the last calibration gas analysis

├ ET Ethane │

A

s

9706

Peak end time for ethane (upper limit of integration) from the last calibration gas analysis

├ ST Propane │

A

s

9608

Peak start time for propane (lower limit of integration) from the last calibration gas analysis

├ RT Propane │

A

s

9658

Retention time (cycle time through the column) for propane from the last calibration gas analysis

............................................................................................................................................................................................................... -


08 Cal.-Gas Values

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ ET Propane │

A

s

9708

Peak end time for propane (upper limit of integration) from the last calibration gas analysis

├ ST i-Butane │

A

s

9610

Peak start time for i-butane (lower limit of integration) from the last calibration gas analysis

├ RT i-Butane │

A

s

9660

Retention time (cycle time through the column) for i-butane from the last calibration gas analysis

├ ET i-Butane │

A

s

9710

Peak end time for i-butane (upper limit of integration) from the last calibration gas analysis

├ ST n-Butane │

A

s

9612

Peak start time for n-butane (lower limit of integration) from the last calibration gas analysis

├ RT n-Butane │ │

A

s

9662

Retention time (cycle time through the column) for n-butane from the last calibration gas analysis

├ ET n-Butane │

A

s

9712

Peak end time for n-butane (upper limit of integration) from the last calibration gas analysis

├ ST Neopentane │

A

s

9614

Peak start time for neopentane (lower limit of integration) from the last calibration gas analysis

├ RT Neopentane │ │

A

s

9664

Retention time (cycle time through the column) for neopentane from the last calibration gas analysis

├ ET Neopentane │

A

s

9714

Peak end time for neopentane (upper limit of integration) from the last calibration gas analysis

├ ST i-Pentane │

A

s

9616

Peak start time for i-pentane (lower limit of integration) from the last calibration gas analysis

├ RT i-Pentane │ │

A

s

9666

Retention time (cycle time through the column) for i-pentane from the last calibration gas analysis

├ ET i-Pentane │

A

s

9716

Peak end time for i-pentane (upper limit of integration) from the last calibration gas analysis

├ ST n-Pentane │

A

s

9618

Peak start time for n-pentane (lower limit of integration) from the last calibration gas analysis

├ RT n-Pentane │ │

A

s

9668

Retention time (cycle time through the column) for n-pentane from the last calibration gas analysis

├ ET n-Pentane │

A

s

9718

Peak end time for n-pentane (upper limit of integration) from the last calibration gas analysis

├ ST C6+ │

A

s

9620

Peak start time for C6+ (lower limit of integration) from the last calibration gas analysis

├ RT C6+ │

A

s

9670

Retention time (cycle time through the column) for C6+ from the last calibration gas analysis

├ ET C6+ │

A

s

9720

Peak end time for C6+ (upper limit of integration) from the last calibration gas analysis

├ ST n-Hexane │

A

s

9622

Peak start time for n-hexane (lower limit of integration) from the last calibration gas analysis

73

............................................................................................................................................................................................................... -


08 Cal.-Gas Values

ANNEX

...............................................................................................................................................................................................................

Element

74

Unit

Modb.

Description

├ RT n-Hexane │ │

A

s

9672

Retention time (cycle time through the column) for n-hexane from the last calibration gas analysis

├ ET n-Hexane │

A

s

9722

Peak end time for n-hexane (upper limit of integration) from the last calibration gas analysis

├ ST n-Heptane │

A

s

9624

Peak start time for n-heptane (lower limit of integration) from the last calibration gas analysis

├ RT n-Heptane │ │

A

s

9674

Retention time (cycle time through the column) for n-heptane from the last calibration gas analysis

├ ET n-Heptane │

A

s

9724

Peak end time for n-heptane (upper limit of integration) from the last calibration gas analysis

├ ST n-Octane │

A

s

9626

Peak start time for n-octane (lower limit of integration) from the last calibration gas analysis

├ RT n-Octane │ │

A

s

9676

Retention time (cycle time through the column) for n-octane from the last calibration gas analysis

├ ET n-Octane │

A

s

9726

Peak end time for n-octane (upper limit of integration) from the last calibration gas analysis

├ ST n-Nonane │

A

s

9628

Peak start time for n-nonane (lower limit of integration) from the last calibration gas analysis

├ RT n-Nonane │ │

A

s

9678

Retention time (cycle time through the column) for n-nonane from the last calibration gas analysis

├ ET n-Nonane │

A

s

9728

Peak end time for n-nonane (upper limit of integration) from the last calibration gas analysis

├ ST Oxygen │

A

s

9630

Peak start time for oxygen (lower limit of integration) from the last calibration gas analysis

├ RT Oxygen │

A

s

9680

Retention time (cycle time through the column) for oxygen from the last calibration gas analysis

├ ET Oxygen │

A

s

9730

Peak end time for oxygen (upper limit of integration) from the last calibration gas analysis

├ ST Helium │

A

s

9632

Peak start time for helium (lower limit of integration) from the last calibration gas analysis

├ RT Helium │

A

s

9682

Retention time (cycle time through the column) for helium from the last calibration gas analysis

├ ET Helium │

A

s

9732

Peak end time for helium (upper limit of integration) from the last calibration gas analysis

├ ST Hydrogen │

A

s

9634

Peak start time for hydrogen (lower limit of integration) from the last calibration gas analysis

├ RT Hydrogen │ │

A

s

9684

Retention time (cycle time through the column) for hydrogen from the last calibration gas analysis

├ ET Hydrogen │

A

s

9734

Peak end time for hydrogen (upper limit of integration) from the last calibration gas analysis

............................................................................................................................................................................................................... -


09 Calibration results

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ ST Argon │

A

s

9636

Peak start time for argon (lower limit of integration) from the last calibration gas analysis

├ RT Argon │

A

s

9686

Retention time (cycle time through the column) for argon from the last calibration gas analysis

├ ET Argon │

A

s

9736

Peak end time for argon (upper limit of integration) from the last calibration gas analysis

├ ST Reserve │

A

s

9638

Peak start time for reserve (lower limit of integration) from the last calibration gas analysis

├ RT Reserve │

A

s

9688

Retention time (cycle time through the column) for reserve from the last calibration gas analysis

└ ET Reserve

A

s

9738

Peak end time for reserve (upper limit of integration) from the last calibration gas analysis

" 09 Calibration results

A

1072

Heading

└ Calibration Status

A

1073

{Failed|Successful} Status of the last calibration (Failed/Successful)

" RFZ

A

1074

Heading

├ Nitrogen │

P

9750

Response factor (RFZ) for nitrogen from the last basic calibration

├ Methane │

P

9752

Response factor (RFZ) for methane from the last basic calibration

├ Carbon Dioxide │

P

9754

Response factor (RFZ) for carbon dioxide from the last basic calibration

├ Ethane │

P

9756

Response factor (RFZ) for ethane from the last basic calibration

├ Propane │

P

9758

Response factor (RFZ) for propane from the last basic calibration

├ i-Butane │

P

9760

Response factor (RFZ) for i-butane from the last basic calibration

├ n-Butane │

P

9762

Response factor (RFZ) for n-butane from the last basic calibration

├ Neopentane │

P

9764

Response factor (RFZ) for neopentane from the last basic calibration

├ i-Pentane │

P

9766

Response factor (RFZ) for i-pentane from the last basic calibration

├ n-Pentane │

P

9768

Response factor (RFZ) for n-pentane from the last basic calibration

├ C6+ │

P

9770

Response factor (RFZ) for C6+ from the last basic calibration

├ n-Hexane │

P

9772

Response factor (RFZ) for n-hexane from the last basic calibration

├ n-Heptane │

P

9774

Response factor (RFZ) for n-heptane from the last basic calibration

├ n-Octane │

P

9776

Response factor (RFZ) for n-octane from the last basic calibration

75

............................................................................................................................................................................................................... -


09 Calibration results

ANNEX

...............................................................................................................................................................................................................

Element

76

Unit

Modb.

Description

├ n-Nonane │

P

9778

Response factor (RFZ) for n-nonane from the last basic calibration

├ Oxygen │

P

9780

Response factor (RFZ) for oxygen from the last basic calibration

├ Helium │

P

9782

Response factor (RFZ) for helium from the last basic calibration

├ Hydrogen │

P

9784

Response factor (RFZ) for hydrogen from the last basic calibration

├ Argon │

P

9786

Response factor (RFZ) for argon from the last basic calibration

└ Reserve

P

9788

Response factor (RFZ) for reserve from the last basic calibration

A

1075

Heading

├ Nitrogen │

P

9800

Response factor (RF) for nitrogen from the last automatic or manual calibration

├ Methane │

P

9802

Response factor (RF) for methane from the last automatic or manual calibration

├ Carbon Dioxide │

P

9804

Response factor (RF) for carbon dioxide from the last automatic or manual calibration

├ Ethane │

P

9806

Response factor (RF) for ethane from the last automatic or manual calibration

├ Propane │

P

9808

Response factor (RF) for propane from the last automatic or manual calibration

├ i-Butane │

P

9810

Response factor (RF) for i-butane from the last automatic or manual calibration

├ n-Butane │

P

9812

Response factor (RF) for n-butane from the last automatic or manual calibration

├ Neopentane │

P

9814

Response factor (RF) for neopentane from the last automatic or manual calibration

├ i-Pentane │

P

9816

Response factor (RF) for i-pentane from the last automatic or manual calibration

├ n-Pentane │

P

9818

Response factor (RF) for n-pentane from the last automatic or manual calibration

├ C6+ │

P

9820

Response factor (RF) for C6+ from the last automatic or manual calibration

├ n-Hexane │

P

9822

Response factor (RF) for n-hexane from the last automatic or manual calibration

├ n-Heptane │

P

9824

Response factor (RF) for n-heptane from the last automatic or manual calibration

├ n-Octane │

P

9826

Response factor (RF) for n-octane from the last automatic or manual calibration

├ n-Nonane │

P

9828

Response factor (RF) for n-nonane from the last automatic or manual calibration

├ Oxygen │

P

9830

Response factor (RF) for oxygen from the last automatic or manual calibration

" RF

............................................................................................................................................................................................................... -


09 Calibration results

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ Helium │

P

9832

Response factor (RF) for helium from the last automatic or manual calibration

├ Hydrogen │

P

9834

Response factor (RF) for hydrogen from the last automatic or manual calibration

├ Argon │

P

9836

Response factor (RF) for argon from the last automatic or manual calibration

├ Reserve │

P

9838

Response factor (RF) for reserve from the last automatic or manual calibration

├ Delta Nitrogen

A

%

11140

Difference between RFZ and RF for nitrogen

├ Delta Methane

A

%

11142

Difference between RFZ and RF for methane

├ Delta Carbon Dioxide │

A

%

11144

Difference between RFZ and RF for carbon dioxide

├ Delta Ethane

A

%

11146

Difference between RFZ and RF for ethane

├ Delta Propane

A

%

11148

Difference between RFZ and RF for propane

├ Delta i-Butane

A

%

11150

Difference between RFZ and RF for i-butane

├ Delta n-Butane

A

%

11152

Difference between RFZ and RF for n-butane

├ Delta Neopentane

A

%

11154

Difference between RFZ and RF for neopentane

├ Delta i-Pentane

A

%

11156

Difference between RFZ and RF for i-pentane

├ Delta n-Pentane

A

%

11158

Difference between RFZ and RF for n-pentane

├ Delta C6+

A

%

11160

Difference between RFZ and RF for C6+

├ Delta n-Hexane

A

%

11162

Difference between RFZ and RF for n-hexane

├ Delta n-Heptane

A

%

11164

Difference between RFZ and RF for n-heptane

├ Delta n-Octane

A

%

11166

Difference between RFZ and RF for n-octane

├ Delta n-Nonane

A

%

11168

Difference between RFZ and RF for n-nonane

├ Delta Oxygen

A

%

11170

Difference between RFZ and RF for oxygen

├ Delta Helium

A

%

11172

Difference between RFZ and RF for helium

├ Delta Hydrogen

A

%

11174

Difference between RFZ and RF for hydrogen

├ Delta Argon

A

%

11176

Difference between RFZ and RF for argon

└ Delta Reserve

A

%

11178

Difference between RFZ and RF for reserve

1076

Heading

" RTZ

A

├ Nitrogen │

P

s

9850

Retention time (RTZ) for nitrogen from the last basic calibration

├ Methane │

P

s

9852

Retention time (RTZ) for methane from the last basic calibration

├ Carbon Dioxide │

P

s

9854

Retention time (RTZ) for carbon dioxide from the last basic calibration

├ Ethane │

P

s

9856

Retention time (RTZ) for ethane from the last basic calibration

├ Propane │

P

s

9858

Retention time (RTZ) for propane from the last basic calibration

├ i-Butane │

P

s

9860

Retention time (RTZ) for i-butane from the last basic calibration

77

............................................................................................................................................................................................................... -


09 Calibration results

ANNEX

...............................................................................................................................................................................................................

Element

78

Unit

Modb.

Description

├ n-Butane │

P

s

9862

Retention time (RTZ) for n-butane from the last basic calibration

├ Neopentane │

P

s

9864

Retention time (RTZ) for neopentane from the last basic calibration

├ i-Pentane │

P

s

9866

Retention time (RTZ) for i-pentane from the last basic calibration

├ n-Pentane │

P

s

9868

Retention time (RTZ) for n-pentane from the last basic calibration

├ C6+ │

P

s

9870

Retention time (RTZ) for C6+ from the last basic calibration

├ n-Hexane │

P

s

9872

Retention time (RTZ) for n-hexane from the last basic calibration

├ n-Heptane │

P

s

9874

Retention time (RTZ) for n-heptane from the last basic calibration

├ n-Octane │

P

s

9876

Retention time (RTZ) for n-octane from the last basic calibration

├ n-Nonane │

P

s

9878

Retention time (RTZ) for n-nonane from the last basic calibration

├ Oxygen │

P

s

9880

Retention time (RTZ) for oxygen from the last basic calibration

├ Helium │

P

s

9882

Retention time (RTZ) for helium from the last basic calibration

├ Hydrogen │

P

s

9884

Retention time (RTZ) for hydrogen from the last basic calibration

├ Argon │

P

s

9886

Retention time (RTZ) for argon from the last basic calibration

└ Reserve

P

s

9888

Retention time (RTZ) for reserve from the last basic calibration

" RT

A

1872

Heading

├ Nitrogen │

P

s

11060

Retention time (RT) for nitrogen from the last automatic or manual calibration

├ Methane │

P

s

11062

Retention time (RT) for methane from the last automatic or manual calibration

├ Carbon Dioxide │

P

s

11064

Retention time (RT) for carbon dioxide from the last automatic or manual calibration

├ Ethane │

P

s

11066

Retention time (RT) for ethane from the last automatic or manual calibration

├ Propane │

P

s

11068

Retention time (RT) for propane from the last automatic or manual calibration

├ i-Butane │

P

s

11070

Retention time (RT) for i-butane from the last automatic or manual calibration

├ n-Butane │

P

s

11072

Retention time (RT) for n-butane from the last automatic or manual calibration

├ Neopentane │

P

s

11074

Retention time (RT) for neopentane from the last automatic or manual calibration

............................................................................................................................................................................................................... -


09 Calibration results

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ i-Pentane │

P

s

11076

Retention time (RT) for i-pentane from the last automatic or manual calibration

├ n-Pentane │

P

s

11078

Retention time (RT) for n-pentane from the last automatic or manual calibration

├ C6+ │

P

s

11080

Retention time (RT) for C6+ from the last automatic or manual calibration

├ n-Hexane │

P

s

11082

Retention time (RT) for n-hexane from the last automatic or manual calibration

├ n-Heptane │

P

s

11084

Retention time (RT) for n-heptane from the last automatic or manual calibration

├ n-Octane │

P

s

11086

Retention time (RT) for n-octane from the last automatic or manual calibration

├ n-Nonane │

P

s

11088

Retention time (RT) for n-nonane from the last automatic or manual calibration

├ Oxygen │

P

s

11090

Retention time (RT) for oxygen from the last automatic or manual calibration

├ Helium │

P

s

11092

Retention time (RT) for helium from the last automatic or manual calibration

├ Hydrogen │

P

s

11094

Retention time (RT) for hydrogen from the last automatic or manual calibration

├ Argon │

P

s

11096

Retention time (RT) for argon from the last automatic or manual calibration

├ Reserve │

P

s

11098

Retention time (RT) for reserve from the last automatic or manual calibration

├ Delta Nitrogen

A

%

11100

Difference between RTZ and RT for nitrogen

├ Delta Methane

A

%

11102

Difference between RTZ and RT for methane

├ Delta Carbon Dioxide │

A

%

11104

Difference between RTZ and RT for carbon dioxide

├ Delta Ethane

A

%

11106

Difference between RTZ and RT for ethane

├ Delta Propane

A

%

11108

Difference between RTZ and RT for propane

├ Delta i-Butane

A

%

11110

Difference between RTZ and RT for i-butane

├ Delta n-Butane

A

%

11112

Difference between RTZ and RT for n-butane

├ Delta Neopentane

A

%

11114

Difference between RTZ and RT for neopentane

├ Delta i-Pentane

A

%

11116

Difference between RTZ and RT for i-pentane

├ Delta n-Pentane

A

%

11118

Difference between RTZ and RT for n-pentane

├ Delta C6+

A

%

11120

Difference between RTZ and RT for C6+

├ Delta n-Hexane

A

%

11122

Difference between RTZ and RT for n-hexane

├ Delta n-Heptane

A

%

11124

Difference between RTZ and RT for n-heptane

├ Delta n-Octane

A

%

11126

Difference between RTZ and RT for n-octane

├ Delta n-Nonane

A

%

11128

Difference between RTZ and RT for n-nonane

├ Delta Oxygen

A

%

11130

Difference between RTZ and RT for oxygen

├ Delta Helium

A

%

11132

Difference between RTZ and RT for helium

├ Delta Hydrogen

A

%

11134

Difference between RTZ and RT for hydrogen

79

............................................................................................................................................................................................................... -


10 Specialties

ANNEX

...............................................................................................................................................................................................................

Element

Modb.

Description

├ Delta Argon

A

%

11136

Difference between RTZ and RT for argon

└ Delta Reserve

A

%

11138

Difference between RTZ and RT for reserve

A

1077

Heading

├ BCAL: Total Area

E

3002

Sum of all peak areas in the last basic calibration

├ CAL: Total Area │

P

3004

Sum of all peak areas in the last automatic or manual calibration

└ Total Deviation

A

7138

Percentage deviation of the area totals from the basic calibration and automatic (or manual) calibration.

A

1559

Heading

├ RhoCalDelta │

A

10814

Deviation of the standard density from the last calibration from the set value.

├ HsCalDelta │

A

10816

Deviation of the superior calorific value from the last calibration from the set value.

└ Co2CalDelta

A

10818

Deviation of the CO2 content from the last calibration from the set value.

A

1636

Heading

10846

Time from which assignment of peaks to C6p (hexane total) begins.

A

1078

Heading

A

1079

Heading

├ Value1 │ │ │ │ │ │ │

A

10510

Display of the measured value determined from a selected current input and the parameters for this column. This value is monitored up to an upper limit. Monitoring has the following operating modes: - No monitoring - Generate a warning, value = default value - Set a digital contact, value = default value

├ Unit1

C

30600

Unit of measured value 1

├ Start Value │ │

C

10522

Physical start value This value corresponds to 0 or 4 mA depending on the operating mode.

├ End Value │ │

C

10534

Physical end value This value corresponds to the 20 mA measured value.

├ Default Value │

C

10546

If the "Upper Limit" is exceeded, the measured value is set to this default value.

├ Operating Mode │ │

C

1537

{OFF|0-20MA|4-20MA} Operating mode of the selected current input. (OFF/0-20 mA/4-20 mA)

" Area Totals

80

Unit

" Deviations

" Totalizing └ C6p Start Time " 10 Specialties " Pressure Dewpoint

A

%

s

............................................................................................................................................................................................................... -


10 Specialties

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

1538

{Current Input-1|Current Input-2|Current Input3|Current Input-4|Current Input-5|Current Input-6|Current Input-7|Current Input-8|Wago current input-1|Wago current input-2|Wago current input-3|Wago current input-4|Wago current input-5|Wago current input-6|Wago current input-7|Wago current input-8|Wago current input-9|Wago current input-10|Wago current input-11|Wago current input-12|Wago current input-13|Wago current input-14|Wago current input-15|Wago current input-16} Source of the analog signal. Current input-1 through Current input-8 Wago current input-1 through Wago current input-16

├ Source │ │ │ │ │ │ │ │ │ │ │ │ │ │

C

├ Upper Limit │ │

C

10558

Upper limit of the physical value. If the limit is exceeded, a warning is generated, a digital contact is set or it is ignored.

└ Select Contact

C

1539

{NONE|Generate Warning|DO 9, Signal 1|DO 10, Signal 2|DO 11, Signal 3|DO 12, Signal 4} Selection of signaling contact or warning. Signaling contacts DO9 through DO12 are collective, i.e. multiple limit value violations can be signaled with a digital contact. The first violation sets the contact.

A

1532

Heading

├ Value2 │ │ │ │ │ │ │

A

10512

Display of the measured value determined from a selected current input and the parameters for this column. This value is monitored up to an upper limit. Monitoring has the following operating modes: - No monitoring - Generate a warning, value = default value - Set a digital contact, value = default value

├ Unit2

C

30620

Unit of measured value 2

├ Start Value │ │

C

10524

Physical start value This value corresponds to 0 or 4 mA depending on the operating mode.

├ End Value │ │

C

10536

Physical end value This value corresponds to the 20 mA measured value.

├ Default Value │

C

10548

If the "Upper Limit" is exceeded, the measured value is set to this default value.

├ Operating Mode │ │

C

1540

{OFF|0-20MA|4-20MA} Operating mode of the selected current input. (OFF/0-20 mA/4-20 mA)

" Temp. Dewpoint

81

............................................................................................................................................................................................................... -


10 Specialties

ANNEX

...............................................................................................................................................................................................................

Element

82

Unit

Modb.

Description

├ Source │ │ │ │ │ │ │ │ │ │ │ │ │ │

C

1541

{Current Input-1|Current Input-2|Current Input3|Current Input-4|Current Input-5|Current Input-6|Current Input-7|Current Input-8|Wago current input-1|Wago current input-2|Wago current input-3|Wago current input-4|Wago current input-5|Wago current input-6|Wago current input-7|Wago current input-8|Wago current input-9|Wago current input-10|Wago current input-11|Wago current input-12|Wago current input-13|Wago current input-14|Wago current input-15|Wago current input-16} Source of the analog signal. Current input-1 through Current input-8 Wago current input-1 through Wago current input-16

├ Upper Limit │ │

C

10560

Upper limit of the physical value. If the limit is exceeded, a warning is generated, a digital contact is set or it is ignored.

└ Select Contact

C

1542

{NONE|Generate Warning|DO 9, Signal 1|DO 10, Signal 2|DO 11, Signal 3|DO 12, Signal 4} Selection of signaling contact or warning. Signaling contacts DO9 through DO12 are collective, i.e. multiple limit value violations can be signaled with a digital contact. The first violation sets the contact.

A

1533

Heading

├ Value3 │ │ │ │ │ │ │

A

10514

Display of the measured value determined from a selected current input and the parameters for this column. This value is monitored up to an upper limit. Monitoring has the following operating modes: - No monitoring - Generate a warning, value = default value - Set a digital contact, value = default value

├ Unit3

C

30640

Unit of measured value 3

├ Start Value │ │

C

10526

Physical start value This value corresponds to 0 or 4 mA depending on the operating mode.

├ End Value │ │

C

10538

Physical end value This value corresponds to the 20 mA measured value.

├ Default Value │

C

10550

If the "Upper Limit" is exceeded, the measured value is set to this default value.

├ Operating Mode │ │

C

1543

{OFF|0-20MA|4-20MA} Operating mode of the selected current input. (OFF/0-20 mA/4-20 mA)

" COS

............................................................................................................................................................................................................... -


10 Specialties

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

1544

{Current Input-1|Current Input-2|Current Input3|Current Input-4|Current Input-5|Current Input-6|Current Input-7|Current Input-8|Wago current input-1|Wago current input-2|Wago current input-3|Wago current input-4|Wago current input-5|Wago current input-6|Wago current input-7|Wago current input-8|Wago current input-9|Wago current input-10|Wago current input-11|Wago current input-12|Wago current input-13|Wago current input-14|Wago current input-15|Wago current input-16} Source of the analog signal. Current input-1 through Current input-8 Wago current input-1 through Wago current input-16

├ Source │ │ │ │ │ │ │ │ │ │ │ │ │ │

C

├ Upper Limit │ │

C

10562

Upper limit of the physical value. If the limit is exceeded, a warning is generated, a digital contact is set or it is ignored.

└ Select Contact

C

1545

{NONE|Generate Warning|DO 9, Signal 1|DO 10, Signal 2|DO 11, Signal 3|DO 12, Signal 4} Selection of signaling contact or warning. Signaling contacts DO9 through DO12 are collective, i.e. multiple limit violations can be signaled with a digital contact. The first violation sets the contact.

A

1534

Heading

├ Value4 │ │ │ │ │ │ │

A

10516

Display of the measured value determined from a selected current input and the parameters for this column. This value is monitored up to an upper limit. Monitoring has the following operating modes: - No monitoring - Generate a warning, value = default value - Set a digital contact, value = default value

├ Unit4

C

30660

Unit of measured value 4

├ Start Value │ │

C

10528

Physical start value This value corresponds to 0 or 4 mA depending on the operating mode.

├ End Value │ │

C

10540

Physical end value This value corresponds to the 20 mA measured value.

├ Default Value │

C

10552

If the "Upper Limit" is exceeded, the measured value is set to this default value.

├ Operating Mode │ │

C

1546

{OFF|0-20MA|4-20MA} Operating mode of the selected current input. (OFF/0-20 mA/4-20 mA)

" H2S

83

............................................................................................................................................................................................................... -


10 Specialties

ANNEX

...............................................................................................................................................................................................................

Element

84

Unit

Modb.

Description

├ Source │ │ │ │ │ │ │ │ │ │ │ │ │ │

C

1547

{Current Input-1|Current Input-2|Current Input3|Current Input-4|Current Input-5|Current Input-6|Current Input-7|Current Input-8|Wago current input-1|Wago current input-2|Wago current input-3|Wago current input-4|Wago current input-5|Wago current input-6|Wago current input-7|Wago current input-8|Wago current input-9|Wago current input-10|Wago current input-11|Wago current input-12|Wago current input-13|Wago current input-14|Wago current input-15|Wago current input-16} Source of the analog signal. Current input-1 through Current input-8 Wago current input-1 through Wago current input-16

├ Upper Limit │ │

C

10564

Upper limit of the physical value. If the limit is exceeded, a warning is generated, a digital contact is set or it is ignored.

└ Select Contact

C

1548

{NONE|Generate Warning|DO 9, Signal 1|DO 10, Signal 2|DO 11, Signal 3|DO 12, Signal 4} Selection of signaling contact or warning. Signaling contacts DO9 through DO12 are collective, i.e. multiple limit value violations can be signaled with a digital contact. The first violation sets the contact.

" Mercaptan

A

1535

Heading

├ Value5 │ │ │ │ │ │ │

A

10518

Display of the measured value determined from a selected current input and the parameters for this column. This value is monitored up to an upper limit. Monitoring has the following operating modes: - No monitoring - Generate a warning, value = default value - Set a digital contact, value = default value

├ Unit5

C

30680

Unit of measured value 5

├ Start Value │ │

C

10530

Physical start value This value corresponds to 0 or 4 mA depending on the operating mode.

├ End Value │ │

C

10542

Physical end value This value corresponds to the 20 mA measured value.

├ Default Value │

C

10554

If the "Upper Limit" is exceeded, the measured value is set to this default value.

├ Operating Mode │ │

C

1549

{OFF|0-20MA|4-20MA} Operating mode of the selected current input. (OFF/0-20 mA/4-20 mA)

............................................................................................................................................................................................................... -


10 Specialties

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

1550

{Current Input-1|Current Input-2|Current Input3|Current Input-4|Current Input-5|Current Input-6|Current Input-7|Current Input-8|Wago current input-1|Wago current input-2|Wago current input-3|Wago current input-4|Wago current input-5|Wago current input-6|Wago current input-7|Wago current input-8|Wago current input-9|Wago current input-10|Wago current input-11|Wago current input-12|Wago current input-13|Wago current input-14|Wago current input-15|Wago current input-16} Source of the analog signal. Current input-1 through Current input-8 Wago current input-1 through Wago current input-16

├ Source │ │ │ │ │ │ │ │ │ │ │ │ │ │

C

├ Upper Limit │ │

C

10566

Upper limit of the physical value. If the limit is exceeded, a warning is generated, a digital contact is set or it is ignored.

└ Select Contact

C

1551

{NONE|Generate Warning|DO 9, Signal 1|DO 10, Signal 2|DO 11, Signal 3|DO 12, Signal 4} Selection of signaling contact or warning. Signaling contacts DO9 through DO12 are collective, i.e. multiple limit value violations can be signaled with a digital contact. The first violation sets the contact.

" KW Dewpoint

A

1536

Heading

├ Value6 │ │ │ │ │ │ │

A

10520

Display of the measured value determined from a selected current input and the parameters for this column. This value is monitored up to an upper limit. Monitoring has the following operating modes: - No monitoring - Generate a warning, value = default value - Set a digital contact, value = default value

├ Unit6

C

30700

Unit of measured value 6

├ Start Value │ │

C

10532

Physical start value This value corresponds to 0 or 4 mA depending on the operating mode.

├ End Value │

C

10544

Physical end value This value corresponds to the 20 mA measured value.

├ Default Value │

C

10556

If the "Upper Limit" is exceeded, the measured value is set to this default value.

├ Operating Mode │ │

C

1552

{OFF|0-20MA|4-20MA} Operating mode of the selected current input. (OFF/0-20 mA/4-20 mA)

85

............................................................................................................................................................................................................... -


10 Specialties

ANNEX

...............................................................................................................................................................................................................

Element

86

Unit

Modb.

Description

├ Source │ │ │ │ │ │ │ │ │ │ │ │ │ │

C

1553

{Current Input-1|Current Input-2|Current Input3|Current Input-4|Current Input-5|Current Input-6|Current Input-7|Current Input-8|Wago current input-1|Wago current input-2|Wago current input-3|Wago current input-4|Wago current input-5|Wago current input-6|Wago current input-7|Wago current input-8|Wago current input-9|Wago current input-10|Wago current input-11|Wago current input-12|Wago current input-13|Wago current input-14|Wago current input-15|Wago current input-16} Source of the analog signal. Current input-1 through Current input-8 Wago current input-1 through Wago current input-16

├ Upper Limit │ │

C

10568

Upper limit of the physical value. If the limit is exceeded, a warning is generated, a digital contact is set or it is ignored.

└ Select Contact

C

1554

{NONE|Generate Warning|DO 9, Signal 1|DO 10, Signal 2|DO 11, Signal 3|DO 12, Signal 4} Selection of signaling contact or warning. Signaling contacts DO9 through DO12 are collective, i.e. multiple limit violations can be signaled with a digital contact. The first violation sets the contact.

" Add. monitoring-1

A

1846

Heading

├ Monitored value1

C

30540

Designation for measured value 7

├ Value7 │ │ │ │ │ │ │

A

11010

Display of the measured value determined from a selected current input and the parameters for this column. This value is monitored up to an upper limit. Monitoring has the following operating modes: - No monitoring - Generate a warning, value = default value - Set a digital contact, value = default value

├ Unit7

C

30720

Unit of measured value 7

├ Start Value │ │

C

11012

Physical start value This value corresponds to 0 or 4 mA depending on the operating mode.

├ End Value │ │

C

11014

Physical end value This value corresponds to the 20 mA measured value.

├ Default Value │

C

11016

If the "Upper Limit" is exceeded, the measured value is set to this default value.

├ Operating Mode │ │

C

1849

{OFF|0-20MA|4-20MA} Operating mode of the selected current input. (OFF/0-20 mA/4-20 mA)

............................................................................................................................................................................................................... -


10 Specialties

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

1850

{Current Input-1|Current Input-2|Current Input3|Current Input-4|Current Input-5|Current Input-6|Current Input-7|Current Input-8|Wago current input-1|Wago current input-2|Wago current input-3|Wago current input-4|Wago current input-5|Wago current input-6|Wago current input-7|Wago current input-8|Wago current input-9|Wago current input-10|Wago current input-11|Wago current input-12|Wago current input-13|Wago current input-14|Wago current input-15|Wago current input-16} Source of the analog signal. Current input-1 through Current input-8 Wago current input-1 through Wago current input-16

├ Source │ │ │ │ │ │ │ │ │ │ │ │ │ │

C

├ Upper Limit │ │

C

11018

Upper limit of the physical value. If the limit is exceeded, a warning is generated, a digital contact is set or it is ignored.

└ Select Contact

C

1851

{NONE|Generate Warning|DO 9, Signal 1|DO 10, Signal 2|DO 11, Signal 3|DO 12, Signal 4} Selection of signaling contact or warning. Signaling contacts DO9 through DO12 are collective, i.e. multiple limit violations can be signaled with a digital contact. The first violation sets the contact.

" Add. monitoring-2

A

1847

Heading

├ Monitored value2

C

30560

Designation for measured value 8

├ Value8 │ │ │ │ │ │ │

A

11020

Display of the measured value determined from a selected current input and the parameters for this column. This value is monitored up to an upper limit. Monitoring has the following operating modes: - No monitoring - Generate a warning, value = default value - Set a digital contact, value = default value

├ Unit8

C

30740

Unit of measured value 8

├ Start Value │ │

C

11022

Physical start value This value corresponds to 0 or 4 mA depending on the operating mode.

├ End Value │ │

C

11024

Physical end value This value corresponds to the 20 mA measured value.

├ Default Value │

C

11026

If the "Upper Limit" is exceeded, the measured value is set to this default value.

├ Operating Mode │ │

C

1852

{OFF|0-20MA|4-20MA} Operating mode of the selected current input. (OFF/0-20 mA/4-20 mA)

87

............................................................................................................................................................................................................... -


10 Specialties

ANNEX

...............................................................................................................................................................................................................

Element

88

Unit

Modb.

Description

├ Source │ │ │ │ │ │ │ │ │ │ │ │ │ │

C

1853

{Current Input-1|Current Input-2|Current Input3|Current Input-4|Current Input-5|Current Input-6|Current Input-7|Current Input-8|Wago current input-1|Wago current input-2|Wago current input-3|Wago current input-4|Wago current input-5|Wago current input-6|Wago current input-7|Wago current input-8|Wago current input-9|Wago current input-10|Wago current input-11|Wago current input-12|Wago current input-13|Wago current input-14|Wago current input-15|Wago current input-16} Source of the analog signal. Current input-1 through Current input-8 Wago current input-1 through Wago current input-16

├ Upper Limit │ │

C

11028

Upper limit of the physical value. If the limit is exceeded, a warning is generated, a digital contact is set or it is ignored.

└ Select Contact

C

1854

{NONE|Generate Warning|DO 9, Signal 1|DO 10, Signal 2|DO 11, Signal 3|DO 12, Signal 4} Selection of signaling contact or warning. Signaling contacts DO9 through DO12 are collective, i.e. multiple limit violations can be signaled with a digital contact. The first violation sets the contact.

" Add. monitoring-3

A

1848

Heading

├ Monitored value3

C

30580

Designation for measured value 9

├ Value9 │ │ │ │ │ │ │

A

11030

Display of the measured value determined from a selected current input and the parameters for this column. This value is monitored up to an upper limit. Monitoring has the following operating modes: - No monitoring - Generate a warning, value = default value - Set a digital contact, value = default value

├ Unit9

C

30760

Unit of measured value 9

├ Start Value │ │

C

11032

Physical start value This value corresponds to 0 or 4 mA depending on the operating mode.

├ End Value │ │

C

11034

Physical end value This value corresponds to the 20 mA measured value.

├ Default Value │

C

11036

If the "Upper Limit" is exceeded, the measured value is set to this default value.

├ Operating Mode │ │

C

1855

{OFF|0-20MA|4-20MA} Operating mode of the selected current input. (OFF/0-20 mA/4-20 mA)

............................................................................................................................................................................................................... -


10 Specialties

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

1856

{Current Input-1|Current Input-2|Current Input3|Current Input-4|Current Input-5|Current Input-6|Current Input-7|Current Input-8|Wago current input-1|Wago current input-2|Wago current input-3|Wago current input-4|Wago current input-5|Wago current input-6|Wago current input-7|Wago current input-8|Wago current input-9|Wago current input-10|Wago current input-11|Wago current input-12|Wago current input-13|Wago current input-14|Wago current input-15|Wago current input-16} Source of the analog signal. Current input-1 through Current input-8 Wago current input-1 through Wago current input-16

├ Source │ │ │ │ │ │ │ │ │ │ │ │ │ │

C

├ Upper Limit │ │

C

11038

Upper limit of the physical value. If the limit is exceeded, a warning is generated, a digital contact is set or it is ignored.

└ Select Contact

C

1857

{NONE|Generate Warning|DO 9, Signal 1|DO 10, Signal 2|DO 11, Signal 3|DO 12, Signal 4} Selection of signaling contact or warning. Signaling contacts DO9 through DO12 are collective, i.e. multiple limit violations can be signaled with a digital contact. The first violation sets the contact.

" Add. monitoring-4

A

1864

Heading

├ Monitored value4

C

30780

Designation for measured value 10

├ Value10 │ │ │ │ │ │ │

A

11040

Display of the measured value determined from a selected current input and the parameters for this column. This value is monitored up to an upper limit. Monitoring has the following operating modes: - No monitoring - Generate a warning, value = default value - Set a digital contact, value = default value

├ Unit10

C

30800

Unit of measured value 10

├ Start Value │ │

C

11042

Physical start value This value corresponds to 0 or 4 mA depending on the operating mode.

├ End Value │ │

C

11044

Physical end value This value corresponds to the 20 mA measured value.

├ Default Value │

C

11046

If the "Upper Limit" is exceeded, the measured value is set to this default value.

├ Operating Mode │ │

C

1865

{OFF|0-20MA|4-20MA} Operating mode of the selected current input. (OFF/0-20 mA/4-20 mA)

89

............................................................................................................................................................................................................... -


10 Specialties

ANNEX

...............................................................................................................................................................................................................

Element

90

Unit

Modb.

Description

├ Source │ │ │ │ │ │ │ │ │ │ │ │ │ │

C

1866

{Current Input-1|Current Input-2|Current Input3|Current Input-4|Current Input-5|Current Input-6|Current Input-7|Current Input-8|Wago current input-1|Wago current input-2|Wago current input-3|Wago current input-4|Wago current input-5|Wago current input-6|Wago current input-7|Wago current input-8|Wago current input-9|Wago current input-10|Wago current input-11|Wago current input-12|Wago current input-13|Wago current input-14|Wago current input-15|Wago current input-16} Source of the analog signal. Current input-1 through Current input-8 Wago current input-1 through Wago current input-16

├ Upper Limit │ │

C

11048

Upper limit of the physical value. If the limit is exceeded, a warning is generated, a digital contact is set or it is ignored.

└ Select Contact

C

1867

{NONE|Generate Warning|DO 9, Signal 1|DO 10, Signal 2|DO 11, Signal 3|DO 12, Signal 4} Selection of signaling contact or warning. Signaling contacts DO9 through DO12 are collective, i.e. multiple limit violations can be signaled with a digital contact. The first violation sets the contact.

" Add. monitoring-5

A

1868

Heading

├ Monitored value5

C

30820

Designation for measured value 11

├ Value11 │ │ │ │ │ │ │

A

11050

Display of the measured value determined from a selected current input and the parameters for this column. This value is monitored up to an upper limit. Monitoring has the following operating modes: - No monitoring - Generate a warning, value = default value - Set a digital contact, value = default value

├ Unit11

C

30840

Unit of measured value 11

├ Start Value │ │

C

11052

Physical start value This value corresponds to 0 or 4 mA depending on the operating mode.

├ End Value │ │

C

11054

Physical end value This value corresponds to the 20 mA measured value.

├ Default Value │

C

11056

If the "Upper Limit" is exceeded, the measured value is set to this default value.

├ Operating Mode │ │

C

1869

{OFF|0-20MA|4-20MA} Operating mode of the selected current input. (OFF/0-20 mA/4-20 mA)

............................................................................................................................................................................................................... -


10 Specialties

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

1870

{Current Input-1|Current Input-2|Current Input3|Current Input-4|Current Input-5|Current Input-6|Current Input-7|Current Input-8|Wago current input-1|Wago current input-2|Wago current input-3|Wago current input-4|Wago current input-5|Wago current input-6|Wago current input-7|Wago current input-8|Wago current input-9|Wago current input-10|Wago current input-11|Wago current input-12|Wago current input-13|Wago current input-14|Wago current input-15|Wago current input-16} Source of the analog signal. Current input-1 through Current input-8 Wago current input-1 through Wago current input-16

├ Source │ │ │ │ │ │ │ │ │ │ │ │ │ │

C

├ Upper Limit │ │

C

11058

Upper limit of the physical value. If the limit is exceeded, a warning is generated, a digital contact is set or it is ignored.

└ Select Contact

C

1871

{NONE|Generate Warning|DO 9, Signal 1|DO 10, Signal 2|DO 11, Signal 3|DO 12, Signal 4} Selection of signaling contact or warning. Signaling contacts DO9 through DO12 are collective, i.e. multiple limit violations can be signaled with a digital contact. The first violation sets the contact.

A

1555

Heading

├ Total Sulfur │

A

10570

Total volume of all sulfur compounds (H2S, COS and Mercaptan)

├ Upper Warning Limit │

C

10572

Upper limit value of the entire sulfur content for triggering a warning

└ Warning Mode

C

1556

{NONE|Generate Warning} Total sulfur warning mode on/off (NONE/Generate Warning)

A

1085

Heading

├ Component Default │ │ │ │ │ │ │

E

1086

{OFF|ON} The 4 components helium, hydrogen, oxygen and argon can be specified as fixed values. This mode can be switched on or off (OFF/ON). The other measured components are then normalized to 100% minus the fixed components. This mode is not permitted in custody transfer operation.

├ Default Helium

E

mol%

7176

Fixed value for helium content

├ Default Hydrogen

E

mol%

7178

Fixed value for hydrogen content

├ Default Oxygen

E

mol%

7180

Fixed value for oxygen content

└ Default Argon

E

mol%

7182

Fixed value for argon content

1560

Heading

" Total Sulfur

" Fixed Components

" DSfG Constants

A

91

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

92

Unit

Modb.

Description

├ Carbon Monoxide S1 │ │

A

10820

Value of the carbon monoxide content in stream 1 required for DSfG standard form. This value is always 0

├ Carbon Monoxide S2 │ │

A

10822

Value of the carbon monoxide content in stream 2 required for DSfG standard form. This value is always 0

├ Carbon Monoxide S3 │ │

A

10824

Value of the carbon monoxide content in stream 3 required for DSfG standard form. This value is always 0

├ Carbon Monoxide S4 │ │

A

10826

Value of the carbon monoxide content in stream 4 required for DSfG standard form. This value is always 0

├ Ethene S1 │

A

10828

Value of the ethene content in stream 1 required for DSfG standard form. This value is always 0

├ Ethene S2 │

A

10830

Value of the ethene content in stream 2 required for DSfG standard form. This value is always 0

├ Ethene S3 │

A

10832

Value of the ethene content in stream 3 required for DSfG standard form. This value is always 0

├ Ethene S4 │

A

10834

Value of the ethene content in stream 4 required for DSfG standard form. This value is always 0

├ Propene S1 │ │

A

10836

Value of the propene content in stream 1 required for DSfG standard form. This value is always 0

├ Propene S2 │ │

A

10838

Value of the propene content in stream 2 required for DSfG standard form. This value is always 0

├ Propene S3 │ │

A

10840

Value of the propene content in stream 3 required for DSfG standard form. This value is always 0

└ Propene S4

A

10842

Value of the propene content in stream 4 required for DSfG standard form. This value is always 0

A

1089

Heading

A

1090

Heading

├ MLC Coefficient A │ │ │ │

E

9900

Multilevel coefficient A for the polynomial used to calculate the molar content of nitrogen from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

9902

Multilevel coefficient B for the polynomial used to calculate the molar content of nitrogen from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

" 11 Component Parameters " Nitrogen

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ MLC Coefficient C │ │ │ │

E

9904

Multilevel coefficient C for the polynomial used to calculate the molar content of nitrogen from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

9906

Multilevel coefficient D for the polynomial used to calculate the molar content of nitrogen from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

9908

Lower warning limit for the nitrogen content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

9910

Upper warning limit for the nitrogen content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

9912

Lower alarm limit for the nitrogen content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

9914

Upper alarm limit for the nitrogen content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1091

Heading

├ MLC Coefficient A │ │ │ │

E

9920

Multilevel coefficient A for the polynomial used to calculate the molar content of methane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

9922

Multilevel coefficient B for the polynomial used to calculate the molar content of methane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

9924

Multilevel coefficient C for the polynomial used to calculate the molar content of methane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

9926

Multilevel coefficient D for the polynomial used to calculate the molar content of methane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

9928

Lower warning limit for the methane content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

9930

Upper warning limit for the methane content. Exceeding this value triggers a warning.

" Methane

93

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ Lower Fault Limit │ │ │

E

9932

Lower alarm limit for the methane content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

9934

Upper alarm limit for the methane content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1092

Heading

├ MLC Coefficient A │ │ │ │

E

9940

Multilevel coefficient A for the polynomial used to calculate the molar content of carbon dioxide from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

9942

Multilevel coefficient B for the polynomial used to calculate the molar content of carbon dioxide from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

9944

Multilevel coefficient C for the polynomial used to calculate the molar content of carbon dioxide from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

9946

Multilevel coefficient D for the polynomial used to calculate the molar content of carbon dioxide from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │ │

E

9948

Lower warning limit for the carbon dioxide content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

9950

Upper warning limit for the carbon dioxide content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │ │

E

9952

Lower alarm limit for the carbon dioxide content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

9954

Upper alarm limit for the carbon dioxide content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1093

Heading

E

9960

Multilevel coefficient A for the polynomial used to calculate the molar content of ethane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

94 " Carbon Dioxide

" Ethane ├ MLC Coefficient A │ │ │ │

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ MLC Coefficient B │ │ │ │

E

9962

Multilevel coefficient B for the polynomial used to calculate the molar content of ethane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

9964

Multilevel coefficient C for the polynomial used to calculate the molar content of ethane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

9966

Multilevel coefficient D for the polynomial used to calculate the molar content of ethane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

9968

Lower warning limit for the ethane content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

9970

Upper warning limit for the ethane content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

9972

Lower alarm limit for the ethane content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

9974

Upper alarm limit for the ethane content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1094

Heading

├ MLC Coefficient A │ │ │ │

E

9980

Multilevel coefficient A for the polynomial used to calculate the molar content of propane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

9982

Multilevel coefficient B for the polynomial used to calculate the molar content of propane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

9984

Multilevel coefficient C for the polynomial used to calculate the molar content of propane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

9986

Multilevel coefficient D for the polynomial used to calculate the molar content of propane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

" Propane

95

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

96

Unit

Modb.

Description

├ Lower Warning Limit │

E

9988

Lower warning limit for the propane content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

9990

Upper warning limit for the propane content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

9992

Lower alarm limit for the propane content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

9994

Upper alarm limit for the propane content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1095

Heading

├ MLC Coefficient A │ │ │ │

E

10000

Multilevel coefficient A for the polynomial used to calculate the molar content of i-butane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10002

Multilevel coefficient B for the polynomial used to calculate the molar content of i-butane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10004

Multilevel coefficient C for the polynomial used to calculate the molar content of i-butane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

10006

Multilevel coefficient D for the polynomial used to calculate the molar content of i-butane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10008

Lower warning limit for the i-butane content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10010

Upper warning limit for the i-butane content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10012

Lower alarm limit for the i-butane content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

10014

Upper alarm limit for the i-butane content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1096

Heading

" i-Butane

" n-Butane

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ MLC Coefficient A │ │ │ │

E

10020

Multilevel coefficient A for the polynomial used to calculate the molar content of n-butane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10022

Multilevel coefficient B for the polynomial used to calculate the molar content of n-butane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10024

Multilevel coefficient C for the polynomial used to calculate the molar content of n-butane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

10026

Multilevel coefficient D for the polynomial used to calculate the molar content of n-butane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10028

Lower warning limit for the n-butane content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10030

Upper warning limit for the n-butane content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10032

Lower alarm limit for the n-butane content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

10034

Upper alarm limit for the n-butane content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1097

Heading

├ MLC Coefficient A │ │ │ │

E

10040

Multilevel coefficient A for the polynomial used to calculate the molar content of neopentane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10042

Multilevel coefficient B for the polynomial used to calculate the molar content of neopentane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10044

Multilevel coefficient C for the polynomial used to calculate the molar content of neopentane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

" Neopentane

97

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

98

Unit

Modb.

Description

├ MLC Coefficient D │ │ │ │

E

10046

Multilevel coefficient D for the polynomial used to calculate the molar content of neopentane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10048

Lower warning limit for the neopentane content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10050

Upper warning limit for the neopentane content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10052

Lower alarm limit for the neopentane content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

10054

Upper alarm limit for the neopentane content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1098

Heading

├ MLC Coefficient A │ │ │ │

E

10060

Multilevel coefficient A for the polynomial used to calculate the molar content of i-pentane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10062

Multilevel coefficient B for the polynomial used to calculate the molar content of i-pentane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10064

Multilevel coefficient C for the polynomial used to calculate the molar content of i-pentane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

10066

Multilevel coefficient D for the polynomial used to calculate the molar content of i-pentane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10068

Lower warning limit for the i-pentane content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10070

Upper warning limit for the i-pentane content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10072

Lower alarm limit for the i-pentane content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

" i-Pentane

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Modb.

Description

E

10074

Upper alarm limit for the i-pentane content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1099

Heading

├ MLC Coefficient A │ │ │ │

E

10080

Multilevel coefficient A for the polynomial used to calculate the molar content of n-pentane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10082

Multilevel coefficient B for the polynomial used to calculate the molar content of n-pentane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10084

Multilevel coefficient C for the polynomial used to calculate the molar content of n-pentane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

10086

Multilevel coefficient D for the polynomial used to calculate the molar content of n-pentane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10088

Lower warning limit for the n-pentane content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10090

Upper warning limit for the n-pentane content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10092

Lower alarm limit for the n-pentane content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

10094

Upper alarm limit for the n-pentane content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1100

Heading

├ MLC Coefficient A │ │ │ │

E

10100

Multilevel coefficient A for the polynomial used to calculate the molar content of C6+ from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10102

Multilevel coefficient B for the polynomial used to calculate the molar content of C6+ from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

└ Upper Fault Limit

" n-Pentane

" C6+

Unit

99

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

100

Unit

Modb.

Description

├ MLC Coefficient C │ │ │ │

E

10104

Multilevel coefficient C for the polynomial used to calculate the molar content of C6+ from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

10106

Multilevel coefficient D for the polynomial used to calculate the molar content of C6+ from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10108

Lower warning limit for the C6+ content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10110

Upper warning limit for the C6+ content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10112

Lower alarm limit for the C6+ content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

10114

Upper alarm limit for the C6+ content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1101

Heading

├ MLC Coefficient A │ │ │ │

E

10120

Multilevel coefficient A for the polynomial used to calculate the molar content of n-hexane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10122

Multilevel coefficient B for the polynomial used to calculate the molar content of n-hexane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10124

Multilevel coefficient C for the polynomial used to calculate the molar content of n-hexane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

10126

Multilevel coefficient D for the polynomial used to calculate the molar content of n-hexane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10128

Lower warning limit for the n-hexane content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10130

Upper warning limit for the n-hexane content. Exceeding this value triggers a warning.

" n-Hexane

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ Lower Fault Limit │ │ │

E

10132

Lower alarm limit for the n-hexane content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

10134

Upper alarm limit for the n-hexane content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

" n-Heptane

A

1102

Heading

├ MLC Coefficient A │ │ │ │

E

10140

Multilevel coefficient A for the polynomial used to calculate the molar content of n-heptane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10142

Multilevel coefficient B for the polynomial used to calculate the molar content of n-heptane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10144

Multilevel coefficient C for the polynomial used to calculate the molar content of n-heptane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

10146

Multilevel coefficient D for the polynomial used to calculate the molar content of n-heptane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10148

Lower warning limit for the n-heptane content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10150

Upper warning limit for the n-heptane content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10152

Lower alarm limit for the n-heptane content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

10154

Upper alarm limit for the n-heptane content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1103

Heading

E

10160

Multilevel coefficient A for the polynomial used to calculate the molar content of n-octane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

" n-Octane ├ MLC Coefficient A │ │ │ │

101

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

102

Unit

Modb.

Description

├ MLC Coefficient B │ │ │ │

E

10162

Multilevel coefficient B for the polynomial used to calculate the molar content of n-octane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10164

Multilevel coefficient C for the polynomial used to calculate the molar content of n-octane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

10166

Multilevel coefficient D for the polynomial used to calculate the molar content of n-octane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10168

Lower warning limit for the n-octane content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10170

Upper warning limit for the n-octane content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10172

Lower alarm limit for the n-octane content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

10174

Upper alarm limit for the n-octane content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1104

Heading

├ MLC Coefficient A │ │ │ │

E

10180

Multilevel coefficient A for the polynomial used to calculate the molar content of n-nonane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10182

Multilevel coefficient B for the polynomial used to calculate the molar content of n-nonane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10184

Multilevel coefficient C for the polynomial used to calculate the molar content of n-nonane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

10186

Multilevel coefficient D for the polynomial used to calculate the molar content of n-nonane from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

" n-Nonane

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ Lower Warning Limit │

E

10188

Lower warning limit for the n-nonane content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10190

Upper warning limit for the n-nonane content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10192

Lower alarm limit for the n-nonane content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

10194

Upper alarm limit for the n-nonane content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1105

Heading

├ MLC Coefficient A │ │ │ │

E

10200

Multilevel coefficient A for the polynomial used to calculate the molar content of oxygen from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10202

Multilevel coefficient B for the polynomial used to calculate the molar content of oxygen from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10204

Multilevel coefficient C for the polynomial used to calculate the molar content of oxygen from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

10206

Multilevel coefficient D for the polynomial used to calculate the molar content of oxygen from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10208

Lower warning limit for the oxygen content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10210

Upper warning limit for the oxygen content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10212

Lower alarm limit for the oxygen content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

10214

Upper alarm limit for the oxygen content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1106

Heading

" Oxygen

" Helium

103

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

104

Unit

Modb.

Description

├ MLC Coefficient A │ │ │ │

E

10220

Multilevel coefficient A for the polynomial used to calculate the molar content of helium from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10222

Multilevel coefficient B for the polynomial used to calculate the molar content of helium from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10224

Multilevel coefficient C for the polynomial used to calculate the molar content of helium from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

10226

Multilevel coefficient D for the polynomial used to calculate the molar content of helium from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10228

Lower warning limit for the helium content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10230

Upper warning limit for the helium content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10232

Lower alarm limit for the helium content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

10234

Upper alarm limit for the helium content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1107

Heading

├ MLC Coefficient A │ │ │ │

E

10240

Multilevel coefficient A for the polynomial used to calculate the molar content of hydrogen from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10242

Multilevel coefficient B for the polynomial used to calculate the molar content of hydrogen from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10244

Multilevel coefficient C for the polynomial used to calculate the molar content of hydrogen from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

" Hydrogen

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ MLC Coefficient D │ │ │ │

E

10246

Multilevel coefficient D for the polynomial used to calculate the molar content of hydrogen from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10248

Lower warning limit for the hydrogen content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10250

Upper warning limit for the hydrogen content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10252

Lower alarm limit for the hydrogen content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

10254

Upper alarm limit for the hydrogen content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1108

Heading

├ MLC Coefficient A │ │ │ │

E

10260

Multilevel coefficient A for the polynomial used to calculate the molar content of argon from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10262

Multilevel coefficient B for the polynomial used to calculate the molar content of argon from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10264

Multilevel coefficient C for the polynomial used to calculate the molar content of argon from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

10266

Multilevel coefficient D for the polynomial used to calculate the molar content of argon from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10268

Lower warning limit for the argon content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10270

Upper warning limit for the argon content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10272

Lower alarm limit for the argon content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

" Argon

105

............................................................................................................................................................................................................... -


11 Component Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Modb.

Description

E

10274

Upper alarm limit for the argon content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1109

Heading

├ MLC Coefficient A │ │ │ │

E

10280

Multilevel coefficient A for the polynomial used to calculate the molar content of reserve from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient B │ │ │ │

E

10282

Multilevel coefficient B for the polynomial used to calculate the molar content of reserve from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient C │ │ │ │

E

10284

Multilevel coefficient C for the polynomial used to calculate the molar content of reserve from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ MLC Coefficient D │ │ │ │

E

10286

Multilevel coefficient D for the polynomial used to calculate the molar content of reserve from the peak area. The multilevel coefficients are defined in the factory and do not change during operation.

├ Lower Warning Limit │

E

10288

Lower warning limit for the reserve content. Falling short of this value triggers a warning.

├ Upper Warning Limit │

E

10290

Upper warning limit for the reserve content. Exceeding this value triggers a warning.

├ Lower Fault Limit │ │ │

E

10292

Lower alarm limit for the reserve content. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

└ Upper Fault Limit

E

10294

Upper alarm limit for the reserve content. Exceeding this value triggers an alarm. In custody transfer operation, this is the upper measuring range limit as per the PTB approval.

A

1087

Heading

├ Viscosity Corrector │ │

E

1088

{OFF|ON} Switching on/off of viscosity corrector (OFF/ON)

├ Visco. Parameter A │

E

7184

Viscosity corrector – Parameter A (set in the factory).

├ Visco. Parameter B │

E

7186

Viscosity corrector – Parameter B (set in the factory).

├ Visco. Parameter C │

E

7188

Viscosity corrector – Parameter C (set in the factory).

└ Upper Fault Limit

" Reserve

106

" Viscosity

Unit

............................................................................................................................................................................................................... -


12 Calibration Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Modb.

Description

E

7190

Viscosity corrector – Parameter D (set in the factory).

A

1110

Heading

├ CalMode │ │ │

E

1112

{Weekday|Day(s)} Calibration interval mode (Weekday/Day(s)). If the calibration interval is 7 days, a weekday can be defined. Day(s) applies for other intervals.

├ Interval (Days) │

E

1113

Calibration interval in days. This value is used if the calibration interval mode is set to "Day(s)".

├ Hour │

E

1114

Hour in which calibration is to take place (0 to 23).

├ Last Calibration

A

3006

Time at which the last calibration was started.

├ Next calibration │

A

3320

Time at which the next calibration will be started.

├ RF für neo-Pentane │ │

E

1874

{RF from Neopentane|RF from n-Butane} Specifies whether the RF of n-butane is used for neopentane in the calibration or not.

└ Measurement neo-Pentane

E

1952

{Measure|Add to n-Butane} Measure: Measured neo-Pentane is displayed as neo-Pentane Add to n-Butane: Measured neo-Pentane is added to n-Butane

" Default values

A

1115

Heading

└ Visco. Parameter D " 12 Calibration Parameters

Unit

├ Sum CalGas Values │

A

mol%

10848

Sum of the content of all gases in the internal calibration gas.

├ Nitrogen │ │

E

mol%

10300

Set value for nitrogen content during calibration. This value can be found on the certificate for the internal calibration gas.

├ Methane │ │

E

mol%

10302

Set value for methane content during calibration. This value can be found on the certificate for the internal calibration gas.

├ Carbon Dioxide │ │

E

mol%

10304

Set value for carbon dioxide content during calibration. This value can be found on the certificate for the internal calibration gas.

├ Ethane │ │

E

mol%

10306

Set value for ethane content during calibration. This value can be found on the certificate for the internal calibration gas.

├ Propane │ │

E

mol%

10308

Set value for propane content during calibration. This value can be found on the certificate for the internal calibration gas.

├ i-Butane │ │

E

mol%

10310

Set value for i-butane content during calibration. This value can be found on the certificate for the internal calibration gas.

├ n-Butane │ │

E

mol%

10312

Set value for n-butane content during calibration. This value can be found on the certificate for the internal calibration gas.

107

............................................................................................................................................................................................................... -


12 Calibration Parameters

ANNEX

...............................................................................................................................................................................................................

Element

108

Unit

Modb.

Description

├ Neopentane │ │

E

mol%

10314

Set value for neopentane content during calibration. This value can be found on the certificate for the internal calibration gas.

├ i-Pentane │ │

E

mol%

10316

Set value for i-pentane content during calibration. This value can be found on the certificate for the internal calibration gas.

├ n-Pentane │ │

E

mol%

10318

Set value for n-pentane content during calibration. This value can be found on the certificate for the internal calibration gas.

├ C6+ │ │

E

mol%

10320

Set value for C6+ content during calibration. This value can be found on the certificate for the internal calibration gas.

├ n-Hexane │ │

E

mol%

10322

Set value for n-hexane content during calibration. This value can be found on the certificate for the internal calibration gas.

├ n-Heptane │ │

E

mol%

10324

Set value for n-heptane content during calibration. This value can be found on the certificate for the internal calibration gas.

├ n-Octane │ │

E

mol%

10326

Set value for n-octane content during calibration. This value can be found on the certificate for the internal calibration gas.

├ n-Nonane │ │

E

mol%

10328

Set value for n-nonane content during calibration. This value can be found on the certificate for the internal calibration gas.

├ Oxygen │ │

E

mol%

10330

Set value for oxygen content during calibration. This value can be found on the certificate for the internal calibration gas.

├ Helium │ │

E

mol%

10332

Set value for helium content during calibration. This value can be found on the certificate for the internal calibration gas.

├ Hydrogen │ │

E

mol%

10334

Set value for hydrogen content during calibration. This value can be found on the certificate for the internal calibration gas.

├ Argon │ │

E

mol%

10336

Set value for argon content during calibration. This value can be found on the certificate for the internal calibration gas.

├ Reserve │ │

E

mol%

10338

Set value for reserve during calibration. This value can be found on the certificate for the internal calibration gas.

├ Hs Default Value │ │

E

&UnitHs

7192

Set value for superior calorific value during calibration. This value can be found on the certificate for the internal calibration gas.

└ Rho Default Value

E

kg/m3

7194

Set value for standard density during calibration. This value can be found on the certificate for the internal calibration gas.

1116

Heading

" Limit Values Cal.

A

............................................................................................................................................................................................................... -


13 Calculation Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ Hs Deviation │ │

E

%

7196

Maximum permissible deviation (%) between measured value and set value for superior calorific value during calibration

├ Rho Deviation │ │

E

%

7198

Maximum permissible deviation (%) between measured value and set value for standard density during calibration

├ CO2 Deviation │ │

E

mol%

7200

Maximum permissible deviation (mol%) between measured value and set value for CO2 content during calibration

├ Response Factor Dev. │ │ │

E

%

7202

Maximum permissible deviation between the retention times from automatic and manual calibration (RT) and those from basic calibration (RTZ)

└ Total Area Dev.

E

%

7204

Maximum permissible deviation between the sum of all peak areas from automatic and manual calibration (RT) and the sum from basic calibration (RTZ)

" 13 Calculation Parameters

A

1117

Heading

└ Calculation as per:

E

1118

{ISO6976|GPA2172} Calculation as per ISO 6976 or GPA 2172. For GPA, 60 °F and 14.73 psi or 14.696 psi must be set. In Europe ISO 6976 is used.

" ISO-6976

A

1119

Heading

" GPA-2172-09

A

1120

Heading

├ GPA Hs Calculation │ │ │ │ │ │ │ │ │ │

E

1121

{Ideal Hs DRY|Ideal Hs SAT|Real Hs DRY|Real Hs SAT} Calculation mode for superior calorific value as per GPA-2172-09. Ideal Hs DRY: Dry gas, without real gas corrector Ideal Hs SAT: Wet gas (saturated), without real gas corrector Real Hs DRY: Dry gas, with real gas corrector Real Hs SAT: Wet gas (saturated), with real gas corrector

├ GPA Density Calculation │ │ │ │ │ │ │ │ │ │ │

E

1122

{Ideal Density DRY|Ideal Density SAT|Real Density DRY|Real Density SAT} Calculation mode for standard density as per GPA-2172-09. Ideal Density DRY: Dry gas, without real gas corrector Ideal Density SAT: Wet gas (saturated), without real gas corrector Real Density DRY: Dry gas, with real gas corrector Real Density SAT: Wet gas (saturated), with real gas corrector

109

............................................................................................................................................................................................................... -


13 Calculation Parameters

ANNEX

...............................................................................................................................................................................................................

Element

110

Unit

Modb.

Description

├ GPA Wo Calculation │ │ │ │ │ │ │ │ │ │ │

E

1123

{Ideal Wo Index DRY|Ideal Wo Index SAT|Real Wo Index DRY|Real Wo Index SAT} Calculation mode for Wobbe index as per GPA2172-09. Ideal Wo Index DRY: Dry gas, without real gas corrector Ideal Wo Index SAT: Wet gas (saturated), without real gas corrector Real Wo Index DRY: Dry gas, with real gas corrector Real Wo Index SAT: Wet gas (saturated), with real gas corrector

├ GPA Z Calculation │ │ │ │

E

1124

{DRY|SAT} Calculation mode for real gas factor as per GPA2172-09. DRY: Dry gas SAT: Wet gas (saturated)

├ GPA Hexane Mode │ │ │

E

1125

{HEXANE|HEXANE MEAN VALUE} C6 input variable for GPA-2172-09. HEXANE: n-Hexane HEXANE MEAN VALUE: Hexane (C6+)

└ GPA NeoP. Mode

E

1126

{I-PENTANE} C5 input variable for GPA-2172-09. I-PENTANE: Neopentane is not taken into account separately, but instead added to isopentane

A

1127

Heading

" Reference Conditions ├ Select Tb │ │ │ │ │ │ │ │ │

E

°C

1128

{0 °C|15 °C|60 °F|20 °C} Temperature at base conditions for volume correction. Australia ...……...15, Austria …........ 0 Belgium ….........…0, Canada ......... .15 Denmark ............... 0 France ............ 0 Germany ……....... 0 Ireland …....... 15 Italy .................... ...0 Japan ……...... 0 Netherlands …....... 0 Russia ........ 0/20 United Kingdom ...15 USA ............... 15

├ Select Tr │ │ │ │ │ │ │ │ │

E

°C

1129

{0 °C|15 °C|60 °F|20 °C|25 °C} Reference temperature for superior calorific value. Australia…���…...15 Austria ............ 25 Belgium………....25 Canada …........ 15 Denmark ............. 25 France …........... 0 Germany .. ...........25 Ireland …......... 15 Italy ..................... 25 Japan ................ 0 Netherlands ..........25 Russia ...…...... 25 United Kingdom ..15 USA ................ 15

............................................................................................................................................................................................................... -


13 Calculation Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ Select Pn │ │ │ │

E

bar

1130

{1.01325 bar|14.696 psi|14.73 psi} Selection of pressure at base conditions (1.01325 bar/14.696 psi/14.73 psi) In Germany and Austria the value is 1.01325 bar.

├ Temperature at Base Conditions

A

K

7206

Display of pressure at base conditions in K

├ Tb (T1)

A

°C

7208

Display of pressure at base conditions in °C

├ Tb (T1)

A

°F

7220

Display of pressure at base conditions in °F

├ Tr (T2) │

A

°C

7212

Display of reference temperature for superior calorific value in °C

├ Tr (T2) │

A

°F

7214

Display of reference temperature for superior calorific value in °F

├ Pn

A

bar

7216

Display of pressure at base conditions in bar

└ Pn

A

psi

7218

Display of pressure at base conditions in psi

1131

Heading

" Limit Values Ana., Cal.

A

├ RT Deviation │ │ │ │

E

%

7222

Maximum permissible deviation of the retention time in percent. The retention time for C6+ is not monitored, as this value is composed of various individual components.

└ Unnorm. Sum Dev.

E

%

7224

Maximum permissible deviation of the unnormalized sum in percent

" Limit Values Ana.

1132

Heading

├ Hs Default Value │ │

A E

&UnitHs

7226

Substitute value for superior calorific value. This fixed value is output instead of the measured value in the event of an alarm.

├ Hs Min. Limit │ │ │

E

&UnitHs

7228

Lower alarm limit for superior calorific value. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

├ Hs Max. Limit │ │ │

E

&UnitHs

7230

Upper alarm limit for superior calorific value. Exceeding this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

├ Wo Default Value │ │

E

&UnitHs

7232

Substitute value for Wobbe index. This fixed value is output instead of the measured value in the event of an alarm.

├ Wo Min. Limit │

E

&UnitHs

7234

Lower alarm limit for Wobbe index. Falling short of this value triggers an alarm.

├ Wo Max. Limit │

E

&UnitHs

7236

Upper alarm limit for Wobbe index. Exceeding this value triggers an alarm.

├ MN Default Value │ │

E

7238

Substitute value for methane number. This fixed value is output instead of the measured value in the event of an alarm.

111

............................................................................................................................................................................................................... -


13 Calculation Parameters

ANNEX

...............................................................................................................................................................................................................

Element

112

Unit

Modb.

Description

├ MN Min. Limit │

E

7240

Lower alarm limit for methane number. Falling short of this value triggers an alarm.

├ MN Max. Limit │

E

7242

Upper alarm limit for methane number. Exceeding this value triggers an alarm.

├ Rho Default Value │ │

E

kg/m3

7250

Substitute value for standard density. This fixed value is output instead of the measured value in the event of an alarm.

├ Rho Min. Limit │ │ │

E

kg/m3

7252

Lower alarm limit for standard density. Falling short of this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

├ Rho Max. Limit │ │ │

E

kg/m3

7254

Upper alarm limit for standard density. Exceeding this value triggers an alarm. In custody transfer operation, this is the lower measuring range limit as per the PTB approval.

├ rd Default Value │ │

E

7244

Substitute value for relative density. This fixed value is output instead of the measured value in the event of an alarm.

├ rd Min. Limit │

E

7246

Lower alarm limit for relative density. Falling short of this value triggers an alarm.

└ rd Max. Limit

E

7248

Upper alarm limit for relative density. Exceeding this value triggers an alarm.

" Analysis Min. Values

A

1481

Heading

├ Nitrogen │ │

E

mol%

10390

Lower alarm limit for the nitrogen content. Falling short of this value triggers either an alarm or a warning.

├ Methane │ │

E

mol%

10392

Lower alarm limit for the methane content. Falling short of this value triggers either an alarm or a warning.

├ Carbon Dioxide │ │

E

mol%

10394

Lower alarm limit for the carbon dioxide content. Falling short of this value triggers either an alarm or a warning.

├ Ethane │ │

E

mol%

10396

Lower alarm limit for the ethane content. Falling short of this value triggers either an alarm or a warning.

├ Propane │ │

E

mol%

10398

Lower alarm limit for the propane content. Falling short of this value triggers either an alarm or a warning.

├ i-Butane │ │

E

mol%

10400

Lower alarm limit for the i-butane content. Falling short of this value triggers either an alarm or a warning.

├ n-Butane │ │

E

mol%

10402

Lower alarm limit for the n-butane content. Falling short of this value triggers either an alarm or a warning.

├ Neopentane │ │

E

mol%

10404

Lower alarm limit for the neopentane content. Falling short of this value triggers either an alarm or a warning.

............................................................................................................................................................................................................... -


13 Calculation Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ i-Pentane │ │

E

mol%

10406

Lower alarm limit for the i-pentane content. Falling short of this value triggers either an alarm or a warning.

├ n-Pentane │ │

E

mol%

10408

Lower alarm limit for the n-pentane content. Falling short of this value triggers either an alarm or a warning.

├ C6+ │ │

E

mol%

10410

Lower alarm limit for the C6+ content. Falling short of this value triggers either an alarm or a warning.

├ n-Hexane │ │

E

mol%

10412

Lower alarm limit for the n-hexane content. Falling short of this value triggers either an alarm or a warning.

├ n-Heptane │ │

E

mol%

10414

Lower alarm limit for the n-heptane content. Falling short of this value triggers either an alarm or a warning.

├ n-Octane │ │

E

mol%

10416

Lower alarm limit for the n-octane content. Falling short of this value triggers either an alarm or a warning.

├ n-Nonane │ │

E

mol%

10418

Lower alarm limit for the n-nonane content. Falling short of this value triggers either an alarm or a warning.

├ Oxygen │ │

E

mol%

10420

Lower alarm limit for the oxygen content. Falling short of this value triggers either an alarm or a warning.

├ Helium │ │

E

mol%

10422

Lower alarm limit for the helium content. Falling short of this value triggers either an alarm or a warning.

├ Hydrogen │ │

E

mol%

10424

Lower alarm limit for the hydrogen content. Falling short of this value triggers either an alarm or a warning.

├ Argon │ │

E

mol%

10426

Lower alarm limit for the argon content. Falling short of this value triggers either an alarm or a warning.

└ Reserve

E

mol%

10428

Lower alarm limit for the reserve content. Falling short of this value triggers either an alarm or a warning.

1482

Heading

" Analysis Max. Values

A

├ Nitrogen │ │

E

mol%

10430

Upper alarm limit for the nitrogen content. Exceeding this value triggers either an alarm or a warning.

├ Methane │ │

E

mol%

10432

Upper alarm limit for the methane content. Exceeding this value triggers either an alarm or a warning.

├ Carbon Dioxide │ │

E

mol%

10434

Upper alarm limit for the carbon dioxide content. Exceeding this value triggers either an alarm or a warning.

113

............................................................................................................................................................................................................... -


13 Calculation Parameters

ANNEX

...............................................................................................................................................................................................................

Element

114

Unit

Modb.

Description

├ Ethane │ │

E

mol%

10436

Upper alarm limit for the ethane content. Exceeding this value triggers either an alarm or a warning.

├ Propane │ │

E

mol%

10438

Upper alarm limit for the propane content. Exceeding this value triggers either an alarm or a warning.

├ i-Butane │ │

E

mol%

10440

Upper alarm limit for the i-butane content. Exceeding this value triggers either an alarm or a warning.

├ n-Butane │ │

E

mol%

10442

Upper alarm limit for the n-butane content. Exceeding this value triggers either an alarm or a warning.

├ Neopentane │ │

E

mol%

10444

Upper alarm limit for the neopentane content. Exceeding this value triggers either an alarm or a warning.

├ i-Pentane │ │

E

mol%

10446

Upper alarm limit for the i-pentane content. Exceeding this value triggers either an alarm or a warning.

├ n-Pentane │ │

E

mol%

10448

Upper alarm limit for the n-pentane content. Exceeding this value triggers either an alarm or a warning.

├ C6+ │

E

mol%

10450

Upper alarm limit for the C6+ content. Exceeding this value triggers either an alarm or a warning.

├ n-Hexane │ │

E

mol%

10452

Upper alarm limit for the n-hexane content. Exceeding this value triggers either an alarm or a warning.

├ n-Heptane │ │

E

mol%

10454

Upper alarm limit for the n-heptane content. Exceeding this value triggers either an alarm or a warning.

├ n-Octane │ │

E

mol%

10456

Upper alarm limit for the n-octane content. Exceeding this value triggers either an alarm or a warning.

├ n-Nonane │ │

E

mol%

10458

Upper alarm limit for the n-nonane content. Exceeding this value triggers either an alarm or a warning.

├ Oxygen │ │

E

mol%

10460

Upper alarm limit for the oxygen content. Exceeding this value triggers either an alarm or a warning.

├ Helium │ │

E

mol%

10462

Upper alarm limit for the helium content. Exceeding this value triggers either an alarm or a warning.

├ Hydrogen │ │

E

mol%

10464

Upper alarm limit for the hydrogen content. Exceeding this value triggers either an alarm or a warning.

├ Argon │ │

E

mol%

10466

Upper alarm limit for the argon content. Exceeding this value triggers either an alarm or a warning.

............................................................................................................................................................................................................... -


13 Calculation Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

mol%

10468

Upper alarm limit for the reserve content. Exceeding this value triggers either an alarm or a warning.

A

1483

!nix!

├ Default Fault Mode │ │ │

E

1485

{ERROR|WARNING} Component malfunction – limit value violation. Either a warning or a fault is generated in the event of a limit value violation.

├ Default Mode │ │ │ │ │ │

E

├ Nitrogen │ │ │ │ │ │

E

├ Methane │ │ │ │ │ │

└ Reserve

" Analysis Default Values

E

1486

{SINGLE|ALL|IGNORE} Mode for the components – default values. ALL: All default values are set in the event of a limit value violation. IGNORE: The default values are ignored. SINGLE: Only the corresponding value is set in the event of a limit value violation.

mol%

10470

Default value for the nitrogen content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

E

mol%

10472

Default value for the methane content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ Carbon Dioxide │ │ │ │ │ │

E

mol%

10474

Default value for the carbon dioxide content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ Ethane │ │ │ │ │ │

E

mol%

10476

Default value for the ethane content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ Propane │ │ │ │ │ │

E

mol%

10478

Default value for the propane content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

115

............................................................................................................................................................................................................... -


13 Calculation Parameters

ANNEX

...............................................................................................................................................................................................................

Element

116

Unit

Modb.

Description

├ i-Butane │ │ │ │ │ │

E

mol%

10480

Default value for the i-butane content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ n-Butane │ │ │ │ │ │

E

mol%

10482

Default value for the n-butane content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ Neopentane │ │ │ │ │ │

E

mol%

10484

Default value for the neopentane content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ i-Pentane │ │ │ │ │ │

E

mol%

10486

Default value for the i-pentane content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ n-Pentane │ │ │ │ │ │

E

mol%

10488

Default value for the n-pentane content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ C6+ │ │ │ │ │ │

E

mol%

10490

Default value for the C6+ content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ n-Hexane │ │ │ │ │ │

E

mol%

10492

Default value for the n-hexane content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

............................................................................................................................................................................................................... -


13 Calculation Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

├ n-Heptane │ │ │ │ │ │

E

mol%

10494

Default value for the n-heptane content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ n-Octane │ │ │ │ │ │

E

mol%

10496

Default value for the n-octane content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ n-Nonane │ │ │ │ │ │

E

mol%

10498

Default value for the n-nonane content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ Oxygen │ │ │ │ │ │

E

mol%

10500

Default value for the oxygen content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ Helium │ │ │ │ │ │

E

mol%

10502

Default value for the helium content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ Hydrogen │ │ │ │ │ │

E

mol%

10504

Default value for the hydrogen content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

├ Argon │ │ │ │ │ │

E

mol%

10506

Default value for the argon content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

117

............................................................................................................................................................................................................... -


13 Calculation Parameters

ANNEX

...............................................................................................................................................................................................................

Element

Unit

Modb.

Description

mol%

10508

Default value for the reserve content in the event of a limit violation. This value is currently checked at the end of all calculations. In other words, all calculations are performed with the determined variables. The default values are used for display purposes and for transfer via Modbus or DSfG.

A

1133

Heading

├ Unit norm density │

E

1649

{kg/m3} Unit for standard density

├ Unit calorific value │

E

1134

{MJ/m3|kWh/m3|kc/m3|BTU/f3} Unit for superior calorific value

└ Factor calorific val.

A

7256

Internal conversion factor for superior calorific value from MJ/m3 to the selected unit.

A

1135

Heading

├ Set Sim. Values │ │ │ │ │ │ │

N

1136

{ALL ZERO|ISO|GPA|DAN} Test function for calculating gas quality values from the gas composition. The calculation method is selected here. ALL ZERO: All values are set to zero ISO: Calculation as per ISO 6976 GPA: Calculation as per GPA-2172-09 DAN: Calculation using table values

├ Nitrogen │

N

mol%

10350

Specification of the nitrogen content for the calculation test

├ Methane │

N

mol%

10352

Specification of the methane content for the calculation test

├ Carbon Dioxide │

N

mol%

10354

Specification of the carbon dioxide content for the calculation test

├ Ethane │

N

mol%

10356

Specification of the ethane content for the calculation test

├ Propane │

N

mol%

10358

Specification of the propane content for the calculation test

├ i-Butane │

N

mol%

10360

Specification of the i-butane content for the calculation test

├ n-Butane │

N

mol%

10362

S