
Chapter 8
Symmetrical Components
ANSWERS TO MULTIPLE-CHOICE TYPE QUESTIONS
8.1 ±±°Equal,120°; equal,120; equal, zero
8.2 120 13 1; 22 j ej ° −+
8.3 ++++ ++
8.21 3 gon ZZ +
8.22 Positive-sequence, sub-transient 8.23 Does not
8.24 a
2 012012 2 012
;; VVVVaVav VaVaV
8.25 (i) Can, do; does not, 3 (ii) 3030:1,:1jjee °−° (iii) Donot
2 2
11 33;; 1 3
VVVVaVaV VaVaV
8.4 () () () ++++ ++
abcabc abc
8.5 Zero
8.6 May, Never
8.7 a
8.8 0 ;3 abc IIII ++
8.9 Zero
8.10 a
8.11 a
8.12 a
8.13 ; Ynn ZZZ +
8.14 1 p AZA
8.15 a
8.16 3 YnZZ +
8.17 ∆∆ ∞,/3,/3 ZZ
8.18 Diagonal, uncoupled
8.19 Uncoupled, positive-sequence
8.20 Diagonal, zero
8.26 (i) Short (ii) 3 n Z (iii) Open (iv) Short
8.27 3
8.28 *** 001122 ++ VIVIVI
(c) () ( ) ( ) 33
(d)
8.3 (a)
(b)
I Iaa Iaa
∠°∠°+∠°+∠° ∠°∠°+∠°+∠° = = ∠°∠°+∠°+∠°
3 1622019012001340
00.28560.57190
−∠−° +=∠° =
602.975.9490A
3 00.3160.63290
+∠°
j j j
11140901901018.8645
∠°∠°+∠°∠° ∠°∠°+∠°=∠° == ∠°+∠°∠°
1140040190112025.76105A
33
8.4 2 2
111458018020190
∠°∠°+∠°+∠° =∠°=∠°+∠°+∠° ∠°∠°+∠°+∠°
V Vaa Vaa
an bn cn
19004518022401210
1459018021201330
2.1741.985132.4842.4
+∠° =−−=∠° +∠°
451.6921.24794.58216.4
0.03972.21799.7888.97
j jV j
8.5 Eq. (8.1.12) of text:
()
abc IIII j
0 1 3 1 10089061501.601281.6672.3146.15A 3
=++ =∠°+∠−°+∠°=−=∠−°←
()
()
abc IIaIaI j
2 1 1 3 1 100112089012406150
()() ( )
=++ =∠°+∠°∠−°+∠°∠° =∠°+∠°+∠°=+=∠°←
()
3 1 1008306307.372.337.7417.56A 3
2 2 1 3 1 100124089011206150
=++
abc IIaIaI j
=∠°+∠°∠−°+∠°∠°
() ()() ( ) ()
3 1 10081506901.020.6671.2233.07 3
=∠°+∠°+∠−°=−=∠−°←
8.6 (a)Eq. (8.1.9) of text:
( )
10080304030114201169.9V a VVVV j =++ =∠°+∠°+∠−°=+=∠°←
() 012
=++
2 012
b VVaVaV j
1001240803011204030
()()
=∠°+∠°∠°+∠°∠−° =∠°+∠−°+∠°=−=∠−°←
()
10080904090104041.376
=++
2 012
c VVaVaV j
1001120803012404030
()()
=∠°+∠°∠°+∠°∠−° =∠°+∠°+∠−°=−+=∠°←
()
1008015040150942096.1168
(b) ( ) ( )
1142010401046012030V abab VVVjjj =−=+−−=+=∠°←
( ) ( )
104094201046012030V bcbc VVVjjj =−=−−−+=−=∠−°←
( ) ( ) 9420114202080208180V caca VVVjjj =−=−+−+=−+=∠°←
() () () 0
11 12030120302081800 33ababbcca VVVV=++=∠°+∠−°+∠°=←
2 1
11 331240208180
12030112012030
() () ( ) () ()
ababbcca VVaVaV j
∠°+∠°∠−° =++= +∠°∠° =∠°+∠°+∠°=+=∠°←
1 12030120902086069.33120138.660V 3
() () ()
2 2
12030124012030 11 331120208180
ababbcca VVaVaV j
∠°+∠°∠−° =++= +∠°∠°
( ) () ()
1 120301202102086034.676069.360V 3
=∠°+∠°+∠−°=−=∠−°←
Since ( ) 00 0 0 abab VVV=−=
And ( ) ( ) 121122 ; abababab VVVVVV =−=− , we have ( ) ( )°° 01122 0;330;330LLLLLL VVVVV ==∠=∠−
Or 11 1 30 3 LVV =∠−° and 22 1 30 3 LVV =∠°
Applyingthe above, one gets
()
1 1 30138.660803069.340 3 V j =∠−°∠°=∠°=+←
()
2 1 3069.360403034.620 3 V j =∠°∠−°=∠−°=−←
Phase voltages are then given by 12 103.920105.910.9V a VVVj=+=+=∠°←
2 12 1240803011204030
b VaVaV j =+=∠°∠°+∠°∠−° =∠−°+∠°=−=∠−°←
( ) ( )
()
80904090404090V
2 12 1120803012404030
( ) ( )
c VaVaV j =+=∠°∠°+∠°∠−° =∠°+∠°=−+=∠°←
801504021010420105.9169V
The above are not the same as inpart (a) ←
However, either set will result inthe same line voltages. Note that the zero-sequence line voltage is always zero,even though zero-sequence phase voltage mayexist. Soit is not possible toconstruct the complete set of symmetrical components of phase voltages even whenthe unbalancedsystemof line voltages is known. But we can obtain a set with no zero-sequence voltage torepresent the unbalanced system.
8.7
Current to ground, 0 3100090 n IIA ==∠°
8.8 ;; ababbcbccaca VVVVVVVVV =−=−=−
8.9 Choosing bcV as reference andfollowingsimilar steps as in Problem8.8 solution, one can get
∠°
∠−° = ∠°
28002501102901302.6964.257
∠°+∠−°+∠°− =∠°+∠°+∠°=+
1 28002501029010270.631.26 3 28002501302902506.70627
∠°+∠°+∠°−
5.03957.65
∠−° =∠° ∠−°
272.46.59V
27.8276.05
j j j
(b)2800250110
abagbg
−∠°−∠−° ==∠−°−∠° ∠°−∠°
VVV V VV V VV
bc bgcg
ca cgag
250110290130
2901302800
+∠° =−=∠−° −+∠°
∠°+∠−°+∠°+ =∠°+∠°+∠°=+ ∠°+∠°∠+∠°−−
0
=∠+° ∠−°
VV
1 2
8.11 The circuit is shown below:

1 1001018000
I I j I j
a a a
0 1 2
=∠°+∠°+= =∠°+∠°+°+=−=∠−° =∠°+∠°+°+=+=∠°
3 1 10010180120052.895.7830A
3 1 10010180240052.895.7830A
3
Then 00 00
IIII IaIIaI IaIIaI
ba ca baca ba ca
2 1111 2 22 22
==== ==∠−°==∠° ==∠°==∠−°
0A;0A 5.78150A;5.7890A 5.78150A;5.7890A
8.12 Selecting a base of 2300 V and 500 kVA, each resistor has an impedance of10pu ∠° ; 0.8 abV = ;1.2 bcV = ;1.0 ca V =
The symmetrical components of the line voltages are:
abV j =∠°+∠°−°+∠°+°=+
( ) 1 1 0.882.81.212041.41.02401800.27920.9453
3
0.985773.6
abV j =∠°+∠°−°+∠°+°=−−
( ) 2 1 0.882.81.224041.41.01201800.17900.1517
3
(These are in pu on line-to-line voltage base.)
0.2346220.3
Phase voltages in pu on the base of voltage to neutral are given by
0.985773.6300.985743.6
V V =∠°−°=∠° =∠°+°=∠° [Note: An angle of 180° is assigned to ca V ]
1
an an
2
0.2346220.3300.2346250.3
Zero-sequence currents are not present due to the absence of a neutral connection.
IV IV =∠°=∠° =∠°=∠°
aa aa
11 22
/100.985743.6pu /100.2346250.3pu
The positive direction of current is from the supply toward the load.
8.13 (a)
∠°
111100 111290
∠−° =
I Iaa Iaa
∠°
100129015903.33313.4816.7
∠°+∠−°+∠°+∠° =∠°+∠°+∠°=−=∠−° ∠°+∠°+∠°−−∠−°
1
3
10012301533011.130.511.142.58
10012150152104.460.54.49173.6
j jA j
(b)1001590101518.0356.3
−∠°−∠°−∠−°
1290100101215.62129.81
=−=∠−°−∠°=−−=∠−° −∠°−∠−°∠°
IIIj IIIjA IIIj
aabca bbcab ccabc
15901290272790
11118.0356.3
0 2 1 2 2
18.0356.315.62129.812790
∠−°+∠−°+∠° =∠−°+∠−°+∠° ∠−°+∠−°+∠°
∠° 1
1 18.0356.315.629.8127330 3 18.0356.315.62249.8127210 0000
16.2610.3919.2932.573 6.2574.617.77143.59
j jAI j ∆
+ =−=∠−°=∠ −−∠−° 2
−° ∠+°
30 330 I∆


0 0 0 1 1 1 2 2 2 5.03957.65 0.252110.78 2053.13 272.46.59 13.6246.54 2053.13 27.8276.05 1.391129.18 2053.13 Lg Lg Lg V I A Z V I A Z V I A Z ∠−° ===∠−° ∠° ∠° ===∠−° ∠° ∠−° ===∠−° ∠°
8.15
∠−°
I Iaa Iaa
1110.252110.78 113.6246.54
=∠−°
11.391129.18
∠−°
a b c
0.2520110.7813.6246.541.391129.18
∠−°+∠−°+∠−° =∠−°+∠°+∠−°
0.2520110.7813.62193.461.3919.18
°+∠°
0.2520110.7813.6273
∠−°+∠ .461.391110.82
−∠−°
8.411.21453.13
11.963.62812.5163.1
=−−=∠−°
3.29414.1214.576.37
+∠°
j jA j
Note: The source and load neutrals are connected with a zero-ohm wire.
Vz I IVz I Vz
∠°∠°∠−° ==∠−°∠°=∠−° ∠°∠°∠°
agY a bbgY c cgY
28002053.131453.13
2501102053.1312.5163.1
2901302053.1314.576.87
Which agrees with the above result.

0 0 I = ; From Problem 8.14, 1213.6246.54A;1.391129.18AII =∠−°=∠−°
=∠−°
b c
∠−°
13.6246.541.391129.18 13.62193.461.3919.18
∠−°+∠−° =∠°+∠−°
I Iaa Iaa j j j
13.6273.461.391110.82
∠°+∠°
8.4910.96
∠−° =∠°
=−− +
11.873.392
3.3831
4.3614.7576.74
∠°


Note: These currents are 3 times those in Problem 8.15.
∠−°
=∠−°
I Iaa Iaa
a b c
∠−°
∠−°+∠−°+∠−° =∠−°+∠°+∠°
∠−°+∠°+ 137.28
∠°
33.216.4937.0726.41
−∠−°
=−−=∠°
24.7422.7533.61222.6A
9.41638.1539.29103.9
j j j
−+∠°
8.19



writing KVL equations [see Eqs (8.2.1) – (8.2.3)]:
In matrix format [see Eq (8.2.4)]
+
+=
+
+∠°
+=∠°
+∠°
+∠°
=+∠°
Performing the indicated matrix inverse (a computer solution is suggested):
∠−°∠°∠°∠°
0.176356.500.02618150.20.02618150.21000
=∠°∠−°∠°∠°
I I I
a b c
∠°∠°∠−°∠°
Finally, performing the indicated matrix multiplication:
17.6356.501.964330.21.309240.2
∠−°+∠°+∠°
=∠°+∠°+∠°
2.618150.213.22123.51.309240.2
∠°+∠°+∠°
2.618150.21.964330.28.81533.5
10.7816.81
=−+
I I I Ij Ij Ij
a b c a b c
10.2211.19
+
6.7835.191
∠−° =∠° ∠°
19.9757.32 15.15132.4A 8.54137.43
(b) Step (1): Calculate the sequence components of the applied voltage:
==∠° ∠°
∠°+∠°+∠°
=∠°+∠°+∠° ∠°+∠°+∠° + =− +
8.33316.667 60.2729.98
∠° =∠− ∠°
18.6363.43 67.3226.45V 34.1122.99
Step (2): Draw sequence networks:
Step (3): Solve sequence networks
18.6363.4318.6363.43 3377.61666.80
2.4463.37A
∠−°∠−° ====∠− +∠°
∠° ===∠−° ∠°
Step(4):Calculatethelinecurrents(phasecomponents):
1112.4463.37
∠−° =∠−°
I Iaa Iaa
a b c
113.4679.58 16.82230.14
∠−°
2.4463.3713.4679.586.82230.14
∠−°+∠−°+∠−° =∠−°+∠°+∠°
2.4463.3713.46160.426.82289.86
°
2.4463.3713.4640.426.82220
∠−°+∠°+∠ 9.86
10.7816.8119.9757.32
−∠−° =−+=∠° +∠°
10.2211.1915.15132.4A
6.7735.1878.53137.45
j j j
8.20
Transformingtosymmetricalcomponents,
Premultiplying each
As shown in Fig. 8.5 of the text, sequence networks for an equivalent Y representation of a balanced-∆ load are given below:


(b)With a mutual impedance of
between phases,
=
Rewriting the coefficient matrix into two parts,
jjj jjjjj jjj
2766100111
6276210106111
=+
6627001111