P k nag solution

Page 205

Vapour Power Cycles

By: S K Mondal Q.12.12

Solution: Q.12.13

Solution: Q.12.14

Solution: Q.12.15

Solution:

Chapter 12

A textile factory requires 10,000 kg/h of steam for process heating at 3 bar saturated and 1000 kW of power, for which a back pressure turbine of 70% internal efficiency is to be used. Find the steam condition required at the inlet to the turbine. Try please. A 10,000 kW steam turbine operates with steam at the inlet at 40 bar, 400°C and exhausts at 0.1 bar. Ten thousand kg/h of steam at 3 bar are to be extracted for process work. The turbine has 75% isentropic efficiency throughout. Find the boiler capacity required. Try please. A 50 MW steam plant built in 1935 operates with steam at the inlet at 60 bar, 450°C and exhausts at 0.1 bar, with 80% turbine efficiency. It is proposed to scrap the old boiler and put in a new boiler and a topping turbine of efficiency 85% operating with inlet steam at 180 bar, 500°C. The exhaust from the topping turbine at 60 bar is reheated to 450°C and admitted to the old turbine. The flow rate is just sufficient to produce the rated output from the old turbine. Find the improvement in efficiency with the new set up. What is the additional power developed? Try please. A steam plant operates with an initial pressure at 20 bar and temperature 400°C, and exhausts to a heating system at 2 bar. The condensate from the heating system is returned to the boiler plant at 65°C, and the heating system utilizes for its intended purpose 90% of the energy transferred from the steam it receives. The turbine efficiency is 70%. (a) What fraction of the energy supplied to the steam plant serves a useful purpose? (b) If two separate steam plants had been set up to produce the same useful energy, one to generate heating steam at 2 bar, and the other to generate power through a cycle working between 20 bar, 400°C and 0.07 bar, what fraction of the energy supplied would have served a useful purpose? (Ans. 91.2%, 64.5%) From S.T. at 20 bar 400°C h1 = 3247.6 kJ/kg s1 = 7.127 kJ/kg – K 1 20 bar

T

3 65°C

At 2 bar

2 bar

4

Q0

2

S Page 205 of 265


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.