AeroAstro Annual 5

Page 11

ENHANCING NETWORK SAFETY, EFFICIENCY

This research requires expertise in a variety of disciplines, from systems and control theory, to optimization algorithms, distributed computation, communication networks, and operations research. With a diverse group of students from a variety of academic backgrounds, I am pursuing several projects that will ultimately enhance the safety and efficiency of autonomous vehicle networks and their ability to interact with human-piloted vehicles. Ideally, one could conceive a Turing test for autonomous vehicles, in which a human observer tries to determine which one of two operating (e.g., maneuvering in traffic) vehicles is running autonomously and which is controlled by an expert pilot. Even though much remains to be done — for example, to improve the situational awareness of autonomous vehicles, their ability to interpret the wealth of sensory information, and especially to infer the intentions of others — our recent accomplishments demonstrate that the goal of designing an autonomous vehicle able to pass such test — thus being indistinguishable from a human-controlled vehicle — is, perhaps, closer than what we could have imagined just a few months ago.

Emilio Frazzoli is an Associate Professor in the MIT Aero-Astro Department. He received the Laurea degree in Aeronautical Engineering from the University of Rome “La Sapienza” (1994), and a Ph.D. in Navigation and Control Systems from MIT (2001). Previously, he was an officer in the Italian Navy, and a spacecraft dynamics specialist at Telespazio S.p.A, in Rome. His main research interests are in planning and control of autonomous vehicles, and mobile robotic networks. He may be reached at frazzoli@mit.edu.

FRAZZOLI: Autonomous Vehicles

5


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.