Issuu on Google+

Karta graficzna

Karta rozszerzeń komputera odpowiedzialna za renderowanie grafiki i jej konwersję na sygnał zrozumiały dla wyświetlacza. Podzespół ten jest też nazywany kartą VGA . Pierwsze karty graficzne potrafiły jedynie wyświetlać znaki alfabetu łacińskiego Kolejna generacja kart graficznych potrafiła już wyświetlać w odpowiednim kolorze poszczególne punkty (piksele) Większość kart na rynku posiada również wbudowane funkcje ułatwiające tworzenie obrazu przestrzeni trójwymiarowej, tzw. akceleracja 3D. Niektóre posiadają zaawansowane algorytmy potrafiące na przykład wybrać tylko widoczne na ekranie elementy z przestrzeni.

Najważniejsze funkcje współczesnych akceleratorów graficznych to:          

Filtrowanie anizotropowe Mapowanie wypukłości Efekty cząsteczkowe Full Scene Anti-Aliasing HDR Pixel Shader Vertex Shader Transform & Lighting GPGPU PhysX

Układ chłodzenia Większość kart graficznych do poprawnego działania potrzebuje układu chłodzenia. Najwięcej ciepła wytwarza GPU dlatego montuje się na nie same radiatory (chłodzenie pasywne) bądź z wentylatorem lub turbiną (chłodzenie aktywne) która używana jest w chłodzeniach referencyjnych. Jej plusem jest to, że ogrzane powietrze jest wypuszczane po za obudowę komputera ponieważ radiator jest zabudowany plastikową obudową.


Procesor (CPU) Urządzenie cyfrowe sekwencyjne, które pobiera dane z pamięci, interpretuje je i wykonuje jako rozkazy. Wykonuje on ciąg prostych operacji (rozkazów) wybranych ze zbioru operacji podstawowych. Wykonywane są zwykle jako układy scalone zamknięte w hermetycznej obudowie, często posiadającej złocone wyprowadzenia (stosowane ze względu na odporność na utlenianie). Ich sercem jest monokryształ krzemu Jedną z podstawowych cech procesora jest długość (liczba bitów) słowa, na którym wykonywane są podstawowe operacje obliczeniowe. Jeśli słowo ma 64 bity, mówimy, że procesor jest 64-bitowy. Innym ważnym parametrem określającym procesor jest szybkość, z jaką wykonuje on rozkazy. Przy danej architekturze procesora, szybkość ta w znacznym stopniu zależy od czasu trwania pojedynczego taktu. W funkcjonalnej strukturze procesora można wyróżnić takie elementy, jak:    

zespół rejestrów do przechowywania danych i wyników, rejestry mogą być ogólnego przeznaczenia lub mają specjalne przeznaczenie, jednostkę arytmetyczną (arytmometr) do wykonywania operacji obliczeniowych na danych, układ sterujący przebiegiem wykonywania programu, inne układy, w które producent wyposaża procesor w celu usprawnienia jego pracy.

Rozmiary Jednym z parametrów procesora jest rozmiar elementów budujących jego strukturę. Im są one mniejsze, tym niższe jest zużycie energii, napięcie pracy oraz wyższa możliwa do osiągnięcia częstotliwość pracy. Współczesne procesory używane w komputerach osobistych wykonywane są w technologii pozwalającej na uzyskanie elementów o rozmiarach 45 i 32 nm, pracujących z częstotliwością kilku GHz.

Wielordzeniowość AMD i INTEL mają do zaoferowania modele czterordzeniowe (niektóre Core i5 oraz Core i7 Intela i AMD Athlon II X4 oraz Phenom II X4 AMD) oraz sześciordzeniowe (Phenom II X6 oraz Core i7 serii 9x0) przeznaczone do komputerów klasy desktop. Dostępne procesory do zastosowań serwerowych mogą mieć do 8 (Intel Xeon), lub nawet 16 rdzeni (AMDOpteron)


Płyta główna Obwód drukowany urządzenia elektronicznego, na którym montuje się najważniejsze elementy, umożliwiając komunikację wszystkim pozostałym komponentom i modułom. W komputerze na płycie głównej znajdują się: procesor/y, pamięć operacyjna lub gniazda do zainstalowania tych urządzeń oraz gniazda do zainstalowania dodatkowych płyt zwanych kartami rozszerzającymi (np. PCI), oraz gniazda do urządzeń urządzeń składujących (dyski twarde, napędy optyczne itp.), złącze klawiatury i zasilacza. W niektórych konstrukcjach także gniazda do innych urządzeń zewnętrznych do których sprzęt znajduje się na płycie głównej (port szeregowy, port równoległy, USB).

Budowa płyty głównej W miarę wzrostu stopnia integracji układów scalonych, w celu poprawy szybkości działania oraz obniżenia kosztów budowy całego komputera postępuje integracja elektroniki komputera w kilku układach scalonych umożliwiających współpracę procesora z innymi układami. W konfiguracjach dominujących w pierwszej dekadzie XXI wieku większość urządzeń zrealizowanych na płycie głównej zgrupowana jest w dwóch układach scalonych zwanych mostkami. Bliższy procesorowi zwany mostkiem północnym oraz współpracujący głownie z procesorem poprzez mostek północny zwany południowym lub zintegrowana w układzie MCP. Mostek północy jest połączony z procesorem za pomocą magistrali FSB lub łączy Hyper Transport. W nowszych rozwiązaniach układ ten zawiera podstawowy kontroler PCIe (lub w starszych rozwiązaniach – AGP), służący najczęściej do podłączenia urządzeń z rodzaju kart graficznych (także zintegrowanych), ale też wszelkich urządzeń wymieniających z procesorem lub pamięcią duże ilości danych (bardzo często zintegrowane karty sieciowe). Mostek południowy (jeśli występuje) jest podłączony do mostka północnego za pomocą magistrali (na przykład FSB) albo łączem typu Punkt-Punkt jak Hyper Transport. Zawiera drugi kontroler PCIe, kontrolery SATA, ATA, USB, zintegrowany kontroler dźwięku (np. AC97), kontrolery Ethernetu, itd... Jeśli na płycie głównej występuje tylko jeden układ, to najczęściej wszystkie funkcje mostka południowego i północnego są w nim zintegrowane. Poza wyżej wymienionymi elementami na płycie głównej zawsze jest umieszczony układ BIOS-u, a także moduł zegara czasu rzeczywistego (RTC) wraz z modułem bateryjnego podtrzymania zegara.


Dysk twardy Rodzaj pamięci masowej, wykorzystujący nośnik magnetyczny do przechowywania danych. Pierwowzorem twardego dysku jest pamięć bębnowa. Pierwsze dyski twarde takie, jak dzisiaj znamy, wyprodukowała w 1980 roku firma Seagate – był przeznaczony do mikrokomputerów, miał pojemność 5 MB, czyli 5 razy więcej niż ówczesna, dwustronna dyskietka 8-calowa. Dla dysków twardych najważniejsze są następujące parametry: pojemność, szybkość transmisji danych, czas dostępu do danych, prędkość obrotowa dysków magnetycznych (obr/min.) oraz średni czas bezawaryjnej pracy.

Budowa Dysk stały składa się z zamkniętego w obudowie, wirującego talerza (dysku) lub zespołu talerzy, wykonanych najczęściej ze stopów aluminium, o wypolerowanej powierzchni, pokrytej nośnikiem magnetycznym o grubości kilku mikrometrów, oraz z głowic elektromagnetycznych umożliwiających zapis i odczyt danych. Na każdą powierzchnię talerza dysku przypada po jednej głowicy odczytu i zapisu. Głowice są umieszczone na elastycznych ramionach i w stanie spoczynku stykają się z talerzem blisko jego osi. W czasie pracy unoszą się, a ich odległość nad talerzem jest stabilizowana dzięki sile aerodynamicznej powstałej w wyniku szybkich obrotów talerza Obudowa chroni części napędu od pyłu, pary wodnej, i innych źródeł zanieczyszczenia. Jakiekolwiek zanieczyszczenie głowic lub talerzy może doprowadzić do uszkodzenia głowicy awarii dysku, w której głowica uszkadza talerz, ścierając cienką warstwę magnetyczną. Awarie głowicy mogą również być spowodowane przez błąd elektroniczny, uszkodzenie, błędy produkcyjne dysku lub zużycie.

Dysk RAM Dyski RAM to urządzenia emulujące dyski, w których do zapisu danych stosuje się rozwiązania wykorzystujące popularne pamięci RAM, dzięki którym osiąga się krótki czas dostępu i bardzo szybki transfer danych, którego wartości przekraczają przepustowość oferowaną przez typowe interfejsy dla dysków twardych, takie jak Ultra ATA czy Serial ATA. Dysków RAM nie należy mylić coraz popularniejszymi dyskami SSD, różnica polega na rodzaju pamięci krzemowej. Dyski RAM mają mniejsze pojemności i są zdecydowanie droższe. Zasadniczą wadą takich dysków jest utrata zapisanych danych przy zaniku napięcia (np. przy wyłączeniu komputera), dlatego też stosuje się pomocnicze źródła prądu podtrzymujące pracę dysków: wbudowane akumulatory i zewnętrzne zasilacze.


Zasilacz komputera Urządzenie, które służy do przetwarzania napięcia przemiennego dostarczanego z sieci energetycznej na niskie napięcia stałe, niezbędne do pracy pozostałych komponentów komputera. Niektóre zasilacze posiadają przełącznik zmieniający napięcie wejściowe pomiędzy 230V i 115V, inne automatycznie dopasowują się do dowolnego napięcia z tego zakresu. Najczęściej spotykane zasilacze komputerowe są dostosowane do standardu ATX. Włączanie i wyłączenie zasilacza jest sterowane przez płytę główną, co daje obsługę takich funkcji jak tryb czuwania. Najnowsza wersja standardu ATX dla zasilaczy to 2.31 Urządzenia podłączone do zasilacza   

 

płyta główna dysk lub dyski twarde napędy (optyczne, taśmowe, np. CDROM, DVD-ROM, ZIP, JAZ, napędy dysków magnetooptycznych, FDD itp.) niektóre karty graficzne wymagają podłączenia dodatkowego zasilania (wtyczki PCI-E 6 i 8 pin) inne urządzenia znajdujące się wewnątrz komputera, np. wentylatory czy dodatkowe panele podłączane podobnie jak napędy do wtyku Molex

Do pozostałych podzespołów napięcie z zasilacza jest dostarczone pośrednio od płyty głównej (np. wszelkie karty rozszerzeń, wentylatory procesorów, porty itp.)

Budowa Większość zasilaczy wykonana jest w postaci metalowego prostopadłościanu, z którego ścianki wychodzi kilka wiązek przewodów. Po przeciwnej stronie znajdują się otwory wentylacyjne i gniazdo IECC14, do podłączenia zasilania z sieci energetycznej. Opcjonalnie może tam być też umieszczony wyłącznik i przełącznik napięcia wejściowego. Etykietka umieszczona na boku zasilacza zawiera informacje dotyczące maksymalnej mocy wyjściowej i certyfikatów. Oznaczenie CE jest wymagane dla zasilaczy sprzedawanych w Europie i Indiach. Norma Unii Europejskiej EN61000-3-2 wymaga aby każdy zasilacz wyposażony był w układ PFC (Power Factor Correction).

AT kontra ATX Są dwie podstawowe różnice pomiędzy zasilaczami AT i ATX: kształt złącz, które dostarczają napięcia do płyty głównej oraz układ załączania zasilacza. W starszych zasilaczach AT włącznik komputera był podłączany bezpośrednio do zasilacza. W nowszych zasilaczach ATX włącznik komputera jest podłączony do płyty głównej poprzez złącze oznaczone PS ON, SW Power lub podobnie. Dzięki temu włączanie i wyłączanie zasilacza może być kontrolowane przez komponenty komputera lub oprogramowanie.


Pamięć RAM

W pamięci RAM przechowywane są aktualnie wykonywane programy i dane dla tych programów oraz wyniki ich pracy. W temperaturze pokojowej zawartość większości pamięci RAM jest tracona w czasie mniejszym niż sekunda po zaniku napięcia zasilania, niektóre typy wymagają także odświeżania, dlatego wyniki pracy programów, wymagające trwałego przechowania, muszą być zapisane na innym nośniku danych. Pamięci RAM dzieli się na pamięci statyczne (ang. Static RAM, w skrócie SRAM) oraz pamięci dynamiczne (ang. Dynamic RAM, w skrócie DRAM). Pamięci statyczne są szybsze od pamięci dynamicznych, które wymagają ponadto częstego odświeżania, bez którego szybko tracą swoją zawartość. Pomimo swoich zalet są one jednak dużo droższe; używane są w układach, gdzie wymagana jest duża szybkość (np. pamięć podręczna procesora lub ilość pamięci jest niewielka, że nie opłaca się konstruować układu odświeżania (np. proste mikrokontrolery). W komputerach wymagających dużej ilości pamięci jako pamięć operacyjną używa się pamięci DRAM. Pamięć RAM jest stosowana głównie jako pamięć operacyjna komputera, jako pamięć niektórych komponentów (procesorów specjalizowanych) komputera (np. kart graficznych, dźwiękowych, itp.), jako pamięć danych sterowników mikroprocesorowych.

Technologie pamięci RAM Współczesna pamięć RAM jest realizowana sprzętowo w postaci układów scalonych występujących w różnych technologiach lub jako fragmenty bardziej złożonych scalonych układów cyfrowych (np. pamięć cache L1, L2 procesora, a ostatnio także L3) oraz w postaci różnych modułów, znajdujących głównie zastosowanie w komputerach


SZKOLA