Page 1

Mapping and  Deconstruction  of  the  Landscape  Structure  of   the  Rochedale  region,  Queensland,  Australia     Mihali  Mahairas  Ȃ  n7537409   Landscape  Ecology  Ȃ  DLB  330   Coordinator  Ȃ  Dr  Gill  Lawson   Tutor  Ȃ  Mrs.  Bleuenn  Marchand   Word  Count  Ȃ  4545   Date  submitted  Ȃ  Wednesday,  30  May  2012  


Executive Summary     This  report  provides  a  critical  analysis  and  evaluation  of  the  current  landscape  structure  of  a  selected  region   within  the  Rochdale  suburb.    By  achieving  this,  recommendations  will  be  documented  to  whether  proposed   urban  developments  will  protect  green  space  in  the  future.     Methods  of  analysis  include  an  evaluation  of  landscape  dynamics,  landscape  structure,  simple  trend  analysis   and  a  site  visit  to  reinforce  findings  using  Forman͛Ɛ  (1995)  Patch-­‐Corridor-­‐Matrix  model.  All  findings  can  be   found  in  the  results  and  discussions  section  of  the  report.  Results  of  the  analysis  depict  that  over  the  past  45-­‐ year  period,  it  is  evident,  that  an  increase  of  built  environment  encroachment  on  surrounding  riparian   vegetation  is  occurring.  This  has  resulted  in  poor  water  quality  and  the  overall  degradation  of  natural  habitat.       The  report  finds  that  the  current  state  of  green  space  is  low  in  connectivity.  To  implement  further  construction   major  features  regarding  the  surrounding  vegetation  must  be  considered.  Recommendations  discussed   include:  eradication  of  weeds  in  the  riparian  habitat  and  other  natural  corridors,  regeneration  of  indigenous   plant  species,  layering  of  indigenous  plant  species  and  the  endorsement  of  natural  corridors.     dŚĞƌĞƉŽƌƚĂůƐŽŝŶǀĞƐƚŝŐĂƚĞƐƚŚĞůŝŵŝƚĂƚŝŽŶƐƐƵƌƌŽƵŶĚŝŶŐƚŚĞƵƐĞŽĨ&ŽƌŵĂŶ͛Ɛ;ϭϵϵϱͿ   P-­‐C-­‐M  model  of  the  analysis  conducted.  These  limitations  include:  the  over  simplification  of  landscape  units   and  scale  dependency  of  the  analysis  and  how  landscape  processes  vary  on  scale.  

                                                 

2  


Table of  Contents    

1.0 -­‐  Introduction  ......................................................................................................................................................  4   2.0  -­‐  Historical  Background  ..................................................................................................................................  5   3.0  -­‐  Methodology  .....................................................................................................................................................  6   4.0  -­‐  Methods  ..............................................................................................................................................................  7   4.1  Ȃ  Landscape  Mosaic  Mapping  Methods  ..........................................................................................................  8   4.2  Ȃ  Site  Visit  ..................................................................................................................................................................  8   4.3  Ȃ  Landscape  Dynamics  ..........................................................................................................................................  9   4.4  Ȃ  Landscape  Structure  Transformation  .........................................................................................................  9  

5.0 -­‐  Results  .................................................................................................................................................................  9   5.1  Landscape  Structure  .............................................................................................................................................  9   5.2  Landscape  Dynamics  ..........................................................................................................................................  10   5.3  Attributes  Table  ...................................................................................................................................................  10  

6.0 -­‐  Discussion  ........................................................................................................................................................  20   6.1  Ȃ  Land  Fragmentation  ........................................................................................................................................  21   6.2  Ȃ  Riparian  Landscape  .........................................................................................................................................  22   6.3  -­‐  Comparative  Model  Analysis  ........................................................................................................................  23  

7.0 -­‐  Recommendations  ........................................................................................................................................  23   8.0  -­‐  Conclusion  .......................................................................................................................................................  24   9.0  -­‐  References  .......................................................................................................................................................  25  

       

         

3  


1.0 -­‐  Introduction      

Rapid population   growth   has   brought   forth   worldwide   urbanisation,   which   raises   concerns.   Regional   ecosystems   are   increasingly   subjected   to   a   substantial   human   presence,   and   management   decisions   have   an   overwhelming  influence  on  adjacent  ecosystems  (Andersson,  2006).  Therefore  the  need  to  protect  and  manage   green   spaces   is   a   fundamental   issue,   on   not   only   a   worldwide   scale,   but   also   regionally.   Landscape   ecology   focuses   on   the   spatial   patterns   of  ecological   processes   in   order   to   confront   the   problems   of  environmental   degradation  (Golubiewski,  2007).       This   study   ĂŝŵƐ ƚŽ ĂƉƉůLJ &ŽƌŵĂŶ͛Ɛ ;ϭϵϵϱͿ Patch-­‐Corridor-­‐Matrix   model   (P-­‐C-­‐M   model)   to   the   selected   site   of   Rochedale,   situated   approximately   15km   southeast   of   the   Central   Business   District   of   Brisbane,   South   East   Queensland   (SEQ),   Australia.   Rochedale,   in   recent   times,   has   been   subjected   to   an   increase   in   housing   ĚĞǀĞůŽƉŵĞŶƚƐ͘LJƵƚŝůŝƐŝŶŐ&ŽƌŵĂŶ͛Ɛ  (1995)  P-­‐C-­‐M  model,  a  deduction  of  spatial  data,  landscape  structure  and   dynamics  through  the  use  of  aerial  photography   of  the   selected   study  area   will  attempted  to  be  attained.   In   doing   so,   assessing   current   development   and   its   impact   to   surrounding   greens   space   and   the   viability   of   future   developments   as   to   whether   proposed   developments   will   assist   or   derogate   adjacent  natural  habitat.       The   scope   of   this   report   will   follow   a   certain   pattern,   with   the   initial   section   dedicated   to   obtaining   an   understanding   of   the   geomorphology   of   the   study   area,   and   also   an   overview   of   landscape   ecology,   with   regards   to   the   concepts   sƵƌƌŽƵŶĚŝŶŐ &ŽƌŵĂŶ͛Ɛ ;ϭϵϵϱͿ W-­‐C-­‐M   model.   The   second   section   will   focus   more   on   the   deconstruction  of   the   study   area   in   terms   of   landscape   structure,   networks  and  flows,  and  will  also  examine   ƚŚĞƌĞůĂƚŝǀŝƚLJŽĨ&ŽƌŵĂŶ͛Ɛ  (1995)  model  to   the   particular   study.   Through   the   course   of  this  section,  reference  to  a  sequence  of   diagrams   detailing   the   previously   mentioned   features   will   be   made   in   attempt   construct   a   more   Figure  1:  Map  of  Rochedale  in  relation  to  Central  Business  District  (Brisbane   comprehensive   analysis.   To   end   the   City  Council,  2008).   second   section   recommendations   for     amendment   and   enhancement   will   be   discussed   in   regards   to   the   ƌĞƉŽƌƚ͛Ɛ   findings.      

4  


2.0 -­‐  Historical  Background     Knowledge   of   the   geomorphology   of   the   chosen   study   area   is   an   essential   aspect   in   attaining   a   contextual   understanding   of   the   region.   To   grasp   this   knowledge   of   the   existing   formation   of   the   study   area,   an   investigation  into  the  geomorphology  and  general  history  must  be  undertaken.  The  study  area  for  this   report,   as  previously  stated  is  Rochedale  situated  in  SEQ.       The   Rochedale   area   is   adjoined   to   both   Redland   Shire   (east)   and   Logan   City   (north)   (Brisbane   City   Council,   2008).  Rochedale  is  situated  in  a  valley  and  is  surrounded  by  mid  hill  slopes,  which  are  generally  gently  inclined,   with  the  presence  of  steep  slopes  which  are  linked  to  the  shallow  open  gullies  (Brinckerhoff,  n.d).  These  gullies   are  subjected  to  direct  surface  run-­‐off  and  drainage  occurs  towards  Bulimba  Creek  Catchment,  the  major  water   tributary  of  the  area  (Brinckerhoff,  n.d).  The  study  area  is  located  on  top  of  the  Neranleigh-­‐Fernvale  beds.  The   Neranleigh-­‐Fernvale  beds  came  to  be,  approximately  300  million  years  ago,  as  deep  sea  sediments  underwent   large   scale   compression,   and   folding   in   which   the   meta-­‐sedimentary   sequence   was   bent,   and   eventually   uplifted  to  form  the  surrounding  mountainous  terrain  (Willmott,  2004).       Whilst   conducting   the   site   visit   a   notable   observation   was   the   vibrant   rich   red   soil   found   along   side   passing   roads.  The  soil  type  can  be  classified  as  lateritic  red  earth,  which  lies  on  tertiary  basalts  (Godfrey,  1995).  The   origins  of  this  basalt  eventuated  through  the  possible  interlayered  basalt  compositions  of  the  volcanic  activity   (Willmott,   2004).   After   this   erratic   activity,   erosion   of   the   solidified   magma   began,   forming   the   Rochedale   region,  as  we  know  it  today.     Indigenous  people  have  lived  in   SEQ   for  at  least  twenty  thousand  years  (Crew  2002).   They  lived  in  groups  or   ͚ĐůĂŶƐ͛ ĐŽŶƐŝƐƚŝŶŐ ŽĨ ĞdžƚĞŶĚĞĚ ĨĂŵŝůLJ͕ with   each   clan   subsisted   in   its   own   territory,   however   due   to   their   nomadic   existence,   family   groups   tended   to   move   from   territory   to   territory   depending   on   variables   such   as   food   availability   and   weather   conditions   (Crew   2002).   With   the   arrival   of   the   convict   settlement   in   1824,   brought   forth   an   alter   state   of   living   with   the   introduction   of   foreign   exchange   between   the   early   settlers.   Flour,  sugar  and  tobacco  were  exchanged  for  fish,  kangaroo  tails,  crabs  and  honey  (Crew  2002).     Settlement   of   the   area   dates   from   the   1860s,   with   land   delegated   to   farming,   vineyards   and   fruit   growing.   Population   was   minimal   until   the   early   1900s,   when   many   market   gardens   were   established   (Brisbane   City   Community  Files,  2012).  By  the  early  1920s  larger  properties  were  broken  up  into  small  lots  (Logan  City  Council,   2010).   The   most   significant   development   occurred   from   the   1960s   subsequently   subdividing   for   residential   housing   began.   The   population   and   dwelling   stock   have   been   relatively   stable   since   the   early   1990s.   Land   is   used  mainly  for  market  gardens,  nurseries  and  farms  due  to  the  fertility  of  the  soil  type.  

              5    


3.0 -­‐  Methodology       ͞Landscape   ecology   represents   a   unique   field   because   it   looks   at   the   effect   of   spatial   pattern  on  ecological   processes͟;Golubiewski,  2007).  Due  to  this  understanding  of  landscape  ecology  practice,  and  for  the  purpose   of  this  study,  FŽƌŵĂŶ͛Ɛ;ϭϵϵϱͿP-­‐C-­‐M  model  for  deducing  spatial  patterns  will  be  applied  to  the  study  area  to   pronounce  these  patterns  and  processes  as  they  come  to  be  observed.       ͞ŶĂĞƌŝĂůǀĂŶƚĂŐĞƉƌŽǀŝĚĞƐĂŐŽůĚŵŝŶĞŽĨŝŶĨŽƌŵĂƚŝŽŶŽŶƚŚĞĞĐŽůŽŐLJŽĨůĂƌŐĞĂƌĞĂƐ͕ƐƵĐŚĂƐ  landscapes  and   ƌĞŐŝŽŶƐ͟;&ŽƌŵĂŶ͘ϭϵϵϱ͕Ɖ͘ϯͿ͘KŶŽďƐĞƌǀĂƚŝŽŶŽĨĂŶĂĞƌŝĂůƉŚŽƚŽŐƌĂƉŚŽĨĂ ůĂŶĚƐĐĂƉĞƚŚĞĚŝĨĨĞƌŝŶŐŐƌĂŝŶƐŝnjĞƐ assist   in   differentiating   ecological   elements   of   the   region   (Forman,   1995).   This   differing   grain   size   can   be   dissimilar  in  each  ecosystem,  due  to  the  varying  outcomes  of  geomorphic  processes,  natural  disturbances,  and   human  activities  combining  to  form  the  spatial  pattern  (Franklin  &  Forman,  1987).       A  well-­‐known  model  of  identifying  different  elements  situated  in  a  landscape  mosaic  is  &ŽƌŵĂŶ͛Ɛ  (1995)  P-­‐M-­‐C   model.  The  model  consists  of  three  major  elements  being  the  patch,  corridor  and  matrix,  with  every  landscape   comprising  of  these  components  to  create  a   landscape  mosaic,  with  obvious  discretion  to  the  scale  to  which   the   landscape   mosaic   is   observed.   The   model   defines   the   landscape   with   regards   to   clearly   defining   patches   and  corridors  situated  in  a  juxtaposing  matrix  (Hersperger,  2006).     As   stated,   Ă ƉĂƚĐŚ ŝƐ ĂŶ ĞůĞŵĞŶƚ ŽĨ ĂŶLJ ŐŝǀĞŶ ůĂŶĚƐĐĂƉĞ ĂŶĚ ĐĂŶ ďĞ ƐŝŵƉůLJ ƉƵƚ ĂƐ ͞Ă ǁŝĚĞůLJ ƌĞůĂƚively   ŚŽŵŽŐĞŶŽƵƐ ĂƌĞĂ ƚŚĂƚ ĚŝĨĨĞƌƐ ĨƌŽŵ ŝƚƐ ƐƵƌƌŽƵŶĚŝŶŐ͟ &ŽƌŵĂŶ ;ϭϵϵϱ͕ ƉϰϯͿ͘ dŚĞ ƉĂƚĐŚĞƐ ǁŝƚŚŝŶ Ă ůĂŶĚƐĐĂƉĞ mosaic  can  be  distinguished  by  possessing  certain  differing  attributes  ʹ  size,  shape,  fine  grained  to  coarse  grain,   number   and   location.   These   characteristics   assist   in   differentiating   patches,   and   also   distinguishing   the   landscape   usage   (Forman,   1995).   These   attributes   not   only   assist   in   characterising,   but   also   categorising   the   origins   and   cause   of   patches.   As   described   by   Forman,   five   basic   groups   of   patches   exist,   which   include,   disturbance  patches,  remnant   patches,  environmental  patches,  regenerated  patches,  and  introduced  patches   (Forman,  1995).       It   is   in   the   repetition   of   unpredictable   occurrences   and   disturbances   that   forms   a   mosaic   of   units   differing   spatial   heterogeneity   (Wiens,   1976).   The   distinguishing   differences   of   grain   contrast   signify   dissimilar,   yet,   distinct   elements   signifying   distinct   patches;   which   are   an   element   that   assists   to   compose   any   landscape   (Forman,   1995).   At   current   the   scale   of   1:25,000   one   can   observe   a   landscape   as   a   mosaic   composed   of   patches,   uneven   and   seemingly   arbitrary.   Landscapes   are   always   spatially   heterogeneous   (an   uneven,   non-­‐ random  distribution  of  objects),  that   is  always  have  structure  (Forman,  1995).  At  any  point  within  a  mosaic  a   heterogeneous  pattern  of  patches  and  corridors  can  be  perceived,  however  there  is  a  range  of  levels  (Forman,   1995).   Our   planet   is   segmented   into   continents,   which   are   then   divided   into   regions   within   each   continent.   Each   region   is   then   subdivided   into   landscapes   and   so   on   (Forman,   1995).   Furthermore   each   level   in   the   hierarchy  is  represented  in  a  single  scale.  Meaning  the  boundaries,  which   are   imposed,  to  attempt  to  define   divisions  within  each  hierarchy,  are  only  applicable  at  one  particular  scale.  Yet,  nevertheless  of  these  artificially   ŝŵƉŽƐĞĚďŽƵŶĚĂƌŝĞƐ͙͞ĂŶĞŶǀŝƌŽŶŵĞŶƚĂůƉĂƚĐŚǁŽƌŬǁŚŝĐŚĞdžĞƌƚƐƉŽǁĞƌĨƵůŝŶĨůƵĞŶĐĞƐŽŶƚŚĞ distributions  of   organisms,  their  interactions,  and  their  adaptations...  ͟;tŝĞŶƐ͕ϭϵϳϲͿ  is  perpetuated.     A   boundary   can   be   observed   where,   a   difference   between   parallel   areas   is   articulated   (Forman,   1995).   Boundaries,   like   other   landscape   elements,   can   be   characterised   by   distinct   aspects   such   as,   straight   or   curvilinear,  hard  or  soft  (abrupt  or  gradual),  wide  or  narrow  edge  and  so  on  (Forman,  1995).  A  boundary  can  be   characterised  by  three  elements.  If  two  adjacent,  but  differing  patches  were  to  be  dissected,  one  would  be  able   to  observe  a  patch  edge,  boundary,  and  opposing  patch  edge.    

6  


A corridor,   in   contrast   to   a   patch,   is   a   strip   that   differs   from   its   surroundings   (or   the   matrix),   which   often   permeates   the   land.   They   are   created   similarly   to   patches,   through   the   disturbance   within   a   strip   (Forman,   1995).   Corridors   function   as   protection,   transportation,   resources,   and   also   aesthetics   with   nearly   every   landscape  permeated  by  a  corridor  (Forman  and  Gordon.  1986).  Corridors  may  be  either  natural  or  manmade,   acting   as   a   conduit   when   objects   move   along   it   (Forman,   1995).   Manmade   corridors   are   well   known   in   the   fields  of  transportation  and  communications,   such  as  paths,  railroads,  and  power  lines   due  to  their  ability  to   connect  different  areas  together.  Natural  corridors  play  a  fundamental  role  by  providing  not  only  a  protected   route   from   patch-­‐to-­‐patch   but   also   provide   sources   of   meat   for   carnivorous   species   (Forman   and   Godron.   1986).     There  are  three  types  of  corridor  structures.  Line  corridors,  which  consist  of  paths,  roads,  and  hedgerows,   are   narrow  strips,  which  do  not  allow  for  an  interior  environment,  but  are  essentially  dominated  by  edge  species   (Forman   and   Godron,   1986).   Strip   corridors   are   wider,   giving   way   for   a   central   interior   in   which   interior   organisms   can   strive   (Forman   and   Godron,   1986).   Finally   stream   corridors,   as   the   term   insinuates,   are   watercourses  (Forman  and  Godron,  1986).  Although,  as  explained,  there  are  only  three  types  of  corridors,  one   could   consider   a   network,   the   intersection   of   two   corridors   of   a   single   type,   to   be   a   forth   corridor   structure   (Forman,  1995).    In  essence,  the  overlapping  or  junction  of  interconnecting  corridors  can  also  be  considered  a   node,  or  a  beginning  of  a  node,  due  to  the  typical  role  nodes  play  in  the  formation  of  networks  (Forman,  1995).   Although  nodes  do  not  necessarily  occur  at  overlapping  areas,  but  can  also  be  observed  along  linkages  between   intersections,   which   are   described   as   attached   nodes   (Forman,   1995).   Linkages   are   simply   corridors   that   connect  nodes,   meaning  that,  linkage  density  is  fundamental  in  understanding  particular  nodes,   with  linkage   width  and  curvilinearity  significant  attributes  of  a  network  (Forman,  1995).     The  connectivity  of  networks  between  differing  landscape  elements  has  an  essential  role  in  the  representation   of  a  dominant  patch  type  (Forman,  1995).  To  be  more  specific  Forman  and  Godron  (1986)  explain  that  of  these,   the  matrix  is  the  most   extensive  and  most   connected   landscape  element   type,  therefore  plays  the  dominant   role  in  the  functioning  of  the  landscape.  The  landing  of  humans  to  a  new  landscape  sees  the  development  of   structure  to  retain  a  source  of  living.  Over  an  extended  period  development  infiltrates  the  surroundings  leaving   ƚŚĞ ůĂŶĚƐĐĂƉĞ ĂƐ Ă ͞ĚŝƐƚŝŶĐƚ ĨƌĂŐŵĞŶƚ ĞŵďĞĚĚĞĚ ŝŶƚŽ ƚŚĞ ŵĂƚƌŝdž͟ ;&ŽƌŵĂŶ ĂŶĚ 'ŽĚƌŽŶ͕ ϭϵϴϲ͕ ƉϭϱϳͿ͘ In   this   example,   the   matrix   element   over   time   has   changed   with   development   exerting   the   most   dominance,   as   it   developed  the  greater  connectivity  over  the  mosaic  making  the  developmental  patch  the  matrix.       A  land  mosaic  is  composed  only  of  these  three  types  of  spatial  elements.  Every  point  is  either  within  a  patch,  a   corridor,   or   a   matrix   (Forman.   1995,   p7).   In   saying   this,   ƚŚĞ ƵƐĞ ŽĨ &ŽƌŵĂŶ͛Ɛ (1995)   P-­‐C-­‐M   model   is   not   a   method   of   conserving   landscapes   but   a   model   in   which   areas   of   habitat   and   non-­‐habitat   are   simplified   and   ideas  are  translated  into  spatial  context  (Lindenmayer  &  Burgman,  2005).    

4.0 -­‐  Methods       The   subsequent   section   discusses   the   methods   utilised   to   represent   and   depict   the   chosen   study   area.   As   ĂůƌĞĂĚLJ ƐƚĂƚĞĚ͕ ͞ĂŶ ĂĞƌŝĂů ǀĂŶƚĂŐĞ ƉƌŽǀŝĚĞƐ Ă ŐŽůĚŵŝŶĞ ŽĨ ŝŶĨŽƌŵĂƚŝŽŶ ŽĨ ůĂƌŐĞ ĂƌĞĂƐ ƐƵĐŚ ĂƐ ůĂŶĚƐĐĂƉĞƐ ĂŶd   ƌĞŐŝŽŶƐ͟(Forman.  1995,  p3).    Furthermore,  to  compile  a  comprehensive  report  the  use  of  aerial  photography   ŵƵƐƚďĞƵƐĞĚŝŶĐŽƌƌĞƐƉŽŶĚĞŶĐĞǁŝƚŚ&ŽƌŵĂŶ͛Ɛ;ϭϵϵϱͿW-­‐C-­‐M  model  (as  a  conceptual  base)  to  create  a  series  of   maps   and   diagram   to   detail   spatial   elements   within   the   region.   These   maps   and   diagrams   are   detailed   in   Figures  2  -­‐   9  in  the  following  results  section  of  this  report.  These  figures  are  utilised  throughout  the  remaining   sections  of  the  report  to  construct  an  understanding  of  the  current  condition  of  the  selected  site,  and  also  to   deduce  spatial  elements  and  their  interrelationships.    

7  


4.1 Ȃ  Landscape  Mosaic  Mapping  Methods     &ŝƌƐƚůLJ͕ ƚŽ ƐĞůĞĐƚ ƚŚĞ ĚĞĨŝŶŝƚŝǀĞ ƉĂƌĂŵĞƚĞƌƐ ŽĨ ƚŚĞ ƐƚƵĚLJ ĂƌĞĂ ƚŽ ĂƉƉůLJ &ŽƌŵĂŶ͛Ɛ ;ϭϵϵϱͿ W-­‐C-­‐M   model   the   utilisation  of  Sunmap  topographic  image  map  series,  Queensland  Map  number  9542-­‐41  was  selected  due  to  its   accuracy  and  availability.  A  criterion  was  composed  to  choose  a  specific  study  area  within  Rochedale  to  focus   on:  The  area  must  be  within  a  close  enough  vicinity  for  a  site  visit  to  be  made,  the  site  needed  to  comprise  of  a   range  of  manmade  and  natural  elements,  the  area  must  encompass  at  least  six  differing  landscape  units.  With   these  criteria  in  mind,  the  selected  area  shown  in  Figure  2  was  chosen.         When  analysing  an  aerial  photograph,  distinguishing  differentiations   of  grain  contrast  signified  dissimilar,  yet,   distinct   land   covers   of   the   mosaic   -­‐   individual   patches   types   ʹ   are   found   prominent.   To   further   this   juxtaposition,   the   aerial   photograph   was   photocopied,   translating   the   photograph   into   a   grey   scale   image,   attaining   greater   degree   of   granularity.   Next,   the   manipulated   aerial   photograph   was   overlayed   with   50-­‐gsm   tracing   paper,   and   placed   upon   a   light   box   to   assist   with   revealing   details   of   the   image.   Following   this,   the   identifying  of  distinct  landscape  units.  The  three  most  distinct  elements  observed  in  this  process  were,  medium   density  residential,  natural  vegetation  and  agriculture.  Various  other  landscape  units  were  identified,  however,   due  to  their  size  or  similar  granularity  to  surrounding  units,  were  more  arduous  to  identify,  with  the  need  of   research  on  digital  mapping  programs  such  as  Google   Maps  (2012)  needed  to  reinforce  presumptions  of  unit   type.  In  addition  to  the  three  distinct  landscape  units  recognised,  four  other  units  were  acknowledge,  including:   Industrial,  recreational,  landfill  and  aquatic.     After   identifying   the   seven   differing   landscape   units,   the   boundaries   were   outlined   and   drawn.   Different   hatching   techniques   were   utilised   to   represent   the   difference   in   granularity   in   a   more   conceptual   manner,   further   exacerbating   the   simplicity   and   readability   of   the   structure   map.   Through   this   process   of   identifying   contrasting  spatial  landscape  elements,  an  acknowledgement  of  points  of  interest  could  be  achieved.  By  doing   so,  a  site  visit  was  able  to  be  conducted  to  further  develop  an  understanding  of  the  site.    

 

4.2 Ȃ  Site  Visit   th

A site  visit  was  also  conducted  to  the  selected  area  within  Rochedale,  and  was  embarked  upon  on  28  March   2012,  points  visited  detailed  in  Figure  8.  After  choosing  the  specific  parameters  of  Rochedale  to  be  studied,  an   analysis  of  points  of  interest   were  identified.  These  points  on  the  aerial  photograph  were  chosen  due  to  the   changes  of  patch  size  over  time,  and  also  if  the  borders  coincided  between  built  environment  and  green  space.   Although   an   understanding   of   spatial   relationships   can   be   obtained   through   simply   analysing   an   aerial   photograph   and   ĂƉƉůLJŝŶŐ &ŽƌŵĂŶ͛Ɛ ;ϭϵϵϱͿ W-­‐C-­‐M   model,   a   greater   understanding   of   the   changes   and   the   reason  of  their  occurrence  was  needed  to  compile  a  comprehensive  report.  Not  only  can  an  understanding  be   established,   but   also   the   further   verification   of   assumptions   made   through   analysis   of   aerial   photography   in   ƵŶŝƐŽŶƐǁŝƚŚ&ŽƌŵĂŶ͛Ɛ;ϭϵϵϱͿW-­‐C-­‐M  model  can  be  achieved.  A  site  visit  was  conducted  to  further  examine  the   site  at  a  finer  scale  of  the  site.    

     

8  


4.3 Ȃ  Landscape  Dynamics     ͞dŚĞĚĞǀĞůŽƉŵĞŶƚĂŶĚĚLJŶĂŵŝĐƐŽĨƐƉĂƚŝĂůŚĞƚĞƌŽŐĞŶĞŝƚLJŝŶůĂŶĚƐĐĂƉĞƐŝƐĂĐĞŶƚƌĂůƚŚĞŵĞŽĨĞĐŽůŽŐŝĐĂůƐƚƵĚŝĞƐ͟ (Clark,   2010).  This   statement   directly   underlines   the   determining   role   of   flows   and   networks   with   regard   to   formation   of   landscapes.   Due   to   the   emphasis   placed   upon   the   flow   and   networks   by   ecological   studies,   diagrams   were   created   to   identify   these   elements   within   the   study   area.   To   begin   with,   the   composition   of   manmade   corridors   was   identified   using   a   similar   method   to   that   of   the   structure   map.   The   two   central   elements  obviously  being  major  and  minor  roadways,  which  are  detailed  in  Figure  4.       Next,   utilising   the   same   process   of   deconstruction,   the   classification   of   natural   corridors   followed.   Identified   were  the  dendritic  minor  watercourses  and  the  riparian  corridor  enclosing  the  watercourse.     Finally,   after   detailing   both   natural   and   manmade   networks   of   the   site,   directional   flows   within   both   were   documented   in   corresponding   diagrams.   As   a   result,   a   simplistic   illustration   of   the   connectivity   of   networks   between   differing   landscape   elements   was   compiled.   These   diagrams   not   only   take   into   consideration   the   directional   flow   of   each   network,   but   also   aspects   such   as   flows,   sources,   sinks   and   nodes.   The   addition   of   these  elements  within  the  diagrams  is  due  to  the  particular  size  of  the  site  and  scale  with  which  the  selected   site   must   be   observed;   one   cannot   detail   specific   attributes   of   the   corridors.   By   applying   these   features,   reasoning  for  qualities  of  specific  corridors  can  be  attempted  to  be  defined.  

4.4 Ȃ  Landscape  Structure  Transformation     The  most   obvious  method  of  observing  landscape  transformation  is  to  compare  two   maps  of  differing  times.   This  was  achieved  by  comparing  several  images  from  online  mapping  service  eBIMAP  (BCC,  2011).  These  maps   ranged  in  periods  of  time  from  1946,  2005  and  2011.  By  comparing  and  contrasting  each  map,  an  established   insight  into  the  processes  the  site  is  subjected  to  can  be  attained.      

5.0 -­‐  Results       The  succeeding  figures  depict  the  utilisation  of  the  methods  to  the  subsequent  selected  site   within  the  study   area.   These   diagrams   illustrate   the   previous   aforementioned   concepts   with   specific   focus   on   landscape   structure  and  dynamics.    

 

5.1 Landscape  Structure  

The following  results  refer  to  Figure  3  and  Table  1.  Seven  individual  landscape  units  (A  ʹ  G)  were  acknowledged   in  the  selected  parameters  of  the  study  area.  The  three  major  landscape  units  include:  natural  vegetation  (Unit   E)  comprising  approximately  31.3%  of  the  total  study  area,  followed  closely  by  medium  density  residential  (Unit   A)  occupying  30.59%,  and  agriculture  (Unit  F),  which  covered  approximately  20.24%.       Although  natural  vegetation  (Unit  E)  is  only  marginally  larger  to  Unit  A  (medium  density  reisdential)  it  is  evident   that   Unit   E   exerts   the   greatest   amount   of   connectivity   over   the   site   resulting   from   lack   of   segmentation;   therefore,   clearly   constituting   the   matrix   of   the   site.   The   matrix   is   composed   of   primarily   of   open   ʹ   medium   density   Eucalyptus   forest   explaining   the   homogeneity   of   the   patch   unit   (Department   of   Environment   and   Resource   Management,   2012).   All   three   Landscape   units   are   seemingly   homogenous   due   to   their   uniform   composition  as  observed  through  the  granularity  of  the  enhanced  aerial  photograph.   Following  Unit  E,  Unit  A   and   Unit   F   in   magnitude   of   land   coverage   are   Unit   B   and   Unit   G   which   contain   Austral   Bricks   and   Brisbane   Landfill,  which  ranged  5.06%  -­‐  3.7%,  with  Units  D  and  C  occupying  merely  0.5%-­‐0.15%  of  the  chosen  site.    

9  


The presence  of  humans  and  natural  disturbances,  in  many  cases,  sharpens  an  existing  natural  edge  (Forman,   1995).   As   can   be   noted   from   Figure   3   and   the   boundary   descriptions   section   of   the   Table   1,   the   boundary   qualities   of   the   patches   are   predominantly   geometric.   This   can   be   directly   linked   to   the   initial   statement,   as   manmade   corridors   (major   and   minor   roads)   border   many   of   the   patches.   Although   this   is   the   case   for   the   majority  of  patch  boundaries,  instances  of  convolution  can  be  also  be  observed  mainly  residing  parallel  to  the   riparian  corridor,  which  can  be  seen  in  Figure  3.       5.2  Landscape  Dynamics       The  dynamics  of  the  site  are  shown  in  Figures  5  and  7.  These  diagrams  take  into  consideration  both  natural  and   manmade  corridors  within  the  parameters  of  the  chosen  site.       As  depicted  in  manmade  corridor  diagrams  (Figures  4  and  5)  of  the  region  much  of  the  area  is  interconnected,   specifically  patches  A1  and  A2,  with  minor  and  major  artilleries.  There  is  a  clear  definition  seen,  with  the  heavy   presence   of   minor   roadways   illustrated   in   the   medium   density   residential   patches.   In   contrast,   the   assumed   agricultural  land  only  consists  of  several  corridors,  indicating  its  usage  for  agricultural  purposes  due  to  the  need   of  vast  amounts  of  acreage.  Separating  the  two  major  patch  units  is  the  Gateway  Motorway  which  is  seen  to  be   a  source   for   the  Brisbane  airport.   Adjacent   to  patch  A2  is  the  Pacific  Motorway,  which  displayed  the  highest   connectivity,  as  observed  and  confirmed  in  field  studies.       The   natural   corridors   consist   solely   of   the   Bulimba   Creek   catchment,   and   are   considered   a   level   3   water   catchment   (WBM,   2003).   This   river   system   considered   to  be   a   dendritic   drainage   system   due   to   it   branching   pattern  form  (Michael,  2011).  Figure  6  details  tributary  streams  adjoining  the  main  tributary  of  the  Bulimba  at   acute   angle,   which   then   leads   to   the   Brisbane   River.   The   main   stem   labelled   as   major   watercourse,   is   categorised   a   level   5   stream,   with   adjoining   intermediate   tributary   considered   level   3   stream   and   minor   streams  level  1  (WBM,  2003).  The  outlining  of  the  river  is  understood  to  be  consisting  of  the  vegetation  and  is   considered  to  be  a  riparian  corridor  (Forman,  1995).      

5.3 Attributes  Table    

The  attributes  table  was  quite  simple  to  produce.  By  using  the  already  constructed  structure  map,  observations   of  boundary  patch  characteristic  could  be  made  through  simply  utilising  the  necessary  descriptions  previously   discussed  in  the  methodology  section  of  this  report.  Specifying  the  matrix  of  the  region  was  achieved  by  using   the  structure  map  and  merely  photocopying  it  onto  trace  paper.  Following  this,  the  trace  paper  featuring  the   structure  map  was  overlayed  onto  a  1  X  1cm  grid  =  250  X  250  km  this  meant  that  each  square  would  equate  to   2 0.0625km .   Each   landscape   Unit   was   measured   and   placed   within   the   table   with   the   largest   landscape   unit   natural  vegetation  (Unit  E)  found  to  be  the  matrix.     The  purpose  of  the  attributes  table  was  specifically  to  deduce  characteristics  of  each  landscape  unit  to  assist  in   understanding  the  processes  occurring  at  boundary  edges.  By  simplifying  the  landscape  into  a  structure  map  a   description  of  the  each  unit  could  be  easily  obtained.  This  information  was  then  converted  into  a  table  format,   making  it  easy  to  order  and  refer  to.    

      10    


Figure 2  : AERIAL  MAP  OF  ROCHEDALE  SELECTED  STUDY  AREA  DEPICTING   LANDSCAPE  UNITS (Source:  SUNMAP  topographic  image  map  9542-­‐41,  1995)


E1 G1 B1

A1

B2

D1

F4 F2 F1 E2 A2

F3

C1 A3 A4 Figure 3  : LANDSCAPE  STRUCTURE  MAP  OF  ROCHEDALE  SELECTED  STUDY  AREA   DEPICTING  LANDSCAPE  UNITS (Source:  SUNMAP  topographic  image  map  9542-­‐41,  1995) LEGEND:

Unit A  ;DĞĚŝƵŵĞŶƐŝƚLJZĞƐŝĚŶĞƟĂůͿ

Unit E  ;EĂƚƵƌĂůsĞŐŝƚĂƟŽŶͿ

Unit B  (Industrual)

Unit F  (Agriculture)

Unit C  ;ZĞĐƌĞĂƟŽŶĂůͿ

Unit G  ;>ĂŶĚĮůůͿ

Unit D  ;ƋƵĂƟĐͿ


Figure 4  : NETWORK  DIAGRAM  OF  ROCHEDALE  SELECTED  STUDY  AREA  DEPICTING   MAN-­‐MADE  CORRIDORS (Source:  SUNMAP  topographic  image  map  9542-­‐41,  1995) LEGEND: Major  Roads Minor  Roads


Z/^E/ZWKZd

CBD

&ŝŐƵƌĞϱ͗

LEGEND:

FLOWS DIAGRAM  OF  ROCHEDALE  SELECTED  STUDY  AREA  DEPICTING   MAN-­‐MADE  FLOWS (Source:  SUNMAP  topographic  image  map  9542-­‐41,  1995) DĂũŽƌdƌĂĸĐ&ůŽǁƐ DŝŶŽƌdƌĂĸĐ&ůŽǁƐ

ŝƌĞĐƟŽŶŽĨ&ůŽǁ

^ŽƵƌĐĞ ^ŝŶŬ EŽĚĞ


Figure 6  : NETWORK  DIAGRAM  OF  ROCHEDALE  SELECTED  STUDY  AREA  DEPICTING  

LEGEND:

NATURAL CORRIDORS Source:  (SUNMAP  topographic  image  map  9542-­‐41,  1995)   (Healthy  Waterways,  2003) Riparian  Corridor Major  Watercourse  (Level  5)

Intermidiate Watercourse (Level  3)

Minor Watercourse  (Level  1)


Figure 7  : NETWORK  DIAGRAM  OF  ROCHEDALE  SELECTED  STUDY  AREA  DEPICTING   NATURAL  CORRIDORS Source:  (SUNMAP  topographic  image  map  9542-­‐41,  1995)   (Healthy  Waterways,  2003)

LEGEND:

Riparian Corridor

Intermidiate Watercourse

Major Watercourse  (Level  5)

Minor Watercourse  (Level  1)

ŝƌĞĐƟŽŶŽĨ&ůŽǁ

(Level 3)

ZƵŶŽī Prevailing Winds  (S.E)

EŽƚĞ͗ůůǁĂƚĞƌŇŽǁƐƐŚŽǁŶĂƌĞĚŝƌĞĐƚĞĚĚŽǁŶƐƚƌĞĂŵ͘ ,ŽǁĞǀĞƌ͕ƌŝǀĞƌƐĂŶĚƐƚƌĞĂŵƐŝŶƚŚĞƐƚƵĚLJĂƌĞĂĂƌĞƟĚĂů ĂŶĚĐĂŶŇŽǁŝŶĞŝƚŚĞƌĚŝƌĞĐƟŽŶ͘

(Dispersal of  organic  and inorganic  materials)


E1 G1

H3 B1

A1

B2

D1

I1

I3

F5

F2 F1 E2 A2

I2

F3

C1 H1

A3

H2 H3

H4

A4

Figure 8  : LANDSCAPE  STRUCTURE  MAP,  WITH  MANMADE  CORRIDORS  OF   ROCHEDALE  SELECTED  STUDY  AREA  DEPICTING  LANDSCAPE  UNITS  IN   RELATION  TO  MAN-­‐MADE  CORRIDORS (Source:  SUNMAP  topographic  image  map  9542-­‐41,  1995) LEGEND:

Unit A  ;DĞĚŝƵŵĞŶƐŝƚLJZĞƐŝĚŶĞƟĂůͿ

Unit E  ;EĂƚƵƌĂůsĞŐŝƚĂƟŽŶͿ

Unit B  (Industrual)

Unit F  (Agriculture)

Unit C  ;ZĞĐƌĞĂƟŽŶĂůͿ

Unit G  ;>ĂŶĚĮůůͿ

Unit D  ;ƋƵĂƟĐͿ

Unit H  ;DĂũŽƌZŽĂĚŽƌƌŝĚŽƌƐͿ Unit  I  ;DŝŶŽƌZŽĂĚŽƌƌŝĚŽƌƐͿ


STOP-2

STOP-1 STOP-5

STOP-4

STOP-3

Figure 9  : MAP  OF  ROCHEDALE  SELECTED  STUDY  AREA  DEPICTING   SITE  VISIT  STOPS (Source:  Google  Maps,  2012) LEGEND:

STOP-1

Stops on  Site  Visit

1 km


Landscape Units   Unit  A    

(Medium ʹ  High  residential)  

Unit B  (Industrial)  

Unit C  (Recreational)       Unit  D  (Aquatic)       Unit  E  (Natural  Vegetation)     Unit  F  (Agriculture)      

Unit G  (Landfill)        

2

2

Matrix Area  (km )                             The  matrix  covers   approximately  31.3%  of   the  total  study  area   2 (13.44km ).  Comprising   of  two  landscape  units,   unit  number  E1  and  E2.  

Unit Number     A1  

Patch Size  (km )   2.78  

A2

1.1

A3

0.15

A4

0.08

B1

0.03

B2

0.65

C1

0.07

D1

4.2                    

Patch Shape   medium  elongation   medium  convolution   medium  elongation   medium  convolution   low  elongation   low  convolution     high  elongation   low  convolution   medium  elongation   low  convolution   high  elongation   low  convolution   low  elongation   low  convolution  

Boundary Description   mostly  curvilinear  

0.02

low elongation   low  convolution  

mostly curvilinear  

E1

mostly geometric    

E2 F1  

0.37

F2

0.28

F3

1.94

F4

0.16

G1

0.5

low elongation   low  convolution   medium  elongation   low  convolution   medium  elongation   low  convolution   low  elongation   low  convolution   medium  elongation   low  convolution  

mostly geometric    

mixed mostly  geometric  

Table  1:  Attributes  table  describing  the  landscape  units  found  in  Figure  3.  Accessing  each  patch  characteristics  and  size.  

19


6.0 -­‐  Discussion       As  previously  stated,  the  study  of  landscape  ecology   endeavours  to   ƉƌŽƚĞĐƚ ƐŝŐŶŝĨŝĐĂŶƚ ŐƌĞĞŶ ƐƉĂĐĞƐ͘ &ŽƌŵĂŶ͛Ɛ ;ϭϵϵϱͿ ƉĂƚĐŚ-­‐matrix-­‐ corridor   model,   as   exhibited   in   the   result,   is   utilised   to   identify   structural   landscape   element,   in   doing   so,   simplifying   the   selected   site   to   a   conceptual   basis.   By   transposing   the   aerial   photograph   through  this  process,  not  only  do  landscape  elements  characteristics   become   more   graphically   coherent,   but   also   an   understanding   of   dynamics   and   relationships   between   differing   elements   can   be   attained.       ͞dŚĞƐƵďũĞĐƚŽĨůĂŶĚƚƌĂŶƐĨŽƌŵĂƚŝŽŶĂŶĚĨƌĂŐŵĞŶƚĂƚŝŽŶŝƐƐŝŐŶŝĨŝĐĂŶƚ ƚŽ Ăůů ŚƵŵĂŶ ŝƐƐƵĞƐ ƚŚĂƚ ŝŶǀŽůǀĞ ůĂŶĚ͟ ;&ŽƌŵĂŶ͕ ϭϵϵϱ͘ ƉϰϬϱͿ͘ dŚĞ significance   of   this   statement   can   be   clearly   depicted   in   the   corresponding   imagery   in   Figures   10-­‐12.   These   three   aerial   photographs   taken   from:   1946,   2007,   and   2011,   illustrate   spatial   processes   in   land   transformation.   By   comparing   each   image   it   is   evident,  that  significant  detrimental  human-­‐induced  processes  have   conspired   on   the   selected   site.   The   beginning   of   fragmentation   process   is   apparent   in   1946,   with   the   initial   establishment   of   manmade   corridors   able   to   be   observed   due   to   linear   disruptions   with   in   natural   vegetation.   These   dissections   of   the   landscape   are   only  present  due  to  land  clearing  for  agricultural  purposes,  as  found   to   be   the   initial   purpose   of   the   region   as   discussed   in   the   methodology   section   of   the   report.   The   occurrence   of   human-­‐ induced   land   fragmentation   and   other   spatial   processes   become   ever   more   prominent   in   the   following   image   of   2007,   which   raises   many   concerns.   This   increase   of   residential   development   can   be   assumed  to  have  occurred  due  to  the   ͞ƚŽƚĂůƉŽƉƵůĂƚŝŽŶŝŶĐƌĞĂƐĞďLJ over  half  a  million  people  bĞƚǁĞĞŶϭϵϴϲĂŶĚϮϬϬϳ͟(BCC,  2011).    

Figures 10-­‐12:  Selected  study  site.  From   top  to  bottom,  1946,  2007,  2011     (BCC,  2011).  

As   observed   in   the   second   image,   several   spatial   processes   seem   to   be   occurring,   including,   dissection   and   shrinkage.   In   comparing   Figures   11   and   12   there   has   been   immense   change   induced   by   the   increase  of  population.  Shown  in  Figure  12,  unit  A1  and  A2  (medium   residential)  have  developed  within  the  region  heavily  fragmenting  the   previously   established   green   space.   With   this   increased   human   presence   the   need   for   human   corridors   become   essential,   however,   decrease   connectivity   within   green   space   through   dissection.   This   then   consequently   results   to   the   shrinkage   and   inevitable   proliferation   of   minor   natural   vegetation   patches,   these   processes   ĂƌĞĐŽŶƐŝĚĞƌĞĚƚŚĞŵŽƐƚƐĞƌŝŽƵƐƚŚƌĞĂƚƐƚŽĂƌƚŚ͛ƐďŝŽůŽŐŝĐĂůĚŝǀĞƌƐŝƚLJ (Collinge,  2010).        

20  


The final   image  shows  fractional  change  in  comparison  to  the  previous  imagery  obviously  due  to  the  shorter   span   of   time.   Although   on   a   rigorous   inspection   of   both   Figure   11   and   12,   it   is   still   evident   that   the   encroachment   and   shrinkage   of   green   space   is   occurring.   This   simple   trend   analysis   of   multi-­‐period   mosaic   sequences   (e.g.   natural   vegetation   to   agriculture)   the   region   suggests   that   the   Rochedale   Community   has   undergone  significant  change  over  the  past  65  years.  Whilst  the  Figure  10  (1946)  image  showed  indications  of   fragmentation  from  human  presence,  by  2011  natural  vegetation  patches  were  extensively  fragmented,  which   can   ĚĞǀĞůŽƉ ͞profound   impacts   on   populations   of   species,   their   interactions   within   ecological   communities,   and  the  functiŽŶŽĨĞĐŽƐLJƐƚĞŵƐ͟;Collinge,  2010).    

6.1 Ȃ  Land  Fragmentation     Due  to  population  increase  and  the  over  densification  of  the  Central  Brisbane  District  expansion  is  inevitable,   with  the  Brisbane  City  Council  ;ϮϬϭϭͿƐƚĂƚŝŶŐ͞ƐŝŐŶŝĨŝĐĂŶƚĐŽŶƐƚƌƵĐƚŝŽŶĂŶĚĚĞǀĞůopment  is  expected  to  occur  in   ƚŚĞZŽĐŚĞĚĂůĞĂƌĞĂ ŽǀĞƌƚŚĞĐŽŵŝŶŐLJĞĂƌƐ͘͟ This  was  also   verified  during  the  site  visit   from  Stop  2  to  Stop  3   (refer   to   Figure   9)   a   substantial   amount   of   advertisement   for   housing   development   was   observed.   Fundamentally,  usinŐ&ŽƌŵĂŶ͛Ɛ;ϭϵϵϱͿP-­‐C-­‐M  model  the  proposed  Rochedale  community  would  be  categorised   as  an  introduced  patch  type  (Forman,  1995).  Although  it  may  not  currently  be  seen  to  be  the  matrix,  through   the  knowledge  gained  from  the  site  visit,  one  could  assume  that  built  environment  is  gradually  encroaching  the   surrounding  green  space.       Although   Brisbane   City   Council   advocate   that   Rochedale   Urban   Community   proposed   plan   will   achieve   a   ͞Greener   Suburb͟,   its   existence   affects   the   ecology   of   the   surrounding   environment   and   can   be   devastating.   ͞Large  patches  contain  more  energy  and  mineral  nutrients  than  smaller  patches͟  (Forman  and  Godron,  1986,   p99),   but   with   the   clearing   of   land   major   effects   such   as   habitat   fragmentation   can   occur.   During   the   undertaking  of  the  site  visit  this  was  confirmed,  with  substantial  amounts  clearing  occurring  in  the  surrounding   open   eucalyptus   forests.   This   has   the   ability   to   increase   external   impacts   (predators   or   invaders),   altered   microclimates,  and  increased  wildlife  isolation  (MacDonald,  2003).  Larger  patches  can  begin   to  fragment   and   the  possibility  of  patch  edge  recession  can  occur,  and  subsequently,  over  time  the  site  begins  to  resemble  the   example  previously  used  to  describe  matrix.     This,   consequently,   would   make   green   space   a   fragment   imbedded   within   an   urban   development   matrix.   The   further   need   of   residential   development   gives   way   for   not   only   the   need   for   land   but   also   the   ƌĞƋƵŝƌĞŵĞŶƚ ŽĨ ƌŽĂĚ ĐŽƌƌŝĚŽƌƐ͘ ͞EĞĂƌůLJ Ăůů ůĂŶĚƐĐĂƉĞƐ are  both  divided  and  at  the  same  time  tied  together  by   ĐŽƌƌŝĚŽƌƐ͟ ;&ŽƌŵĂŶ ĂŶĚ 'ŽĚƌŽŶ͘ ϭϵϴϲ͕ ƉϭϮϯͿ͘ /Ŷ ƚŚŝƐ regard,   road   corridors   act   to   tie   together   residential   developments   to   neighbouring   corresponding   patches   by  doing  so  intersecting  natural  patches   in  the  process   as  seen  in  Figure  9  with  manmade  corridors  H1,  H2  and   H3   dissecting   the   matrix.   The   road   corridor   acts   as   a   Figure  13:  The  remnants  of  a  kangaroo  found   filter   for   crossing   animals,   which   effects   connectivity   during  the  site  visit,  adjacent  to  high  flow  man-­‐ and   movement   of   wildlife.   These   effects   were   made  corridor  (Mahairas,  2012).   witnessed  firsthand  during  the  site  visit  with  the  remnants  of  a  deceased  kangaroo  found  lying  beside  the  road   as   displayed   in   Figure   13.   This   form   of   dissection   of   previously   linked   vegetation   patches   alters   the   existing   ecology   (Lindenmayer   &   Fischer.   2006,   p125).   The   road   corridor   acts   as   a   boundary   between   surrounding  

21  


patches having   similar   effect   as   land   fragmentation   with   more   emphasis   being   placed   on   the   restricted   circulation  and  flow.     Although  Brisbane  City  Council  attempt  to   address   the   concepts   of   sustainability   by   retaining   significant   portions   of   existing   vegetation   (BCC,   2011),   it   is   just   that,   an   attempt,   sustainability   can   be   simply   put   ĂƐ Ă ǁĂLJ ƚŽ ͞create   and   maintain   the   conditions   under   which   humans   and   nature   can   exist   in   productive   harmony,   that   permit   social,   economic   and   other   requirements   of   present   and   future   generations͟ ;EPA,   n.d).     With   the   understanding  of  sustainability  one  would   question   the   sustainability   of   newly   proposed   Rochedale   Urban   Community,   situated  on  large  areas  of  natural  patches   clearly   illustrated   in   Figure   14.   Although   the   proposed   housing   development   incorporates  the  use  of  sustainability  it  is   the   occupation   of   green   space   and   the   close   vicinity   of   the   development   to   neighbouring   waterways   that   is   the   detrimental  factor.    

          Figure  14:  The  proposed  Rochedale  Community  Urban  Plan  (Brisbane   City  Council,  2012).  

 

6.2 Ȃ  Riparian  Landscape     The  clearing  of   vegetation  in  the   proximity  of  riparian  corridors  can  have   severe   effects  on  the  water   quality   and  natural  habitants  (Brisbane  City  Council,  2008).  This  can  be  clearly  identified,  when  comparing  Figures  11   and   12,   with   both   Unit   A1   and   A2   (medium   density   residential)   progressively   encroaching   on   the   adjacent   riparian   vegetation,   straightening   the   boundary   edge.   This   degradation   of   watercourses   is   mainly   due   the   clearing  of  vegetation  increasing  speed  and  volume  in  which  rainwater  flows  (Brisbane  City  Council,  2008).    The   increase  of  urban  development  also  corresponds  with  an  increase  of  soil  and  organic  materials  and  chemicals   found   in   surrounding   waterways   consequently   causing   sediments   to   silt   up   of   waterholes   (Brisbane   City   Council,   2008).   Increased   nutrients   and   organic   materials   may   be   thought   to   benefit   waterways,   however   posses   the   opposite   effect   (Brisbane   City   Council,   2008).   Due   to   the   increased   presence   of   nutrients   the   possibility  of  algal  blooms  can  occur  resulting   too  ͞...ďŝŽŵĂŐŶŝĮĐĂƚŝŽŶǁŝƚŚŝŶƚŚĞĨŽŽĚǁĞď͟ (Barwick,  Maher,   2003).     These   processes   discussed   are   evident   within   Bulimba   Creek   Catchment   as   it   received   ĂŶ ͞&͟ ŝŶ ƚŚĞ latest  waterways  report  card  (Strachan,  2010).  Figure  7  depicts  the  close  vicinity  of  the  development  in  regards  

22  


to the  riparian  corridor  and  possible  run-­‐off  areas.  Surrounding  the  catchment   area   are   Units  A1,   A2  and  F1.   These  patches  consist  of  both  agricultural  land  and  residential,  which  raises  the  issue  of  pollutant  runoff  which   ĐĂŶ͞ŶĞŐĂƚŝǀĞůLJĂůƚĞƌ  important  hydrogeological  conditions  and  ƉƌŽĐĞƐƐĞƐ͟;ƉĂŶ͕Raine  &    Paterson,  2002).      

6.3 -­‐  Comparative  Model  Analysis  

͞A land  mosaic  is  composed  only  of  these  three  types  of  spatial  elements.  Every  point  is  either  within  a  patch,  a   corridor,  or  a   matrix͟  (Forman.  1995,  p7).  In   stating  this,   ƚŚĞƵƐĞŽĨ&ŽƌŵĂŶ͛ƐƉĂƚĐŚ-­‐matrix-­‐corridor   model  is   not   a   method  of  conserving  landscapes  but   a   model  in  which   areas  of  habitat   and  non-­‐habitat   are  simplified   and   ideas   are   translated   into   spatial   context   (Lindenmayer   &   Burgman,   2005).   Although,   there   are   faults   associated  with  the  P-­‐C-­‐M  model.  Due  to  the  ͞ƌĞƋƵŝƌĞŵĞŶƚŽĨĐůĞĂƌůLJĚĞĨŝŶing  landscape  elements  with  sharp   ďŽƵŶĚĂƌŝĞƐ ĂƐ Ă ďĂƐŝƐ ĨŽƌ ĐĂůĐƵůĂƚŝŶŐ ůĂŶĚƐĐĂƉĞ ŵĂƚƌŝdž͟   (Hoechstetter,   2009.   p.74).   In   most   cases,   the   environmental   boundaries   are   in   the   form   of   ecological   gradients.   Therefore,   the   model   can   be   seen   to   oversimplify   landscape   structure   in   certain   instances   (Hoechstetter,   2009).   Scale   is   also   another   important   factor  of  landscape  ecology,  with  most  research  scale-­‐dependant;  great  focus  is  dedicated  to  the  interpretation   of   landscape   patterns   and   processes   on   varying   scales   (Kent,   2007).   Put   simply,   at   a   smaller   scale   one   could   witness  landscape  unit  to  be  the  matrix,  however,  on  a  different  scale  this  unit  may  appear  to  be  only  a  patch   within  the  matrix.  Although  these  faults  provide  limitations  to  the  analysis  conducted,  for  the  purposes  of  this   ƌĞƉŽƌƚ &ŽƌŵĂŶ͛Ɛ ;ϭϵϵϱͿ W-­‐C-­‐M   model   is   substantial   enough   to   evaluate   the   processes   occurring   within   the   selected  site.    

7.0 -­‐  Recommendations     This  is  obviously  not  the  first  instance  of  land  fragmentation  and  riparian  vegetation  clearing  witnessed.  Many   schemes   for   the   protection,   rehabilitation   and   management   have   been   created.   In   this   section   of   the   report   schemes   and   methods   for   the   assistance   of   green   space   and   recommendations   made   will   be   adapted   and   appropriately  adjusted  to  suite  the  planning  of  future  development  of  Rochedale.       Principles  used  in  landscape  ecology  should  be  utilised  in  the  planning  and  management  of  both  riparian  and   vegetative   ecosystems.   These   strategies   should   include   the   ͞ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ŽĨ ƐƚƌĞĂŵs   on   which   vegetation   ĐŽƌƌŝĚŽƌƐƐŚŽƵůĚďĞƉƌĞƐĞƌǀĞĚŽƌƌĞŚĂďŝůŝƚĂƚĞĚ͟;Ipswich  City  Council,  2012)  and  the  immediate  managing  and   restoration  of  damaged  riparian  corridors  and  land  fragmentation.       By   identifying   areas   of   heavily   damaged   riparian   vegetation   the   process   of   rehabilitation   and   protection   can   occur.  There  are  many  strategies  to  assist  in  retaining  and  protecting  existing  native  vegetation,  however,  most   revolve   around   the   idea   of   revegetation,   weed   control   and   protection   (Ipswich   City   Council,   2012).   Weed   control   mainly   relies   on   categorising   weed   species   located   in   the   riparian   corridor.   Once   located,   cut   stump   treatment  and  foliar  spraying  of  large  woody  weeds  such  as:    Chinese  elm,  Camphor  laurel  and  Mulberry,   can   occur,  eradicating  many  weed  species  (Ipswich  City  Council,  2012).  Once  this  has  occurred  the  revegetation  of   the  area  can  transpire.  Utilisation  of  indigenous  species  such  as,  Brisbane  Wattle,  Creek  Lillypilly  and  Black  Bean   can   be   planted,   ͞maintaining   the   genetic   integrity   and   biodiversity   of   the   riparian   corridor͟ ;/ƉƐǁŝĐŚ ŝƚLJ Council,   2012).   The   positioning   of   layers   of   vegetation   is   also   fundamental   for   providing   differing   areas   of   foraging   and   nesting   locations   for   native   wildlife   and   also   can   ensure   structural   integrity   and   security   of   the   bank  (Department  of  sustainability,  2012).  These  steps  would  inevitably  assist  the  regeneration  of  connectivity   within  the  site  if  implemented.     Current  policies  such  as  the,  ƌŝƐďĂŶĞŝƚLJŽƵŶĐŝů͛ƐϭϱWƌŝŶĐŝƉůĞƐŽĨ^ƵƐƚĂŝŶĂďŝůŝƚLJ;ϮϬϭϮͿĂƐƐŝƐƚŝŶĚŝƌĞĐƚŝŶŐthe   built  environment  industry  in  regards  to  the  preservation  and  restoration  of  our  remaining  green  spaces.  It  is  

23  


the implication   of   policies   in   correlation   with   the   protection,   rehabilitation   and   management   of   our   green   spaces  that  will  ensure  its  presence  in  the  future.    

8.0 -­‐  Conclusion       The   structure   of   natural   vegetation   of   the   Rochedale   area   has   changed   significantly   during   a   65-­‐year   period.   This   study   attempts   to   analyse   the   human-­‐induced   processes   degrading   the   natural   ecosystem   of   the   Rochedale  area.  Land  and  riparian  vegetation  has  been  identified  as  becoming  progressively  more  fragmented,   due  to  the  stronger  presence  of  human  residence  in  the   area.  The  matrix  was  identified  to  be  Unit  E  (natural   vegetation)  however,  due  to  the  dissection  of  corridors  occurring   from  the  establishment  of  major  road  ways   the  matrix  has  become  heavily  fragmented,  subsequently  reducing  the  connectivity  of  the  matrix.       Utilisation   of   aerial   photography   provided   a   platform,   with   further   manipulation   of   the   imagery   occurring   to   ĂƐƐŝƐƚ ŝŶ ĐƌĞĂƚŝŶŐ ƚŚĞ ŶĞĐĞƐƐĂƌLJ ĚŝĂŐƌĂŵƐ ƚŽ ĂĚĂƉƚ &ŽƌŵĂŶ͛Ɛ ;ϭϵϵϱͿ W-­‐C-­‐M   model.   An   establishment   and   comprehension  of  the  dynamics  and  structure  of  the  selected  region  was  then  made.  This  process  influenced   the  position  taken  in  the  discussion  of  the  report  as  an  understanding  of  the  detrimental  influence  of  human   presence  within  the  site  was   obtained.   Brisbane  City  Council  attempt   to  dampen  the   effect  of  infrastructure,   but  it  is  not  only  the  effect  of  the  infrastructure  to  adjacent  habitats,  but  also  the  overwhelming  presence  and   encroachment   of   humans   that   is   of   concern.     However,   in   saying   this,   a   restriction   of   development   is   not   a   feasible  solution  due  to  the  increasing  population  of  Brisbane.     Though,   as   discussed,   there   are   ways   to   assist   the   redevelopment   of   these   corridors   as   explained   in   the   recommendations   section   of   this   report,   with   particular   focus   on   the   regeneration   and   rehabilitation   of   the   natural  patches  and  corridors.   By  implementing  these  strategies  in  future  developments,  an  assurance  of  the   conservation  and  restoration  of  natural  spaces,  under  which  both  humans  and  nature  can  coexist  and  sustain  a   balance  of  requirements.  

                               

24  


9.0 -­‐  References           Andersson,  E.  2006.  Urban  landscapes  and  sustainable  cities.  Ecology  and  Society.  Retrieved  from:   http://www.ecologyandsociety.org/vol11/iss1/art34/     Apan,  A,  A.  Raine,  S,  R  &  Paterson,  M,  S.  (2002).  Mapping  and  Analysis  of  Changes  in  the  Riparian  Landscape   Structure  of  the  Lockyer  Valley  Catchment,  Queensland,  Australia.  Retrieved  from:   http://eprints.usq.edu.au/2903/1/Apan_Raine_Paterson.pdf     Barwick,  M  &  Maher,  W.  (2003).  ŝŽƚƌĂŶƐĨĞƌĞŶĐĞĂŶĚďŝŽŵĂŐŶŝĮĐĂƚŝŽŶŽĨƐĞůĞŶŝƵŵcopper,  cadmium,  zinc,   arsenic  and  lead  in  a  temperate  seagrass  ecosystem  from  Lake  Macquarie  Estuary,  NSW,  Australia.   Retrieved  from:   http://www.canberra.edu.au/centres/iae/pdfs/2003_Barwick_Maher_Biotransference_and_biomagnifica tion_of_selenium_copper_Cadmium_zinc_arsenic_lead.pdf     BCC.  (2011).  eBIMAP  Digital  Mapping  Service.  Retrieved  from:  http://www.brisbane.qld.gov.au/planning-­‐ building/planning-­‐guidelines-­‐and-­‐tools/online-­‐mapping-­‐tools/ebimap/index.htm     BCC.  (2011).  Population  Growth  Challenges.  Retrieved  from:   http://www.brisbane.qld.gov.au/prdc/groups/corpwebcontent/documents/documents/046373.pdf     BCC.  (2011).  Rochedale  Urban  Community  Local  Plan  Frequently  Asked  Questions.  Retrieved  from:   http://adrianschrinner.com/Portals/0/Newsletters%20and%20Publications/Rochedale%20Urban%20Com munity%20Local%20Plan%20FAQ.pdf     Brinckerhoff,  P.  (n.d).  Topography,  geomorphology,  geology  and  soil  and  geotechnical  conditions.  Retrieved   from:  http://www.tmr.qld.gov.au/~/media/021103ce-­‐f9d4-­‐4ad7-­‐b94e-­‐ 4c930457dc24/pdf_sebx_cds_v1_s07_topography.pdf     Brisbane  City  Community  Files.  (2012).  Rochedale.  Retrieved  March  10,  2012  from:   http://profile.id.com.au/Default.aspx?id=327&pg=101&gid=1230&type=enum     Brisbane  City  Council.  (2008).  INFRASTRUCTURE  CONTRIBUTIONS  PLANNING  SCHEME  POLICY.  Retrieved  from:   http://www.brisbane.qld.gov.au/documents/building_development/planning%20scheme%20policies/roc hedale_psp.pdf     Brisbane  City  Council.  (2008).  zŽƵ͛ƌĞLJŽƵƌƌĞĞŬʹ  Bulimba  Creek.  Retrieved  from:   http://www.brisbane.qld.gov.au/documents/environment/know_your_creek_bulimba_2008.pdf     Brisbane  City  Council.  (2011).  Brisbane  City  Plan.  Retrieved  from:   http://www.brisbane.qld.gov.au/BCCWR/LIB181/CHAPTER4_ROCHEDALEURBAN_LP_FULL.PDF?xml=/BCC: PdfHitXml:svDocNum=2     Brisbane  City  Council.  (2012).  Rochedale  Urban  Community  Local  Plan.  Retrieved  March  10,  2012  from:   http://www.brisbane.qld.gov.au/planning-­‐building/current-­‐planning-­‐projects/neighbourhood-­‐ planning/Neighbourhood-­‐plans-­‐in-­‐your-­‐area/rochedale/index.htm     Clark,  W.  (2010).  Principles  of  Landscape  Ecology.  Nature  Education  Knowledge  2(2):34       Collinge,  S.  (2010).  Spatial  Ecology  and  Conservation.  Nature  Education  Knowledge  1(8):69     Crew,  G.  (2002).  History  of  Rochedale  ʹ  Aboriginal  History.  Retrieved  from:   http://www.gbkgraphics.com/history/ab.htm      

25  


Department of  Sustainability.  (2012).  Enhancing  the  value  of  revegetation  for  wildlife.  Retrieved  from:   http://www.environment.gov.au/land/publications/pubs/revegwild4.pdf       Department  of  Environment  and  Resource  Management.  (2012).  Regional  ecosystems  search  results.  Retrieved   from:  http://www.derm.qld.gov.au/REDD       EPA.  (n.d).  What  is  Sustainability?.  Retrieved  from:  http://www.epa.gov/sustainability/basicinfo.htm     Forman,  R.  T.  T.  (1995).  Land  mosaics:  The  ecology  of  landscapes  and  regions.  CA,  England:  Cambridge   University  Press.     Forman,  R.  T.  T.,  &  Godron,  M.  (1986).  Landscape  Ecology.  New  York,  USA:  Wiley.     Franklin,  J.  F.  &  Forman,  R.  T.  T.  (1987).  Creating  landscape  patterns  by  forest  cutting:  Ecological  consequences   and  principles.  The  Hague,  Netherlands:  SPB  Academic  Publishing.     Godfrey,  J.  (1995).  A  History  of  the  Bulimba  Creek  Valley.  Retrieved  from:     Golubiewski,  N.  (2007).  Landscape  Ecology.  Retrieved  from:   http://www.eoearth.org/article/Landscape_ecology     Google  Maps.  (2012).  Rochedale  Queensland  4123.  Retrieved  from:   http://maps.google.com.au/maps?hl=en&q=rochedale&bav=on.2,or.r_gc.r_pw.,cf.osb&biw=1920&bih=8 32&um=1&ie=UTF-­‐8&sa=N&tab=wl     Health  Waterways.  (2003).  Brisbane  River  Catchment.  Retrieved  from:   http://healthywaterways.org/HealthyWaterways/Waterwaysandcatchmentsinformation/Level2and3Catc hments/BrisbaneRiverLevel3Catchments.aspx     Hersperger,  A.  (2006).  Spatial  adjacencies  and  interactions:  Neighborhood  mosaics  for  landscape  ecological   planning,  77(3),  227-­‐239.  doi:  10.1016/j.landurbplan.2005.02.009.       Hoechstetter,S  .  (2009).  ENHANCED  METHODS  FOR  ANALYSING  LANDSCAPE  STRUCTURE,  (2)2,  73-­‐75.  Retrieved   from:  http://www.iale.cz/downloads/JLE_4/8_Madera_book%20review.pdf     Ipswich  City  Council.  (2012).  Riparian  Corridor  Revegetation  Guideline.  Retrieved  from:   http://www.ipswich.qld.gov.au/documents/environment/riparian_corridor_revegetation_guidelines.pdf     Kent,  M.  (2007).  Biogeography  and  landscape  ecology.  Progress  in  Physical  Geography.  31(3),  345-­‐355.  Doi:   10.1177//0039133307079059     Lindenmayer,  D,  &  Burgman,  M.  A.  (2005).  Practical  Conservation  Biology.  Retrieved  from:   http://books.google.com.au/books?ei=UMhmT72zH6WImQW-­‐ hoSICA&id=syrqsTQVWC8C&dq=%22patch+corridor+matrix+model%22&q=%22patch+corridor+matrix+m odel%22#v=snippet&q=%22patch%20corridor%20matrix%20model%22&f=false     Lindenmayer,  D,  &  Fischer,  J.  (2006).  Habitat  Fragmentation  and  Landscape  Change  ʹ  An  Ecological   Conservation  Synthesis.  Retrieved  from:     Logan  City  Council.  (2010).  Logan  City  Council:  Rochedale.  Retrieved  from:   http://www.logan.qld.gov.au/__data/assets/pdf_file/0005/74768/6558576-­‐Handout21-­‐Rochedale.pdf     MacDonald,  M.A.  (2003).  The  role  of  corridors  in  biodiversity  conservation  in  production  forest  landscapes:  a   literature  Review.  Retrieved  from:   http://live.greeningaustralia.org.au/nativevegetation/pages/pdf/Authors%20M/3_MacDonald.pdf    

26  


Mahairas, M.  (2012),  Kangaroo  Remnants.  Retrieved:  28.03.2012     Mountains  to  Mangroves.  (2012).  South  East  Queensland  ʹ  History  Overview.  Retrieved  from:   http://www.mountainstomangroves.org/m2m/01_cms/details.asp?ID=114   R,  Michael  E.  (2011).  The  Physical  Environment:  an  Introduction  to  Physical  Geography.  Retrieved  from:   http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/title_page.html      Strachan,  A.  (2010).  Catchment  needs  time.  Retrieved  from:  http://south-­‐east-­‐ advertiser.whereilive.com.au/news/story/catchment-­‐needs-­‐time/     SUNMAP  topographic  image  map  9542-­‐41,  Capalaba,  QLD.  State  Government  Department  of  Lands,  1995.     Wiens,  J.  A.  (1976).  Population  responses  to  patchy  environments.  Annual  Review  of  Ecological  Systems,  7(1),   81-­‐120.     Willmott,  W.  (2004).  Rocks  and  Landscapes  of  the  National  Parks  of  Southern  Queensland.  QLD:  Australia:   Kingswood  Press.      

27  

LANDSCAPE ECOLOGY REPORT  

This  report  provides  a  critical  analysis  and  evaluation  of  the  current  landscape  structure  of  a  selected  region   within  th...

Read more
Read more
Similar to
Popular now
Just for you