Constructing Environments   ENVS  10003   WEEKLY  LOGBOOK   Semester  1,  2014

Student  name:  Meghan  Sarah  Choo     Student  number:  644640   Institution:  University  of  Melbourne

WEEK ONE:  INTRODUCTION  TO  CONSTRUCTION   MYSTERY  MATERIAL:  MDF  [medium  density  fibreboard]   Good  with  compression     Not  good  with  tension

1

1.01 Structural  forces:  the  basics   Forces   Forces   are   a   vector   quantity,   comprising   of   direction,  magnitude  and  sense.       Movement  of  forces     i. Collinear   ii. Concurrent     iii. Non-­‐concurrent   iv. Moment   v. Couple  force       Nature  of  structural  forces   Compression   -­‐ Refers   to   forces   pushing   against   a   structure:   load   force   vs.   reaction   force   [see  diagram  2a]   -­‐ Results  in  the  structural  member  being   shortened  1   -­‐ Downward  movement   Tension     -­‐ Refers   to   forces   pulling   on   a   structure   in  opposing  directions  [see  diagram  2b]   -­‐ Tension  forces  act  in  equal  amounts,  on   opposite   directions;   this   ensures   stability  of  a  structure     -­‐ Lateral  movement

Image 12   Diagram  2a   Picture   of   Stone   Arch   Bridge   in   Kansas,   Illustration  of  compression   America   force  created  by  load         LOAD

Reaction force

Compressed stone  units   due  to  load   force  vs.   reaction  force

This   image   illustrates   compression   occurring   within   the   structural   elements   of   a   bridge,   by   focussing  on  a  specific  area  [see  annotation]

Compression  forces

Structural member   [e.g.  brick]

Load force   [Live  load,   from   cars/people   crossing   bridge]

Diagram 2b4   Illustration  of  tension  force

Reaction forces

Tension force  is   transmitted   through  cable

Image 23   Picture  of  the  Millau  Viaduct,  France

Tension cables   under   tension   Load  path;  shows  load   force  transmitted  to  the   ground     Support   towers  under   Compression

1 Newton,  Clare.  “Constructing  Environments:  Basic  Structural  Forces  (1)”.

https://app.lms.unimelb.edu.au/bbcswebdav/courses/ENVS10003_2014_SM1/WEEK%2001/Basic%20Structural%20Forces%201.pdf. Accessed  March  14  2014.     2  Stokes,  Keith.  “Clements  Stone  Arch  Bridge”.  Last  modified  2010.  http://kansastravel.org/clementsbridge.htm.  Accessed  March  14,  2014.   3  The  Daily  Icon.  “Icon:  Millau  Viaduct”.  Last  modified  May  5th,  2008.  http://www.dailyicon.net/2008/05/icon-­‐millau-­‐viaduct/.  Accessed  March  14,  2014.   4  Cooper,  Leon.  “Force:  Background  Information  about  the  Activity”.  Last  modified  2007.  https://www.cdli.ca/courses/ep/predesign/t03/02knowledge-­‐skills/act-­‐03a.htm.  Virtual   Ink,  Ltd..  Accessed  March  14,  2014.

2

Tension and  compression  explain  why  some  building  structures  comprise  of  very  different  materials  [in  terms  of  properties—see  network  diagram  at  the  end  of   W1  log]  such  as  brick  and  steel:  to  accommodate  both  compression  and  tension  forces.  The  extent  to  which  brick  and  steel  are  used,  also  indicate  the  amount  of   force  that  the  building  is  able  to  withhold   The   Millau   Viaduct   consists   of   both   tension   and   compression   structures.   It   is   also   made   of   hybrid   materials   that   can   deal   with   both   compression   and   tension   forces   [such  as  steel],  thus  rendering  it  more  stable.  It  can  support  both  tension  and  compression  forces,  whereas  the  Stone  Arch  Bridge  is  more  anisotropic  in  nature,  and   is  better  at  dealing  with  compression  forces.  Thus,  bridges  like  the  Millau  Viaduct  will  be  found  in  areas  that  encounter  more  traffic  than  the  Stone  Arch  Bridge,   because  they  are  more  stable.

3

1.02 Introduction  to  materials       Properties   Physical     1. Strength   Strong/weak;  hard/soft     2. Stiffness   Stiff,  flexible,  stretching  abilities     3. Shape     Mono-­‐dimensional  [lines]   Planar  [sheet  metals]   Volumetric  [brick/concrete]     Behavioural   1. Isotropic:  equally  strong  in  dealing   with  compression  and  tension  [Metals:   steel5]   2. Anisotropic:  stronger  in  dealing  with   one  type  of  force  than  another.     [Wood:  better  at  compression  than   tension]   Why?  Wood  is  stiff.  Therefore   behavioural  properties  are  linked  to   physical  properties.  This  also  tells  me   that  metals  are  flexible,  since  they  are   isotropic  materials.     Feasibility  of  materials   Economy  and  Sustainability     -­‐ Embodiment  of  energy  during   material  manufacture     -­‐ Impacts  on  environment     -­‐ Longevity  of  material   -­‐ Efficiency  of  material  in   construction  system   -­‐ Stud  frame  system  [see  diagram  1]

Diagram 16  showing  a  stud-­‐frame  system     -­‐ Wall-­‐framing  system   -­‐ Consists  of  elements  labelled  below   -­‐ Popular  in  Australia;  Main  material  used:  timber   Why?  Timber  is  readily  available  in  Australia.

Image 17   Bluestone  as  foundation  for  houses                               Stones  laid  in  stretch-­‐ bond  format

Therefore the  stud-­‐frame  system  is  efficient  in  Australia.   Additionally,  since  timber  is  obtained  from  Aus.,  it  reduces   economic  and  environmental  cost  [no  need  for  INTL   transport]

Compact layout   indicative  of   compression   structural  system   Good  for  vertical   loads

No  apparent  sign  of  dealing  with  tension  forces.  Suggests   that  bluestone  does  not  deal  well  with  tension  forces;   anisotropic  material   Since  bluestone  can  be  used  as  foundation,  it  must  possess   these  qualities:   1. Hardness   2. Strength  +  stiffness   It  must  be  able  to  undertake  big  load/extensive   pressure  [dead  load  +  live  load  of  house]

5  Newton,  Clare.  “Introduction  to  Materials”.  Last  modified  March  5,  2014.  http://www.youtube.com/watch?v=s4CJ8o_lJbg&feature=youtu.be.  Accessed  march  14,  2014 6  Build  Right,  Inc.  “Timber  Wall  Framing:  Introduction”.

http://toolboxes.flexiblelearning.net.au/demosites/series10/10_01/content/bcgbc4010a/11_wall_systems/01_timber_wall_framing/page_001.htm. Accessed  March  15,  2014   7  Rustic  Stone,  Inc.  “Stone  Foundations-­‐  Bluestone  Ballaratt,  Melbourne.”  Last  modified  2014.    http://rusticstone.com.au/products/foundations.  Accessed  march  15,  2014

4

1.03   Load  path     Types  of  load   1. Dead  load   -­‐ Permanent  [part  of  the   building]   -­‐ Not  movable  by  any  force   except  for  dynamic     2. Live  load   -­‐ Temporary,   removable/movable     -­‐ Can  be  moved  by  force   3. Dynamic  load     -­‐ Sudden  impact  on  a   structure   -­‐ Frequent  change  in  point  of   contact  and   strength/magnitude8   -­‐ E.g.  earthquake  and  wind   loads   -­‐ Wind:  horizontal  direction   4. Point  load  [see  diagram  1]   -­‐ Load  that  applies  force  to  a   specific  area   For  example,  pushing  a  pin   into  a  pin-­‐board

Diagram 19   Point  load  as  opposed  to  distributed  load

Image 111   Load  distribution  in  a  stud  frame  structure

Diagram  210   Load  path  diagram

8Ching,  Francis.  Building  Construction  Illustrated.  (New  Jersey:  John  Wiley  &  Sons,  Inc.,  2008)  2.08.   9  Sim  Science.  “Glossary.”  http://simscience.org/cracks/glossary/point_ex.gif.    Accessed  March  15,  2014.   10  Choo,  Meghan.  “Load  Path  Diagram”.  March  16,  2014.

11 Sig  Insulation.  “METSEC  Deep  Runner-­‐  Insulation  Products”.  Last  modified  2013.  http://www.siginsulation.co.uk/show_prod.asp?ProdID=1634&CatID=21&SubCatID=86.  Accessed

March 16,  2014.

5

1.04 Tutorial  activity:  tower  to  accommodate  147  x  155  x  530  dinosaur  [dimensions  in  mm]     Meghan’s  group’s  tower  [tower  1]     Tapering  from  base  to  top   Possibly  because  the  base  was  only  one  MDF-­‐wall  thick   This  would  not  allow  a  fully  built  building  to  reach   great  heights,  because  the  dead  load  of  the  structure   itself  would  overwhelm  the  foundation  MDF  blocks,   causing  the  structure  to  collapse   Instability  could  be  caused  by  unequal  distribution  of   reaction  and  load  force  acting  on  the  MDF  blocks     Main  mode  of  stacking:  stretcher-­‐bond  [refer  to   diagram  2]

Linden’s group’s  tower  [tower  2]     Strong  foundation,  more  than  one  layer  of   wall  at  the  foundation   More  or  less  the  same  width  from  bottom   to  top   Thicker  foundation  allows  tower  to  go   higher  because  the  accumulative  force  of   the  dead  load  of  the  building  will  be   distributed  more  efficiently  to  the  ground   than  tower  1   Main  mode  of  stacking,  interlock-­‐bond  [see   diagram  3]

1.  Stack  bond                                                   2.  Stretcher/running  bond                                         3.  Interlock  bond

6

WEEK TWO:  STRUCTURAL  LOADS  AND  FORCES     MYSTERY  MATERIAL:  FIBRO-­‐CEMENT  SHEET   Does  not  absorb  H2O   Used  for  waterproofing      2.01  Structural  systems   Types  of  systems:   1. Solid  system  [see  image  1]   -­‐ Building  support     -­‐ Materials  required  to  be  STRONG   and  STIFF   -­‐ Normally,  volumetric  materials   used  [brick  or  concrete  or  stone]   2. Shell/  surface  system   3. Frame  system/skeletal  system   -­‐ Provides  support  and  structure  [like   skeleton  for  the  body]   -­‐ Materials  need  to  be  STRONG  and   STIFF   -­‐ Elements  such  as  beams  and  other   forms  of  framing  are  used  in  this   system   4. Membrane  system   -­‐ Spans  across  wide  area   -­‐ Therefore  efficient  coverage  of  area,   useful  for  hosting  large,  temporary   events  [such  as  weddings]   5. Hybrid  system   -­‐ Most  common  nowadays   -­‐ Why?  They  incorporate  ideal   functions  of  different  systems  into   one   -­‐ Popular  material  for  this:  EFTE  [a   type  of  plastic]

Image 112  the  Arch  of  Constantine,  Rome   Materials  such  as  brick  and  stone  are  used   -­‐ Heavy  appearance   -­‐ Solid  structures  a  building  look  old,  suggesting   longevity  of  material

SHELL/SURFACE  SYSTEM

Image 213,  The  Hajj  Terminal  at  King  Abdul-­‐Aziz   international  airport

Membrane system  for  the   roof   Column:   solid   system

12  Wikipedia.  “Triumphal  Arch”.  Last  modified  December  23,  2013.  http://en.wikipedia.org/wiki/Triumphal_arch.  Accessed  March  16,  2014

13 Peck,  Collette.  “Travel  Blog:  Travel  Guide  Ranks  Best,  Worst  Airport  Terminals”.  Last  modified  January  19,  2012.  http://www.andavotravel.com/blog/2012/01/travel-­‐guide-­‐ranks-­‐

best-­‐worst-­‐airport-­‐terminals/. Accessed  on  March  17,  2014

7

2.02 Structural  joints     1.

Roller joint  [see  diagram  1]   -­‐ Most  simple   -­‐ Loads  transferred  in  one  direction

Diagram 1  showing  a  roller  joint         Roller  joint     Image  114  shows  a  roller  joint  at  the  foot  of     the  bridge       Roller  joints  enable  the  bridge  to  expand  and              Diagram  2  showing  a  pin  joint   Roller     joint           contract,  in  response  to  temperature     fluctuations  during  the  day.     This  tells  me  that  the  location  of  this  bridge     might  experience  drastic  weather  changes     during  the  day,  because  roller  joints  allow  the     bridge  to  expand  and  contract  easily  and     quickly.     This  also  tells  me  that  the  expansion  and   Diagram  3  showing  a  fixed  joint

2.

1.

Pin joint   Common   Found  in  truss  systems  [see  image  1]     Load  can  move  in  two  directions   Fixed  joint     Bending  occurs  on  this  joint     [Moment  forces  can  be  found  in  this  joint]

Image  216  showing  a  truss  system

Pin joint   [Here,  the   members  can   rotate/swing

Fixed joint;   If  excessive  force  occurs,   bending  occurs  at  this   point

contraction of  bridges  generate  significant   force,  to  be  able  to  move  joints  upon  which   the  whole  vertical  load  [Newton,  C.,  2014]15  is   resting  stably  on.

14  Lowe,  Jet.  “Library  of  Congress”.    http://www.loc.gov/pictures/item/pa1666.photos.355729p/.  Accessed  March  17,  2014.   15  Newton,  Clare.  “Structural  Joints.”  http://www.youtube.com/watch?v=kxRdY0jSoJo&feature=youtu.be.  Accessed  March  18  2014 16  Macdonald,  Angus.  Structural  Design  for  Architecture.  Oxford:  Architectural  Press,  1998.

8

2.03 Construction  process

9

2.04: ESD  and  selecting  materials       Factors  to  consider  when  building  on  a  site     1. Orientation  of  the  sun   Determines  placement  of  windows,   shades,  etc.,  how  to  best  use   sunlight/heatàsun  energy     2. Wind  flow  [e.g.  site  with  a  lot  of   cross-­‐winds  might  have  different   building  service  systems  from  site   with  less  cross-­‐wind  ventilation]   3. Embodied  E  in  manufacture  of   materials  to  be  used   ESD  Strategies   1. Cradle-­‐to-­‐cradle  approach  for   materials  [see  diagram  1]   2. Night-­‐air  purging   Application  of  conduction,   convection  and  radiation  [air  flow   sciences],  which  are  natural   processes   Reduces  dependence  on  electrical   services  such  as  air-­‐conditioning   that  are  more  harmful  to  the   environment

Diagram 117  showing  Cradle-­‐to-­‐cradle  process  of  materials

Image 118  Ateliers  at  City  of  Arts,  sustainable   design

AIM  OF  ESD:  To  make  full  use  of  what  nature  has  to  offer  us,  in   terms  of  cooling  and  ventilation  services  etc.,  thereby  reducing   electrical  consumption

Foldable  screens  to  reduce   harshness  of  glare  and  heat   from  sun,  while  still  having   full  access  to  it

Extensive  landscaping   at  front  of  the  houses   allows  natural  cooling

17  Packaging  Design  for  Sustainability.  http://sustainablepackdesign.com/.  Accessed  March  18,  2014.

18 Fabiano.  Wonderful  Ateliers  at  City  of  Arts.  Last  modified  March  2,  2010.  http://abduzeedo.com/wonderful-­‐ateliers-­‐city-­‐arts.  Accessed  March  19,  2014.

10

Bibliography     Build  Right,  Inc.  “Timber  Wall  Framing:  Introduction”.   http://toolboxes.flexiblelearning.net.au/demosites/series10/10_01/content/bcgbc4010a/11_wall_systems/01_timber_wall_framing/page_001.htm.   Accessed  March  15,  201     Ching,  Francis.  Building  Construction  Illustrated.  (New  Jersey:  John  Wiley  &  Sons,  Inc.,  2008)  2.08.     Choo,  Meghan.  “Load  Path  Diagram”.  March  16,  2014.       Cooper,  Leon.  “Force:  Background  Information  about  the  Activity”.  Last  modified  2007.   https://www.cdli.ca/courses/ep/predesign/t03/02knowledge-­‐skills/act-­‐03a.htm.  Virtual  Ink,  Ltd..  Accessed  March  14,  2014.   4     Fabiano.  Wonderful  Ateliers  at  City  of  Arts.  Last  modified  March  2,  2010.  http://abduzeedo.com/wonderful-­‐ateliers-­‐city-­‐arts.  Accessed  March  19,   2014.     Lowe,  Jet.  “Library  of  Congress”.    http://www.loc.gov/pictures/item/pa1666.photos.355729p/.  Accessed  March  17,  2014.     Macdonald,  Angus.  Structural  Design  for  Architecture.  Oxford:  Architectural  Press,  1998.     Newton,  Clare.  “Introduction  to  Materials”.  Last  modified  March  5,  2014.  http://www.youtube.com/watch?v=s4CJ8o_lJbg&feature=youtu.be.   Accessed  march  14,  2014     Newton,  Clare.  “Constructing  Environments:  Basic  Structural  Forces  (1)”.   https://app.lms.unimelb.edu.au/bbcswebdav/courses/ENVS10003_2014_SM1/WEEK%2001/Basic%20Structural%20Forces%201.pdf.  Accessed   March  14  2014.       Newton,  Clare.  “Structural  Joints.”  http://www.youtube.com/watch?v=kxRdY0jSoJo&feature=youtu.be.  Accessed  March  18  2014     Packaging  Design  for  Sustainability.  http://sustainablepackdesign.com/.  Accessed  March  18,  2014.     Peck,  Collette.  “Travel  Blog:  Travel  Guide  Ranks  Best,  Worst  Airport  Terminals”.  Last  modified  January  19,  2012.   http://www.andavotravel.com/blog/2012/01/travel-­‐guide-­‐ranks-­‐best-­‐worst-­‐airport-­‐terminals/.  Accessed  on  March  17,  2014     Rustic  Stone,  Inc.  “Stone  Foundations-­‐  Bluestone  Ballaratt,  Melbourne.”  Last  modified  2014.    http://rusticstone.com.au/products/foundations.   Accessed  march  15,  2014

11

Sim Science.  “Glossary.”  http://simscience.org/cracks/glossary/point_ex.gif.    Accessed  March  15,  2014.     Stokes,  Keith.  “Clements  Stone  Arch  Bridge”.  Last  modified  2010.  http://kansastravel.org/clementsbridge.htm.  Accessed  March  14,  2014.     Sig  Insulation.  “METSEC  Deep  Runner-­‐  Insulation  Products”.  Last  modified  2013.   http://www.siginsulation.co.uk/show_prod.asp?ProdID=1634&CatID=21&SubCatID=86.  Accessed  March  16,  2014.         The  Daily  Icon.  “Icon:  Millau  Viaduct”.  Last  modified  May  5th,  2008.  http://www.dailyicon.net/2008/05/icon-­‐millau-­‐viaduct/.  Accessed  March  14,   2014.   Wikipedia.  “Triumphal  Arch”.  Last  modified  December  23,  2013.  http://en.wikipedia.org/wiki/Triumphal_arch.  Accessed  March  16,  2014

12

Meghan Choo Tute 15

Constructing Envs logbook interim