Binary Conversion Binary Conversion In everyday life, we normally use a numbering system that is constructed on multiples of ten. We call this numbering system the Base-10 or decimal numbering system. Base-10 numbering systems dictate that the numbering scheme begins to repeat after the tenth digit (in our case, the number 9). When we count, we usually count "0, 1, 2, 3, 4, 5 , 6, 7, 8, 9, 10, 11, 12, â&#x20AC;Ś" There's more to the numbering scheme than just counting, though. In grade school, we all were taught that each digit to the left and right of the decimal point is given a name which identifies that digit's placeholder. For right now, let's just consider digits to the left of the decimal, or positive numbers. Remember that the first digit to the left of the decimal point is called the "ones" digit. It is followed by the "tens" digit, followed by the "hundreds", followed by the "thousands", and on and on. What they probably didn't tell you in grade school is that each placeholder (ones, tens, hundreds, thousands, etc.) actually represents a multiple of ten (remember â&#x20AC;&#x201C; "Base-10"?). Each placeholder can be represented by an exponent of ten. For instance, the expression 100 represents the "ones" position, the expression 101 represents the "tens" position, the expression 102 represents the "hundreds" position and so on. We can begin to see this more clearly if we break down a number into exponents of ten. Let's take a look at the following number: 7408. Starting at the decimal point, we'll work our way left. Know More About :- Identity Property of Real Numbers

Math.Edurite.com

Page : 1/3

Math.Edurite.com

Page : 2/3

ThankÂ You

Math.Edurite.Com

Binary Conversion