Linear Pairs of Angles Linear Pairs of Angles When two intersecting lines meet each other at 90 degree then they are called perpendicular lines. We can see the two perpendicular lines formed by the two line segments in the English alphabets T, L,H, E , and others. If two perpendicular lines are joined together they form the angle of 180 degrees and thus we can say that it forms a linear pair. A linear pair is the sum of the two angles forming a straight line. The angle of the straight lines is 180 degree. Any two angle when add up together to form 90 degree angle are called the complement to each other. If one angle is 60 degrees, then the another angle will be 90 â€“ 60 = 30 degrees. The two non common rays of the two adjacent angles of the two angles are called perpendicular to each other. Similarly if we add the two right angles, the sum is always a straight line, which forms the angle of 180 degrees. If we come to observe the perpendicular lines in the real life, we can see that the two adjacent edges of the table top, adjacent edges of the window are all perpendicular. We can say that the two lines are perpendicular when it has the angle measure of 90 degrees at the point of intersection of the two rays or the line segments. Also if we look at the two edges of the adjacent walls, we observe that the angle measure between the two is 90 degrees, so they are also perpendicular to each other. Another example of perpendicular lines is the angle measure between the thumb and the fore finger, if they are kept straight and erect in different directions, it forms an angle of 90 degrees. Know More About :- Algebra Quadratic Equations

Math.Edurite.com

Page : 1/3

When we study geometry, we can say that the angle measure of some of the quadrilaterals is 90 degrees. We look at the square. A square is a four sided figure, which has all the four sides equal and its all four angles formed by joining the line segments is 90 degrees. So we can add this as the property of the square that the adjacent sides of the quadrilateral are perpendicular to each other if the given quadrilateral is a square. More over the diagonals of the square bisect each other at 90 degrees; it means that the diagonals of the square are the perpendicular bisectors. The same property is also true for the rectangles, which means that the adjacent sides of the rectangles are perpendicular to each other and the diagonals of the rectangle are the perpendicular bisectors. If we look at the rhombus, which is also a quadrilateral with all four sides equal, we can say that there exist the difference between the figure of the square and the rhombus that the square if tilled to certain angle, such that the angles formed by the adjacent sides of the rhombus are not 90 degrees then it is a square. More over the diagonals of the square are perpendicular bisectors, which mean the diagonals form the angle of 90 degrees with each other and they divide each other equally at the point of intersection. Exterior angles – A linear pair formed with exterior angles of a hexagon. 600 is the exterior angles of a hexagon. Area – The area of a Hexagon is approximately 2.598s2, where‘s’ denotes the length of a side. The formula for finding the area of hexagon is given by: Area = s2N 4tan (180) N Where‘s’ is the length of any one side, ‘N’ is the number of sides. Tan represents the tangent function in the hexagon. Diagonal – Nine diagonals are possible in a hexagon. The formula for finding the diagonals is given by: Diagonal = ½ n (n – 3), In a hexagon four triangles are possible and the formula is given by = (n – 2). Interior angle sum: The sum of interior angles of a hexagon is 7200 and the formula is given by: Interior angle of a hexagon = 180(n – 2) Read More About :- Continuity and Differentiability

Math.Edurite.com

Page : 2/3

ThankÂ You

Math.Edurite.Com

Advertisement