Page 1

5th September 2018

Victor Lin, Marielena Papandreou

ROBOTIC WOODWORK

automated fabrication of a bridge RC101

Tutors: Giulio Brugnaro, Matthijs La Roi. Advisors: Tim Lucas, Vincent Huyghe. Programme Directors: Peter Scully, Prof. Bob Sheil.

Design for Manufacture M.Arch.

The Bartlett School of Architecture, UCL


Is it possible for an autonomous robotic cell to accomplish a set of established carpentry tasks such as identifying stock material, processing it in a known manner and placing it into a specific position in a seamless digital workflow?

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


KADK- Parametric wood The Royal Danish Academy of Fine Arts Schools of Architecture, Design and Conservation

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


Gramazio Kohler Research, ETH Zurich and ERNE AG Holzbau Spatial Timber Assemblies

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

IBOIS , EPFL Integrated Mechanical Attachment for Structural Timber Panels

DEVELOPMENTS

PROPOSAL

OUTLOOK


the investigation and review of timber connection techniques

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


the design and performance of the overall structure

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


the establishment of a deterministic planning system if (iLineA[i].ClosestPoint(iPt2[f], out t, doc.ModelAbsoluteTolerance)) { GH_Path pth = new GH_Path (i); BeamA_DT.AddRange(iBrep2.Branch(f), pth); }

DataTree <System.Object> BeamA_DT = new DataTree <System.Object> (); DataTree <System.Object> BeamB_DT = new DataTree <System.Object> (); DataTree <System.Object> BeamC_DT = new DataTree <System.Object> (); for (int j = 0 ; j < iPt1.Count ; j++) { for (int i = 0 ; i < iLineA.Count ; i++) { double t; if (iLineA[i].ClosestPoint(iPt1[j], out t, doc.ModelAbsoluteTolerance)) { GH_Path pth = new GH_Path (i); BeamA_DT.AddRange(iBrep1.Branch(j), pth); } } for (int k = 0 ; k < iLineB.Count ; k++) { double t; if (iLineB[k].ClosestPoint(iPt1[j], out t, doc.ModelAbsoluteTolerance)) { GH_Path pth = new GH_Path (k); BeamB_DT.AddRange(iBrep1.Branch(j), pth); } } for (int l = 0 ; l < iLineC.Count ; l++) { double t; if (iLineC[l].ClosestPoint(iPt1[j], out t, doc.ModelAbsoluteTolerance)) { GH_Path pth = new GH_Path (l); BeamC_DT.AddRange(iBrep1.Branch(j), pth); } } } for (int f = 0 ; f < iPt2.Count ; f++) { for (int i = 0 ; i < iLineA.Count ; i++) { double t;

AIM

CONTEXT

}

} for (int k = 0 ; k < iLineB.Count ; k++) { double t; if (iLineB[k].ClosestPoint(iPt2[f], out t, doc.ModelAbsoluteTolerance)) { GH_Path pth = new GH_Path (k); BeamB_DT.AddRange(iBrep2.Branch(f), pth); } } for (int l = 0 ; l < iLineC.Count ; l++) { double t; if (iLineC[l].ClosestPoint(iPt2[f], out t, doc.ModelAbsoluteTolerance)) { GH_Path pth = new GH_Path (l); BeamC_DT.AddRange(iBrep2.Branch(f), pth); } }

for( int m = 0 ; m < iLineA.Count ; m++) { GH_Path pth = new GH_Path (m); if (!BeamA_DT.PathExists(pth)) BeamA_DT.EnsurePath(pth); if (!BeamB_DT.PathExists(pth)) BeamB_DT.EnsurePath(pth); if (!BeamC_DT.PathExists(pth)) BeamC_DT.EnsurePath(pth); } oBeamA_DT = BeamA_DT; oBeamB_DT = BeamB_DT; oBeamC_DT = BeamC_DT;

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


the analysis of the tooling and techniques that were adopted

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


the examination and evaluation of the fabrication process.

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


timber connections Bottom up design

t r i a n g l e s m o st sta b l e g e o m et r i c f o r m / 2 ty p e s o f st r u c t u ra l c o n n e c t i o n s

rack joints

self-locking lap joints

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


timber connections self-locking lap joints

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


timber connections Rack joints

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


timber connections dovetail

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


overall Structure the bridge

GE OM ET RIC DE

STATE-OF-THE-ART

METHODS

ON

CONTEXT

ITI

AIM

FIN

length width curvature height of top curves height of bottom curve

DEVELOPMENTS

PROPOSAL

OUTLOOK


overall Structure design variations

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


overall Structure structural analysis

utilization

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

3mm max displacement

OUTLOOK


planning system custom computational tools data structure for

data structure for

data structure for

self-locking joints

dovetail joints

toolpath per beam

+

data tree (bridge output-triples)

List + data tree (with corresponding paths)

data tree (from pairs back to triples)

(corresponding paths with initial data tree)

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


planning system data structure editing find the common edge & group in pairs

DataTree <Line> perpLineGroups = new DataTree <Line> (); List <Line> tempPerpLineList = new List <Line> (); DataTree <Line> lineGroups = new DataTree <Line> (); List <Line> tempLineList = new List <Line> (); for (int j = 0 ; j < iMidPt.Count ; j++) { for (int i = 0 ; i < iAuxLine.Count ; i++) { Point3d startPt = new Point3d(iAuxLine[i].PointAt(0)); if (startPt == iMidPt[j]) { tempPerpLineList.Add(iAuxLine[i]); tempLineList.Add(iInteriorEdge[i]); if (tempPerpLineList.Count > 1) { GH_Path pth = new GH_Path (j); perpLineGroups.Add(tempPerpLineList[0], pth); perpLineGroups.Add(tempPerpLineList[1], pth); lineGroups.Add(tempLineList[0], pth); lineGroups.Add(tempLineList[1], pth); tempPerpLineList.Clear(); tempLineList.Clear(); } } } } oPerpLines = perpLineGroups; oPairs = lineGroups;

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


planning system data management find relationship between adjacent triangles, generate toolpaths & regroup in triples

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


planning system data sorting for fabrication BEAM A

BEAM B

BEAM C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


tooling and techniques Robotic set up

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


tooling and techniques calibration

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


tooling and techniques robot calibration

Video Link: https://youtu.be/yRbPlBCymck

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


tooling and techniques tool calibration

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


tooling and techniques material tracking

L W

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


tooling and techniques tool to part

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


tooling and techniques tool to part

Video Link: https://youtu.be/r1jjMRkt_qM

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


tooling and techniques part to tool

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


tooling and techniques spindle Ø8

R2

10 3

69.28 Ø8

R2

R29

125

10 3

22.5

69.28

R29

125

111.72

22.5 111.72

12

59.5

25

Tracking Marker Ø 12.7

12

59.5

25

Tracking Marker Ø 12.7

Ø4

Ø 19

Ø4

Ø 16

150 100

Ø 16

.4

Ø 16

100

45˚

70.7

70.7

43

Ø 6.8 M8 Tapped

.5

R8

8

49

Ø4 Ø 19

57

.4

.21 89. 69

Ø 16

Ø4

19

45˚

.1 7

200

70.7

43

Ø 16

.5 8

39

Ø 6.8 M8 Tapped

Ø4

200

57

.4

19

Ø4 150

Ø 16

9

R8

70.7

Ø 19

19

69

.2

8

11

1.

72

7

.1 Ø 19

R2 R2

59

.5

11

1.

72

7

.1

39

59

.5

7

.1

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


tooling and techniques rail & grippers

Tracking Marker

30

M8

Ø8

15 126.294

30

15 93.5

30

Ø10

Ø8 15

20

Ø 6.8 M8 Tapped

100

Ø8 Ø12 10

20

10

41.15

57.15

126.294

12

60

20 66.42

M8

10

500

Ø10

M8 34.64

R3

14.34

C

A

15

B C

B

6

15

.5 R6

E

50.58

E

5

9

R15

5.62

12

R15

40

Ø4

Tracking Marker

7.5

E

10

4 Ø8

R3

27.86

20 E

16.93 D

A

D

60

95

160

15

20

R3

7.5

M8

10

60

Ø4 Ø8

60

M8

Tracking Marker

60

106.421

12.57

106.42

Ø 4.2 Ø10.2 x 90˚

6

8

10

40

Ø8 Ø12 10

1500

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

Video Link: https://youtu.be/96OxJVf4mpc DEVELOPMENTS PROPOSAL OUTLOOK

10

M8 Tracking Marker

12


fabrication process milling strategies

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


fabrication process milling strategies

BEAM_B

BEAM_C

BACK

FRONT

BEAM_A

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


fabrication process milling REsults

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


fabrication process assembly process

Video Link: https://youtu.be/b3FWLYaEAEk

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK


prototype 0.86 m 0.40 m

2.60 m

1.20 m

5.00 m

Total Material: 2x4 - 90 m

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL OUTLOOK


adaptive feedback

AIM

CONTEXT

STATE-OF-THE-ART

METHODS

DEVELOPMENTS

PROPOSAL

OUTLOOK

Profile for Marielena Papandreou

Robotic Woodwork: Automated Fabrication of a Bridge  

Work in Progress of my Final Project at MArch Design for Manufacture, UCL

Robotic Woodwork: Automated Fabrication of a Bridge  

Work in Progress of my Final Project at MArch Design for Manufacture, UCL

Advertisement