5th September 2018
Victor Lin, Marielena Papandreou
ROBOTIC WOODWORK
automated fabrication of a bridge RC101
Tutors: Giulio Brugnaro, Matthijs La Roi. Advisors: Tim Lucas, Vincent Huyghe. Programme Directors: Peter Scully, Prof. Bob Sheil.
Design for Manufacture M.Arch.
The Bartlett School of Architecture, UCL
Is it possible for an autonomous robotic cell to accomplish a set of established carpentry tasks such as identifying stock material, processing it in a known manner and placing it into a specific position in a seamless digital workflow?
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
KADK- Parametric wood The Royal Danish Academy of Fine Arts Schools of Architecture, Design and Conservation
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
Gramazio Kohler Research, ETH Zurich and ERNE AG Holzbau Spatial Timber Assemblies
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
IBOIS , EPFL Integrated Mechanical Attachment for Structural Timber Panels
DEVELOPMENTS
PROPOSAL
OUTLOOK
the investigation and review of timber connection techniques
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
the design and performance of the overall structure
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
the establishment of a deterministic planning system if (iLineA[i].ClosestPoint(iPt2[f], out t, doc.ModelAbsoluteTolerance)) { GH_Path pth = new GH_Path (i); BeamA_DT.AddRange(iBrep2.Branch(f), pth); }
DataTree <System.Object> BeamA_DT = new DataTree <System.Object> (); DataTree <System.Object> BeamB_DT = new DataTree <System.Object> (); DataTree <System.Object> BeamC_DT = new DataTree <System.Object> (); for (int j = 0 ; j < iPt1.Count ; j++) { for (int i = 0 ; i < iLineA.Count ; i++) { double t; if (iLineA[i].ClosestPoint(iPt1[j], out t, doc.ModelAbsoluteTolerance)) { GH_Path pth = new GH_Path (i); BeamA_DT.AddRange(iBrep1.Branch(j), pth); } } for (int k = 0 ; k < iLineB.Count ; k++) { double t; if (iLineB[k].ClosestPoint(iPt1[j], out t, doc.ModelAbsoluteTolerance)) { GH_Path pth = new GH_Path (k); BeamB_DT.AddRange(iBrep1.Branch(j), pth); } } for (int l = 0 ; l < iLineC.Count ; l++) { double t; if (iLineC[l].ClosestPoint(iPt1[j], out t, doc.ModelAbsoluteTolerance)) { GH_Path pth = new GH_Path (l); BeamC_DT.AddRange(iBrep1.Branch(j), pth); } } } for (int f = 0 ; f < iPt2.Count ; f++) { for (int i = 0 ; i < iLineA.Count ; i++) { double t;
AIM
CONTEXT
}
} for (int k = 0 ; k < iLineB.Count ; k++) { double t; if (iLineB[k].ClosestPoint(iPt2[f], out t, doc.ModelAbsoluteTolerance)) { GH_Path pth = new GH_Path (k); BeamB_DT.AddRange(iBrep2.Branch(f), pth); } } for (int l = 0 ; l < iLineC.Count ; l++) { double t; if (iLineC[l].ClosestPoint(iPt2[f], out t, doc.ModelAbsoluteTolerance)) { GH_Path pth = new GH_Path (l); BeamC_DT.AddRange(iBrep2.Branch(f), pth); } }
for( int m = 0 ; m < iLineA.Count ; m++) { GH_Path pth = new GH_Path (m); if (!BeamA_DT.PathExists(pth)) BeamA_DT.EnsurePath(pth); if (!BeamB_DT.PathExists(pth)) BeamB_DT.EnsurePath(pth); if (!BeamC_DT.PathExists(pth)) BeamC_DT.EnsurePath(pth); } oBeamA_DT = BeamA_DT; oBeamB_DT = BeamB_DT; oBeamC_DT = BeamC_DT;
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
the analysis of the tooling and techniques that were adopted
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
the examination and evaluation of the fabrication process.
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
timber connections Bottom up design
t r i a n g l e s m o st sta b l e g e o m et r i c f o r m / 2 ty p e s o f st r u c t u ra l c o n n e c t i o n s
rack joints
self-locking lap joints
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
timber connections self-locking lap joints
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
timber connections Rack joints
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
timber connections dovetail
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
overall Structure the bridge
GE OM ET RIC DE
STATE-OF-THE-ART
METHODS
ON
CONTEXT
ITI
AIM
FIN
length width curvature height of top curves height of bottom curve
DEVELOPMENTS
PROPOSAL
OUTLOOK
overall Structure design variations
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
overall Structure structural analysis
utilization
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
3mm max displacement
OUTLOOK
planning system custom computational tools data structure for
data structure for
data structure for
self-locking joints
dovetail joints
toolpath per beam
+
data tree (bridge output-triples)
List + data tree (with corresponding paths)
data tree (from pairs back to triples)
(corresponding paths with initial data tree)
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
planning system data structure editing find the common edge & group in pairs
DataTree <Line> perpLineGroups = new DataTree <Line> (); List <Line> tempPerpLineList = new List <Line> (); DataTree <Line> lineGroups = new DataTree <Line> (); List <Line> tempLineList = new List <Line> (); for (int j = 0 ; j < iMidPt.Count ; j++) { for (int i = 0 ; i < iAuxLine.Count ; i++) { Point3d startPt = new Point3d(iAuxLine[i].PointAt(0)); if (startPt == iMidPt[j]) { tempPerpLineList.Add(iAuxLine[i]); tempLineList.Add(iInteriorEdge[i]); if (tempPerpLineList.Count > 1) { GH_Path pth = new GH_Path (j); perpLineGroups.Add(tempPerpLineList[0], pth); perpLineGroups.Add(tempPerpLineList[1], pth); lineGroups.Add(tempLineList[0], pth); lineGroups.Add(tempLineList[1], pth); tempPerpLineList.Clear(); tempLineList.Clear(); } } } } oPerpLines = perpLineGroups; oPairs = lineGroups;
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
planning system data management find relationship between adjacent triangles, generate toolpaths & regroup in triples
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
planning system data sorting for fabrication BEAM A
BEAM B
BEAM C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
tooling and techniques Robotic set up
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
tooling and techniques calibration
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
tooling and techniques robot calibration
Video Link: https://youtu.be/yRbPlBCymck
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
tooling and techniques tool calibration
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
tooling and techniques material tracking
L W
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
tooling and techniques tool to part
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
tooling and techniques tool to part
Video Link: https://youtu.be/r1jjMRkt_qM
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
tooling and techniques part to tool
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
tooling and techniques spindle Ø8
R2
10 3
69.28 Ø8
R2
R29
125
10 3
22.5
69.28
R29
125
111.72
22.5 111.72
12
59.5
25
Tracking Marker Ø 12.7
12
59.5
25
Tracking Marker Ø 12.7
Ø4
Ø 19
Ø4
Ø 16
150 100
Ø 16
.4
Ø 16
100
45˚
70.7
70.7
43
Ø 6.8 M8 Tapped
.5
R8
8
49
Ø4 Ø 19
57
.4
.21 89. 69
Ø 16
Ø4
19
45˚
.1 7
200
70.7
43
Ø 16
.5 8
39
Ø 6.8 M8 Tapped
Ø4
200
57
.4
19
Ø4 150
Ø 16
9
R8
70.7
Ø 19
19
69
.2
8
11
1.
72
7
.1 Ø 19
R2 R2
59
.5
11
1.
72
7
.1
39
59
.5
7
.1
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
tooling and techniques rail & grippers
Tracking Marker
30
M8
Ø8
15 126.294
30
15 93.5
30
Ø10
Ø8 15
20
Ø 6.8 M8 Tapped
100
Ø8 Ø12 10
20
10
41.15
57.15
126.294
12
60
20 66.42
M8
10
500
Ø10
M8 34.64
R3
14.34
C
A
15
B C
B
6
15
.5 R6
E
50.58
E
5
9
R15
5.62
12
R15
40
Ø4
Tracking Marker
7.5
E
10
4 Ø8
R3
27.86
20 E
16.93 D
A
D
60
95
160
15
20
R3
7.5
M8
10
60
Ø4 Ø8
60
M8
Tracking Marker
60
106.421
12.57
106.42
Ø 4.2 Ø10.2 x 90˚
6
8
10
40
Ø8 Ø12 10
1500
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
Video Link: https://youtu.be/96OxJVf4mpc DEVELOPMENTS PROPOSAL OUTLOOK
10
M8 Tracking Marker
12
fabrication process milling strategies
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
fabrication process milling strategies
BEAM_B
BEAM_C
BACK
FRONT
BEAM_A
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
fabrication process milling REsults
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
fabrication process assembly process
Video Link: https://youtu.be/b3FWLYaEAEk
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
prototype 0.86 m 0.40 m
2.60 m
1.20 m
5.00 m
Total Material: 2x4 - 90 m
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL OUTLOOK
adaptive feedback
AIM
CONTEXT
STATE-OF-THE-ART
METHODS
DEVELOPMENTS
PROPOSAL
OUTLOOK
Work in Progress of my Final Project at MArch Design for Manufacture, UCL
Published on Oct 3, 2018
Work in Progress of my Final Project at MArch Design for Manufacture, UCL