International Special Issue 2018 2019

Page 16

Enhanced and Localized Life-Cycle Climate Performance (EL-LCCP) Metric for Air Conditioners

STEPHEN O. ANDERSEN1, JAMES WOLF2, YUNHO HWANG3, JIAZHEN LING3, MARCO GONZALEZ4 1Institute

for Governance & Sustainable Development (IGSD) Policy Associate 3Center for Environmental Energy Engineering (CEEE), University of Maryland (UMD) 4Montreal Protocol Technology and Economics Assessment Panel (TEAP)(*) 2Global

ABSTRACT

NEW METRIC VISION

The Kigali Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer phases down the production and consumption of hydrofluorocarbon greenhouse gases that were once necessary to rapidly phase out ozone depleting substances but are no longer needed because alternatives have been and will continue to be commercialized. The Kigali Amendment complements the emission controls of the United Nations Framework Convention on Climate Change Kyoto Protocol and contributes to satisfying the “nationally determined contributions� to reduce greenhouse gas emissions pledged under the 2016 Paris Climate Agreement. In 2016, International Institute of Refrigeration proposed using Life-Cycle Climate Performance metric for air-conditioning systems while summing up carbon-equivalent direct refrigerant emissions, indirect power plant greenhouse gas emissions, and carbon-equivalent embodied emissions. This paper describes an Enhanced and Localized LifeCycle Climate Performance metric developed by a team of international experts to reflect real life air conditioning system operations.

With no barriers of data, computation, or programming, Enhanced and Localized Life-Cycle Climate Performance (EL-LCCP), as shown in Figure 1, will ultimately account for: 1) local climate conditions, including high temperature and humidity; 2) local seasonal and time-of-day carbon intensity of electricity sources, including backup electricity generation; 3) electricity transmission and distribution losses, including through the application of any voltage stabilizers; 4) energy embodied in water used for power plant cooling; 5) black and brown carbon power plant emissions; 6) more realistic assumptions about the actual temperature of AC condensers, which are predominately located in urban heat islands, often stacked and clustered, arranged

(*) The authors are grateful for the substantial contributions of other members of the Carbon Metrics Team, including: Suely Carvalho, Didier Coulomb, Hilde Dhont, Michel Farah, Gabrielle Dreyfus, Alex Hillbrand, Jinxing Hu, Nancy Sherman, Mike Thompson, Viraj Vithoontien, Stephen Yurek, and Zhong Zhifeng.

16

with poor ventilation, and placed in direct sunlight; and 7) realistic assumptions about matching air conditioner (AC) capacity to cooling load and servicing to maintain efficiency over the lifetime of the installation. EL-LCCP RESOLVES THREE CHALLENGES OF ESTIMATING REAL WORLD AC CARBON FOOTPRINT 1) ACs Operate in Far Hotter Conditions Than Indicated by Weather Data and Test Procedures Local weather data is collected worldwide using standardized monitoring stations sited above lawn and soil in locations that avoid the effects of buildings and pavement (WMO, 2008). The

Figure 1. Enhanced and localized LCCP of AC.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.