Design of liquid retaining concrete structures, j p forth, 2014 186p

Page 137

Calculation Sheet

Design of Pump House

Sheet No PH/11

WALL A Geometry and bending moment coefficients lx = 7.300 m lz = 4.325 m, k = lx / lz = 7.300 / 4.325 = 1.69 +MH

–MV top +MV –MV btm –MH

α = 0.032 α = 0.019 α = 0.048 α = 0.011 α = 0.003

Ultimate Limit State (STR) Case 1–Max. External Soil & Water Pressure Completed structure (Stage 6) For ease of calculation, combine lateral soil and groundwater pressures into a single equivalent load. (Note. Apply this loading to all external walls.)

Bending moments

Soil + Groundwater +Surcharge (σmax = 88.7 kPa)

–MV top = 0.032 × 88.7 × 4.725 × 4.325 = 58.0 kNm/m +MV = 0.019 × 88.7 × 4.725 × 4.325 = 34.4 kNm/m –MV btm = 0.048 × 88.7 × 4.725 × 4.325 = 87.0 kNm/m –MH = 0.011 × 88.7 × 7.300² = 52.0 kNm/m +MH = 0.003 × 88.7 × 7.300² = 14.2 kNm/m

Case 2–Internal water pressure (a) In operation Completed structure with backfill (Stage 6) In operation, water pressure in the wet well will act against exterior lateral earth pressure to reduce the net loading on Wall A. By inspection this will not give a critical load combination. (b) Under test Completed structure without backfill (Stage 5) Bending moments Water (σmax = 43.3 kPa) –MV top = 0.032 × 43.3 × 4.325² = 25.9 kNm/m +MV = 0.019 × 43.3 × 4.325² = 15.4 kNm/m –MV btm = 0.048 × 43.3 × 4.325² = 38.9 kNm/m –MH = 0.011 × 43.3 × 7.300² = 25.4 kNm/m +MH = 0.003 × 43.3 × 7.300² = 6.9 kNm/m

By comparison, bending moments from Case 1 are more onerous than from Case 2. 128

Chapter_6.indd 128

5/9/2014 12:16:14 PM


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.