Page 1

DEPARTMENT OF MATHEMATICS “T3, Examination, May-2018� Semester:Second Subject: Calculus-I Branch: Mathematics Course Type: Core Time: 3 Hours Max.Marks: 80

Date of Exam: 24/May/2018 Subject Code: MAH116T Session: I Course Nature: Hard Program: B.Sc Signature: HOD/Associate HOD:

Note: All questions are compulsory from Part A (2*10=20 Marks). Attempt any two questions from part B (15 marks each). Attempt any two questions from part C (15 marks each) Part-A Q1 (a) Show that đ?‘Ś = đ?‘’ đ?‘Ľ is everywhere concave upwards. (b) Examine the nature of the origin for the curveđ?‘Ś 2 = đ?‘Žđ?‘Ľ 2 + đ?‘Žđ?‘Ľ 3 according as đ?‘Ž is positive, zero or negative. (c) Find the equations of tangent to the curve (đ?‘Ľ − 2)2 = đ?‘Ś(đ?‘Ś − 1)2 at (2,1) and discuss the nature of the point. (d) Define Double points. Give its types. (e) Give conditions for curve đ?‘&#x; = đ?‘“(đ?œƒ) to be symmetrical about initial line and the line through the pole perpendicular to the initial line. đ?‘Ľđ?‘Ś đ?‘–đ?‘“ đ?‘“(đ?‘Ľ, đ?‘Ś) ≠(0,0) 2 +đ?‘Ś 2 2 đ?‘Ľ (f) Let đ?‘“: đ?‘… → đ?‘… be defined as đ?‘“(đ?‘Ľ, đ?‘Ś) = { 0 đ?‘–đ?‘“ đ?‘“(đ?‘Ľ, đ?‘Ś) = (0,0) Show that đ?‘“ is not continuous at (0,0) (g) State and Prove Euler’s theorem on Homogeneous functions. đ?œ•(đ?‘Ľ,đ?‘Ś) (h) In polar coordinates đ?‘Ľ = đ?‘&#x; đ?‘?đ?‘œđ?‘ đ?œƒ , đ?‘Ś = đ?‘&#x; đ?‘ đ?‘–đ?‘›đ?œƒ. Evaluate đ?œ•(đ?‘&#x;,đ?œƒ). (i) Define maximum value and minimum value of a function of two variables. đ?‘‘đ?‘˘ (j) If đ?‘˘ = đ?‘Ľđ?‘™đ?‘œđ?‘”đ?‘Ľđ?‘Ś where đ?‘Ľ 3 + đ?‘Ś 3 + 3đ?‘Ľđ?‘Ś = 1. Find đ?‘‘đ?‘Ľ `

Part-B đ?‘Ľ 3 −đ?‘Ľ

Q2(a) Find the points of inflexion on the curve đ?‘Ś = 3đ?‘Ľ 2 +1. (b) Find the position and nature of the double points on the curve đ?‘Ľ 4 − 4đ?‘Žđ?‘Ľ 3 + 2đ?‘Žđ?‘Ś 3 + 4đ?‘Ž2 đ?‘Ľ 2 − 3đ?‘Ž2 đ?‘Ś 2 − đ?‘Ž4 = 0

(7) (8)

Q3(a) Sketch the graph of the curve đ?‘Ś = đ?‘Ľ(đ?‘Ľ 2 − 3) (b) Trace the curve đ?‘&#x; = đ?‘Ž cos 2đ?œƒ , đ?‘Ž > 0

(7) (8)

Q4(a) Find the intervals in which the curveđ?&#x2018;Ś = (cos đ?&#x2018;Ľ + sin đ?&#x2018;Ľ)đ?&#x2018;&#x2019; đ?&#x2018;Ľ is concave upwards or downwards in 0 < đ?&#x2018;Ľ < 2đ?&#x153;&#x2039;

(7)

(b) Trace the curve đ?&#x2018;Ľ = đ?&#x2018;&#x17D;đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; 3 đ?&#x153;&#x192;, đ?&#x2018;Ś = đ?&#x2018;?đ?&#x2018; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;3 đ?&#x153;&#x192;

(8) *******


Part- C đ?&#x153;&#x2022;2đ?&#x2018;˘

đ?&#x153;&#x2022;2 đ?&#x2018;˘

1

Q5 (a) If đ?&#x2018;˘ = đ?&#x2018;&#x201C;(đ?&#x2018;&#x;) and đ?&#x2018;Ľ = đ?&#x2018;&#x;đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; đ?&#x153;&#x192;; đ?&#x2018;Ś = đ?&#x2018;&#x;đ?&#x2018; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x153;&#x192;. Prove that đ?&#x153;&#x2022;đ?&#x2018;Ľ 2 + đ?&#x153;&#x2022;đ?&#x2018;Ś 2 = đ?&#x2018;&#x201C; â&#x20AC;˛â&#x20AC;˛ (đ?&#x2018;&#x;) + đ?&#x2018;&#x; đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;&#x;) (b) x

đ?&#x2018;Ľ+đ?&#x2018;Ś If đ?&#x2018;Ľ = sinâ&#x2C6;&#x2019;1 đ?&#x2018;Ľ+ đ?&#x2018;Ś â&#x2C6;&#x161; â&#x2C6;&#x161; 2 đ?&#x153;&#x2022; 2đ?&#x2018;˘ 2 đ?&#x153;&#x2022; đ?&#x2018;˘ đ?&#x153;&#x2022;đ?&#x2018;Ľ 2

(7)

Prove that đ?&#x153;&#x2022;2đ?&#x2018;˘

+ 2đ?&#x2018;Ľđ?&#x2018;Ś đ?&#x153;&#x2022;đ?&#x2018;Ľđ?&#x153;&#x2022;đ?&#x2018;Ś + đ?&#x2018;Ś 2 đ?&#x153;&#x2022;đ?&#x2018;Ś 2 =

â&#x2C6;&#x2019; sin đ?&#x2018;˘ cos2 đ?&#x2018;˘

(8)

4đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; 3đ?&#x2018;˘

Q6 (a) Expand đ?&#x2018;Ľ 2 đ?&#x2018;Ś + 3đ?&#x2018;Ś â&#x2C6;&#x2019; 2 in powers of (đ?&#x2018;Ľ â&#x2C6;&#x2019; 1)& (đ?&#x2018;Ś + 2) using Taylorâ&#x20AC;&#x2122;s theorem. (b) Locate the stationary points of đ?&#x2018;Ľ 4 + đ?&#x2018;Ś 4 â&#x2C6;&#x2019; 2đ?&#x2018;Ľ 2 + 4đ?&#x2018;Ľđ?&#x2018;Ś â&#x2C6;&#x2019; 2đ?&#x2018;Ś 2 and determine their nature.

(7) (8)

Q7(a) A rectangular box open at the top is to have volume of 32 cubic feet. Find the dimension of box requiring least material for its construction by Lagrangeâ&#x20AC;&#x2122;s method. (9) 1 đ?&#x2018;Ľ đ?&#x2018;&#x203A; â&#x2C6;&#x2019;1

(b) Evaluate the integral â&#x2C6;Ť0

log đ?&#x2018;Ľ

đ?&#x2018;&#x2018;đ?&#x2018;Ľ by applying differentiation under integral sign (đ?&#x2018;&#x17D; â&#x2030;Ľ 0)

*******

(6)

Profile for Manav Rachn University

calculus-i  

calculus-i  

Advertisement