Aprendiendo los principios de la resonancia magnetica

Page 88

76 a

c

APRENDIENDO LOS FUNDAMENTOS DE LA RESONANCIA MAGNÉTICA

b

d

Figura 12.4. Imágenes representativas de tractografía sobre imagen paramétrica de dirección principal coloreada. Sobre la imagen coronal (a) se han representado algunas de las fibras de la cápsula interna dirigiéndose hacia la protuberancia y los pedúnculos cerebelosos medios. En la representación sagital (b) se muestran algunos de los tractos más importantes que atraviesan el cuerpo calloso (radiaciones del cuerpo calloso con sus prolongaciones frontales y occipitales, corticopontinas y corticoespinales). Sobre la imagen transversal (c) se representan las prolongaciones (fórceps) anterior y posterior del cuerpo calloso, las radiaciones ópticas, y la cápsula interna y la externa. La esfera (d) representa la codificación de la dirección preferencial de difusión (para S-I, S: superior e I: inferior; para A-P, A: anterior y P: posterior; para I-D, I: izquierda y D: derecha). cias dinámicas potenciadas en T2* asume que el contraste paramagnético es de distribución intravascular y que no difunde libremente al espacio extracelular. En el sistema nervioso central (SNC) la barrera hematoencefálica intacta previene la difusión del contraste a través de la pared de los vasos, por lo que los efectos sobre el tiempo de relajación T1 son relativamente pequeños. Se emplean pues potenciaciones T2* dada su alta sensibilidad a las heterogeneidades del campo magnético local inducidas por el contraste. Frente a las secuencias TSE (enfocan de nuevo los desplazamientos de la fase por los pulsos de 180º), el efecto de susceptibilidad es similar con una dosis simple de Gd y secuencias EG-EPI que con una doble dosis y secuencias ES-EPI6. Las técnicas con resolución temporal de escasos segundos (EG-EPI e incluso lecturas espirales del espacio K) permiten obtener múltiples series 3D potenciadas en T2* para generar mapas paramétricos de perfusión tisular con una buena S/R. El Gd induce una variación de la susceptibilidad magnética (Δχ) entre el vaso y su medio extravascular. El paso del contraste produce una disminución transitoria de la señal, más marcada en los vasos y menor en el parénquima. Bajo ciertas condiciones, los cambios observados en la señal son proporcionales a la concentración del Gd en el vóxel y, por lo tanto, están relacionados con el volumen sanguíneo cerebral regional (VSCr). El cambio de la relajación T2* aumenta con el calibre de los vasos hasta alcanzar un máximo. Al aumentar Δχ (por ejemplo, incrementando la dosis del contraste), ΔT2* se eleva más con el radio, siendo la técnica EG sen-

sible tanto macrovascular como microvascularmente7. Con vistas a mejorar la relación contraste-ruido, deben elegirse cuidadosamente los parámetros de la secuencia EG-EPI (geométricos y de potenciación: TR, TE, ángulo de inclinación, número de líneas de lectura del espacio K) en cada equipo. La S/R y la estabilidad de la señal RM deben controlarse durante las adquisiciones dinámicas para ajustar la calidad y reproducibilidad de las imágenes. Las curvas de señal-tiempo de las series dinámicas T2* se trasforman en curvas de concentración-tiempo (Fig. 12.5). El VSCr se define como la relación entre las áreas bajo las curvas tisular y arterial de concentración-tiempo. Dada la dificultad de la medición arterial, VSCr se extrae como el área de la curva tisular concentracióntiempo ajustada mediante funciones gamma variantes que corrijan el efecto de la recirculación del contraste y asumiendo una concentración arterial uniforme. Se expresan en segundos el tiempo al pico (TP), o punto máximo de la curva, y el tiempo de tránsito medio (TTM), que es el tiempo que le cuesta al contraste atravesar el lecho de capilares del vóxel6. El flujo sanguíneo cerebral regional (FSCr) se define como el flujo sanguíneo neto a través de un vóxel y se calcula como la relación entre VSCr y TTM (Fig. 12.6). En el cerebro el FSCr calculado es aproximadamente 3 μl x gr-1s-1 en la sustancia blanca y 9 μl x gr-1s-1 en la gris. Para cuantificar estas variables se necesita conocer la función arterial de entrada. La concentración tisular (Ct) depende linealmente de la concentración arterial (Ca), relacionadas temporalmente (t) por la microvascularización según la relación Ct (t) = FSC x Ca x R (t)6, siendo R (t) la fracción de sangre que permanece retenida en el lecho vascular durante el tiempo t (función residuo). Al producto de FSC y R (t) se le denomina «función de respuesta tisular» (Fig. 12.5). Aunque la relación entre concentración e intensidad de señal está bien definida, suele producirse una sobreestimación en las medidas de perfusión6. Para reducir la variabilidad añadida por el ajuste de la curva, se emplean secuencias con muestreos inferiores a los 2 s7. Dado que estos parámetros en la práctica dependen mucho de la dosis y la velocidad del contraste, al igual que de variables individuales (volumen vascular total y de eyección del corazón), se emplean más las cuantificaciones relativas al parénquima considerado normal8. Los métodos de adquisición dinámicos potenciados en T2* tras administrar medios de contraste intersticiales proporcionan medidas correctas sólo cuando la barrera hematoencefálica permanece intacta. Aunque también puede parametrizarse la difusión al espacio extravascular (Fig. 12.6 a), la rotura de la barrera hematoencefálica y todos los procesos que aumentan la angiogénesis, como los tumores, introducen errores en las medidas de perfusión al aumentar la permeabilidad capilar (Fig. 12.6 b). Las series dinámicas potenciadas en T1 con adquisiciones largas, de varios minutos, pueden evaluar mejor la extravasación9 muestreando el acúmulo del contraste durante el equilibrio. Las series dinámicas potenciadas en T1 con adquisiciones basales y tras una embolada de contraste (con adquisición continua de datos durante el primer paso, su extravasación al espacio extravascular y el lavado tisular posterior) permiten extraer datos muy relevantes sobre el flujo vascular y la permeabilidad capilar extraídos de las curvas de intensidad-tiempo T1 10 (Fig. 12.7). Del análisis gráfico de las curvas se extraen diferentes parámetros, como el tiempo al pico máximo, la pendiente de subida y la de lavado de la curva, la captación máxima (o amplitud de captación, definida como [ISmáx. – ISbase]/ISbase) y el área bajo la curva. El análisis de la pendiente de subida se calcula como el porcentaje de (ISmáx. – ISbase)/ISbase (Tmáx. – Tllegada), siendo Tllegada el tiempo


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.