Page 1

A STEP TO A GREEN WORLD: "DEVELOPING A CURRICULUM ON RENEWABLE ENERGY RESOURCES"

LEONARDO PROJECT Istituto Istruzione Secondaria Superiore

“Michele Foderà” Agrigento


I contenuti dell’opuscolo sono stati curati dalla coordinatrice del progetto prof.ssa Gilotti Lorella La grafica e l’impaginazione sono stati curati dal prof. Montante Calogero


Istituto coordinatore: MURATPAŞA VOCATIONAL TRAINING CENTER ANTALYA/TURKEY

Partner: ZESPOL SZKOL TECHNICZNYCH IİM. GEN. WL ANDERSA W BIALYMSTOKU BIALYSTOK/POLAND

Partner: BA - EUROPEAN BUSINESS ACADEMY BERLIN/GERMANY

Partner: ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE "MICHELE FODERA’ “ AGRIGENTO/ITALY

1


2


PRESENTAZIONE DEL DIRIGENTE SCOLASTICO Oggi più che mai il nostro paese è diventato luogo di confronto e di sviluppo di iniziative che portano al centro dell’attenzione le tematiche dell’istruzione e della formazione in una dimensione europee e internazionale. L’educazione alla cittadinanza europea è un mezzo fondamentale e imprescindibile per combattere l’esclusione sociale e culturale, al fine di accrescere nei giovani il senso dell’identità europea, per prepararli ad una partecipazione piena e responsabile allo sviluppo e al miglioramento culturale, economico e sociale della Comunità Europea. L’educazione, l’orientamento, l’istruzione e la formazione lungo tutto l’arco della vita, come rimarcata nel Lifelong Learning Programme, sono la componente essenziale per lo sviluppo della persona e per l’affermazione del diritto di ogni singolo individuo a poter realizzare un proprio ”progetto di vita”. A tal fine vanno sostenute attività quali: 

La costituzione di banche dati su materiali per l’istruzione concernenti l’Europa;

La diffusione delle conoscenze di culture e tradizioni nei paesi partecipanti e il miglioramento della competenza nelle lingue di tali paesi;

La valutazione e il riconoscimento delle conoscenze e delle competenze degli allievi.

Il progetto Comenius ha l’obiettivo di incoraggiare la mobilità sia degli inseganti, promuovendo la dimensione europea della loro formazione e contribuendo a miglioramento delle loro capacità professionali, sia degli studenti, favorendo contatti tra allievi di paesi diversi. Si è trattato di realizzare, di volta in volta, esperienze di autentica ricerca-azione, volte ad affermare l’Europa come orizzonte di vita, per colui che apprende e per colui che progetta. E’ opportuno, comunque, affermare una visione non eurocentrica dell’Europa, ma aperta al mondo, capace di comunicare con la grande varietà di tradizioni culturali espresse dalle decine di milioni di cittadini di paesi extracomunitari che vivono, lavorano e studiano nei Paesi dell’Unione, guardando ad esse come ad una straordinaria occasione di dialogo e di crescita culturale dell’Europa. 3


Today, more than ever, we affirm the idea of a Europe of education. Our country has become a place of comparing and developing initiatives that focus on the issues of education and training in a European and international dimension. European citizenship education is a basic and necessary means to fight against social an cultural exclusion, in order to increase young people’s sense of European identity, to prepare a full and responsible participation in the development and improvement of cultural, economic and social life of the European Community. Education, guidance and Lifelong Learning are essential components for the development of the person and for the affirmation of the rights of each person and to make their own life project. For these reasons it is important to support such activities as :  

Establishment of databases on materials for education about Europe Dissemination of knowledge on culture and tradition in the partners’ countries and improvement of skills in the foreign languages.  Evaluation and recognition of knowledge and skills of the students The Comenius project aims to encourage the mobility both of teachers, by promoting the European dimension of their training and contributing to the improvement of their professional skills, and of students, encouraging contacts among young people of different countries. It consisted in realizing, from time to time, experiences of authentic ActionResearch aiming to establish Europe as the horizon of life, both for learners and for programmer. I believe it is necessary to assert a non-Eurocentric vision of Europe but a vision open to the world, able to communicate with the wide variety of cultural traditions expressed by millions of citizens of foreign countries who live, work and study in EU countries and who look at it as an extraordinary opportunity of dialogue and growth of Europe. AGRIGENTO, 15 Giugno 2012 Il DIRIGENTE SCOLASTICO

Dott.ssa Patrizia Pilato

4


Il progetto è stato sostenuto e finanziato dal LIFELONG LEARNING PROGRAM AND LDV PARTNERSHIPS

Titolo del progetto:

"

5


TEACHERS' SCHOOL TEAM FULL NAME

BRANCH

Pilato Patrizia

6

TASK at the Project Headmaster

Gilotti Lorella

English Teacher

Coordinator, contact person

Gelo Giuseppe

Tic teacher

Press and mass media works

Turturici Angioletta

Law teacher

Collaborator

Pollicino Calogero

Business/administration

Collaborator

Occhiuto Francesca

Business/administration

Collaborator

Lattuca Giuseppina

Literature teacher

Collaborator

Miccichè M.Rita

English teacher

Collaborator

Danile Erica

Science teacher

Collaborator

Airò Lorenzo

Geopedology teacher

Collaborator

Iacona Assunta

Literature Teacher

Collaborator

Forte Giuseppe

Housing systems teacher

Collaborator

Lorito Carmelina

Literature teacher

Collaborator

Agnello Audenzio

Technology teacher

Collaborator

Capodici Calogera

French teacher

Collaborator

Manno Antonino

Science teacher

Collaborator

Montante Calogero

Tic teacher

Web master

Catania Calogero

Tic Teacher

collaborator

Orefice Federico

P.E. Teacher

collaborator


7


STUDENTS’ SCHOOL TEAM

Bellavia Alexandrea Colucci Angelo Di Filippo Gabriele Burgio Simone Sciortino Francesco Vitello Gianluca Talmi Carmelo Graceffa Agnese Infurna Pietro Amormino Syria Vella Roberto Pitruzzella Andrea Sollano Gerlando Mangione Angelo

8

Catania Anna Sicorello Giuseppe Sicorello Noemi Russello Vincenzo Volpe VittorĂŹ Agnello Erika Vitello Gianluca Vaianella Ilaria Miceli Giovanni Faroudi Hajar Avenia Alessandro Frenda Antonino Martino Daniele


Introduzione In questo ultimo ventennio, l'uomo si è accorto con eccessivo ritardo, di avere violentemente sconvolto i ritmi e l' orologio biologico che governava da milioni di anni la terra, modellandone l' assetto attuale. Per troppo tempo le logiche di espansione e sviluppo industriale, gli incessanti tentativi di arricchimento da parte dei potenti dell'economia e tutta una serie di comportamenti inadeguati di spreco e superficialità attuati dalla società, hanno fatto si che le risorse naturali della terra e l'equilibrio stesso dell'ecosistema venissero messi seriamente a rischio. Così da alcuni anni a questa parte si è cercato, in tutti i modi, di far ricorso alle cosiddette 'fonti di energia alternative' dove il termine alternative sta ad indicare la contrapposizione di queste fonti a quelle già di ampio consumo (idrocarburi) ormai in fase di esaurimento visto che si tratta di fonti non rinnovabili e i tempi di consumo superano di gran lunga quelli di formazione. Si è cercato così di attuare il cosiddetto sviluppo 'ecocompatibile' od “ecosostenibile” cioè : un progresso volto allo sviluppo scientifico, tecnologico ed anche economico, ma allo stesso tempo compatibile con le “esigenze” del nostro pianeta. Però, molte di queste possibili alternative fonti di energia, si sono rivelate spesso di scarsa resa e costose (energia solare e geotermica) oppure pericolose da mettere in atto e gestire, come nel caso del nucleare, che di certo non può rappresentare la soluzione finale, nonostante vi sia il tentativo diffuso e generalizzato da parte di molti paesi altamente industrializzati o in fase di sviluppo, di proiettarsi verso questo tipo di “scelta energetica”. L'unica vera soluzione sarebbe quella di massimizzare la resa di tecniche già sfruttate e consolidate, in particolare l'energia solare, prendendo esempio dagli organismi autotrofi che nel corso di un'evoluzione durata milioni di anni, hanno saputo sviluppare delle vere e proprie centrali biochimiche ad alta efficienza energetica, producendo sostanze nutritive; oppure l'energia geotermica che non vuol dire solo l' utilizzo di vapori ed acque ad alta temperatura del sottosuolo, bensì l'uso delle masse magmatiche che, secondo diversi studiosi, potrebbe significare la svolta verso un futuro fatto solo di risorse energetiche pulite, rinnovabili ed eco-compatibili. Visto il suo particolare assetto tettonico, l' Italia, per esempio, potrebbe essere uno dei paesi in cui si può prospettare l'uso di questa fonte di energia. Basti pensare che nei pressi dei campi Flegrei, nei dintorni delle Isole Eolie, in corrispondenza dell'Etna o nei siti del banco di Grahm (nei dintorni di Sciacca) si trovano, a profondità di qualche chilometro dal suolo, masse magmatiche con temperature superiori ai 1000 gradi che potrebbero essere raggiunte ed utilizzate direttamente o indirettamente come fonti di energia. Immaginate decine di centrali geotermiche alla base dell'Etna che, utilizzando l'immensa quantità di energia che si trova nella camera magmatica del vulcano, potrebbero essere in grado di soddisfare le esigenze energetiche dell'intera nostra Isola.

9


La Terra è attraversata in lungo e in largo dalle dorsali medio-oceaniche. Si tratta di migliaia e migliaia di chilometri di vulcani dove di continuo vengono emessi masse di magma con temperature che possono raggiungere i 2000 gradi. Sarebbe davvero auspicabile un futuro energetico proiettato verso l'uso di questo tipo di risorse. Insomma, occorre aumentare gli investimenti e potenziare la ricerca, sensibilizzare la società verso il risparmio ed un uso oculato delle risorse energetiche in modo tale che si possa garantire il perdurare delle condizioni ottimali del nostro grande ecosistema Terra, senza frenare lo sviluppo scientifico ed il progresso economico. Argomento del progetto Il miglioramento nell'industria e la richiesta di un alto standard di vita, stanno accrescendo il bisogno dell'energia in maniera significativa. I combustibili vengono usati per provvedere alle richieste di energia. L'uso dei carburanti ha causato un aumento dell'inquinamento dell'ambiente. E' stato siglato, per questo, il protocollo di Kyoto, secondo il quale i paesi devono potenziare le fonti di energia rinnovabile e diminuire l'emissione di gas serra nell'atmosfera, da oggi al 2020. Il bisogno di personale specializzato nell'uso di energia rinnovabile aumenterà. Il nostro scopo principale è stato realizzare degli studi curriculari per presentare a formatori e insegnanti, l'importanza dell'utilizzo delle fonti di energia rinnovabili. Abbiamo fatto i primi studi su curriculum educativi comuni prima in Turchia e nei paesi degli altri Partners e nei paesi dell'E.U. che vogliono usare questi reports nei propri paesi. Secondo lo scopo principale del progetto, il coordinatore ha organizzato il sito web e coordinato le conferenze e i workshops nel proprio paese e nei paesi dei partners. Ogni partner, ha realizzato delle ricerche sull'energia rinnovabile e organizzato dei workshops nel proprio paese. I partners hanno, inoltre, formato un club di studenti chiamato "club dell'energia pulita" per studiare l'energia rinnovabile e suggerire eventuali argomenti per il curricolo. Alla fine del progetto tutti i partners hanno organizzato una conferenza stampa in Polonia. Il progetto ha avuto anche come scopo la mobilità degli studenti per incontrare diverse culture e differenti formazioni culturali degli altri paesi. Obiettivi del progetto sono stati:   

10

Sviluppare un curriculum per l'istruzione professionale sull'energia rinnovabile preparando moduli e pagine introduttive. Studiare come generare l'energia elettrica da fonti rinnovabili e la sua applicabilità e l'uso Presentare a formatori e insegnanti l'importanza e la praticità delle fonti di energia rinnovabile


         

Sviluppare una comune intesa tra partners sull'uso dell'energia rinnovabile nell'istruzione professionale in campo elettrico ed elettronico Aumentare la consapevolezza del cambiamento climatico e del riscaldamento globale Aumentare la consapevolezza sull'emissione di gas e sull'effetto serra Aumentare la consapevolezza sul protocollo di Kyoto e la sua politica sull'energia Creare un sito web per la disseminazione e informazione Preparare un cd che includa lo sviluppo di un curriculum e informazioni sul progetto Preparare un opuscolo sulle fonti di energia rinnovabile Far giungere l'opuscolo ai ministeri e istituzioni interessate Proporre attività e argomenti agli studenti in modo progressivo Accrescere la consapevolezza delle differenze culturali e la tolleranza verso gli altri

Questi obiettivi sono stati ottenuti applicando e seguendo strategie e metodologie quali:         

Formazione di gruppi di progetto nelle istituzioni dei partners Creazione di e-mail per scambio di informazioni ed una pagina web Organizzazione di incontri di lavoro Ricerche sull'energia rinnovabile e sul suo utilizzo Apertura corsi di tirocinio tutoriali pedagogici Presentazione multimediale dei partners Creazione di un club "energia pulita" Attività di autostima - richieste, visite a pagine internet, resoconti Pubblicizzazione dell'esperienza ed i risultati del progetto nelle scuole della provincia,brevi incontri con la stampa ed i media locali, pubblicazione dei risultati Mostra fotografica sul periodo di cooperazione tra i partners

L’ ITALIA è stata rappresentata dalla nostra scuola in questo progetto : La nostra scuola ha due diversi settori: commerciale e tecnologico. I nostri studenti affrontano argomenti che riguardano: topografia, biologia, chimica, materiali da costruzione, economia, diritto, negli aspetti relativi e correlati all'ambiente, all'energia sostenibile e rinnovabile e vorrebbero migliorare le loro conoscenze e possibilmente applicare tali conoscenze, competenze e abilità all'ambiente dei luoghi in cui vivono. Tutto ciò si è reso possibile grazie ad uno scambio di ide, esperienze ed opinioni con altre persone. Gli studenti hanno migliorato le loro abilità nella lingua straniera, ampliando i loro orizzonti culturali.

11


LA NOSTRA SCUOLA

Fin dai primi tempi della costituzione del Regno d'Italia, gli Enti locali comprendono la necessità di istituire una scuola a carattere professionale. Il Consiglio Provinciale di Agrigento, nella riunione consiliare del 23 ottobre 1860 delibera, di far voto al Ministero dell'Agricoltura, Industria e Commercio, perché voglia istituire nella città un Istituto Tecnico. Il Consiglio Comunale, anche la Camera di Commercio concorda con il progetto. Il Ministro accogliendo le richieste sollecitando l'apertura di un Istituto Tecnico con le seguenti sezioni:   

agronomia e agrimensura Commercio ed Amministrazione Industria dello Zolfo

Nel novembre dell'anno 1867 l'Istituto è aperto alle lezioni. Nell'anno scolastico 1874-1875 le sezioni richieste dal Ministro sono abolite e sostituite con le seguenti:   

12

Fisico-Matematico Agrimensura Ragioneria e Commercio


Il 26 dicembre 1877 l'Istituto passa dalla dipendenza del Ministro della Pubblica Istruzione che gli attribuisce il nome "Michele Foderà". Con la legge Gentile si divide in due sezioni : una Commerciale ad indirizzo Amministrativo con 74 alunni ed una per Geometri con 81 alunni. I giovani abilitati in Commercio e Ragioneria trovano agevolmente Impiego presso Banche, Amministrazioni Statali e Parastatali, Enti Autarchici ed anche presso le agenzie industriali e commerciali. Quelli abilitati dalla sezione per Geometri si avviano alla libera professione, trovano anche impiego nelle Imprese di costruzione, negli Uffici Tecnici del Catasto, del Genio Civile, di altre amministrazione Statali o di Enti pubblici. L'istituto ha sede in locali che sono parte di un ex-convento in piazza San Giuseppe anche se non sono totalmente idonei ad ospitare un istituto scolastico. Malgrado questo l'istituto è dotato di vari laboratori come di Fisica e di Chimica. Con lo scoppio della Seconda Guerra Mondiale con le azioni belliche che comportò nel 1943 vengono distrutti gli edifici del Liceo Ginnasio, della Scuola Tecnica Commerciale e dell'istituto Magistrale. Da allora, nei locali dell'Istituto, sono ospitati la Scuola Media Pascoli, la Scuola Tecnica Commerciale con l'annessa Scuola d'Avviamento. Alcune aule pertanto sono assegnate a queste scuole. Intanto l'Istituto fa registrare un progressivo e costante aumento degli alunni. Nell'anno scolastico 1959-60, esso comprende 2 corsi Commerciali e 3 corsi Geometri rispettivamente con 345 e 471 alunni. Dopo questo notevole aumento i due indirizzi vengo divisi in due scuole differenti. Oggi i due istituti sono stati riuniti ancora una volta e la scuola ha ripreso il nome di:

Istituto Istruzione Secondaria Superiore "Michele Foderà" Telefono: +39922603261 Fax : +39922603194 Email : agis014002@istruzione.it Web : http://www.itcfodera.it/

13


Le scuole partners del progetto: POLONIA: BIALYSTOCKZESPÓL SZKÓL TECHNICZNYCH IM. GEN WL. ANDERSA W BIALYMSTOKU / POLSKA

TURCHIA: MURATPAŞA VOCATIONAL TRAINING CENTER ANTALYA/TURKEY

GERMANIA: BA - EUROPEAN BUSINESS ACADEMY BERLIN/GERMANY

14


Il primo workshop si è tenuto ad Antalya (Turchia), ma la nostra scuola non ha potuto partecipare. Abbiamo alcune immagini dei nostri partners.

15


Il secondo workshop si è tenuto Berlino The meeting in Berlin, from 22nd to 27th May, was very interesting for the activities we did there and the people we met. Berlin is a fantastic city, modern, busy, crowd and full of interesting sightseeings During the meeting the partners introduced their works and discussed about important problems related to the future activities and relationships between students and teachers. The coordinators exchanged ideas and opinions about the good practices and better involvement of students in the project and about the activities and the strategies to put into practice such topic in the classroom curricula. Ecco alcune foto:

16


17


Terzo workshop ad Agrigento, nella nostra scuola. The third workshop of our Project was held in Agrigento with the participation of Poland, Turkey and Italy between 21 to 25 of November in 2011. Teachers, directors and the members of clean energy club of the participant countries joined the workshop.

18


Impressions of the workshop participants Vedat PARLAKOVA (Project Coordinator) I had a chance to being in Venice, Trieste and Pescara in Italy before. Thanks to Ldv Projects I have visited Italy for the third time so far and also I am happy for the opportunity to know the city of Agrigento and its lovely people. In Agrigento, I felt as if I were with my relatives. Thanks to the physical appearance of the people, I never felt that I am foreigner. Probably, we assimilate the scent of the Mediterranean Sea salt and winds. I was really affected as the greetings ceremony started with folk dances just as in my childhood and the idea of presenting everyone's national anthem with the lyrics. Although the participants have different languages and religions I believe that in the future we can live together fraternally and to perform this workshop was the best experience I have ever had. Also visiting a factory where is directly linked to our issue added much efficiency to our workshop. This factory visit increased my professional knowledge and experience. In the future I will share my experiences with students so I believe that this workshop has been useful and very efficient for me. Furthermore, I grabbed the opportunity to recognize Italian cuisine which is in my interests. Historical and touristic excursions caused me to gain a unique experience. In addition. I want to thank to Coordinator Lorella Gilotti and the Headteacher Patrizia Pilato for their efforts to make the workshop effective and beautiful. They dealt with each problem closely and I believe that I will take this workshop as an example for me for my future projects.

19


Mustafa ÖZEL (Responsible for the project web page) In Turkey there is a common belief that Italians resemble to the Turks however I think they don't. Actually I started to believe that, after our visit to Italy, We have lots in common. The traffic jam is the same as in Turkey even worse Horn sounds, the majority of the vehicles, one-way streets, the lovely (!) words of the drivers, the parking styles really similar to Turkey. Also in Turkey, when tourists ask to describe an address or something else in a foreign language, Turks start to describe in Turkish by yelling. This situation even the same. Italians are also so kind and helpful like us. In Agrigento, I asked an address to the owner of a shop, the man searched the address on the net and print the page to describe me. Italians are charitable like us. The shops open in the morning then close in the afternoon.And then the shops open up again for a few hours in the evening. I think it is a pity not to open the ice-cream shops for twenty-four hours. Almost all the buildings in Agrigento are historical and we were dazzled. We surprised with the attraction of the Temples on the one side and the sea view on the other side. Also while we were walking in the narrow streets of the city, we reminded the movie God Father and conceived a man running out with a machine gun. Fish and other marine products are the most plentiful food, they both fresh and cheap, also Italians cook them well. It is difficult to forget the taste. So ı can say, long live Concordia Restaurant. Our Italian partner really prepared well. The meetings, shows, presentations, visits and cultural activities were well-organized. Also they were really thoughtful as they presented the national anthems of the partners in the beginning. They strictly followed the schedule which i appreciated. Besides, the cookies and cakes made by the pupils' families gave us the chance to learn traditional pastry. The Project coordinator Mrs Lorella Gilotti and the Head teacher Mrs. Patrizia Pilato did their best for us. I would like to celebrate both of them for their efforts, hospitality and close attention in the name of our school and team.

20


Ultimo workshop in Polonia, Bialystok:

21


A Berlino i ragazzi hanno presentato ed illustrato i logo:

POLONIA

ITALIA

Avenia Alessandro

TURCHIA

22

Vella Roberto

Pecoraro Giuseppe


23


24


Raccolta delle batterie

Giornata dell’albero

25


26


27


Uno dei nostri compiti è stato ricercare e analizzare I vantaggi e gli svantaggi della “GEOTERMIA” e le sue applicazioni:

Geothermal energy is thermal energy generated and stored in the Earth. It determines the temperature of matter and originates from the original formation of the planet (20%) and from radioactive decay of minerals (80%). The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface. The adjective geothermal originates from the Greek roots “ge”, meaning “earth”, and “thermos”, meaning” hot”. The heat that is used for geothermal energy can be stored deep within the Earth, all the way down to Earth's core -4,000 miles down. At the core, temperatures may reach over 9,000 degrees Fahrenheit (5000 degrees Celsius). Heat conducts from the core to surrounding rock. Extremely high temperature and pressure cause some rock to melt, which is commonly known as magma. Magma convects upward since it is lighter than the solid rock. This magma then heats rock and water in the crust, sometimes up to 700 degrees Fahrenheit (370 degrees Celsius) From hot springs, geothermal energy has been used for bathing since Paleolithic times and for space heating since ancient Roman times, but it is now better known for electricity generation. Worldwide, about 10,715

28


megawatts (MW) of geothermal power is online in 24 countries. An additional 28 gigawatts of direct geothermal heating capacity is installed for district heating, space heating, spas, industrial processes, desalination and agricultural applications. Geothermal power cost effective, reliable, sustainable, and environmentally friendly, but has historically been limited to areas near tectonic plate boundaries. Recent technological advances have dramatically expanded the range and size of viable resources, especially for applications such as home heating, opening a potential for widespread exploitation. Geothermal wells release greenhouse gases trapped deep within the earth, but these emissions are much lower per energy unit than those of fossil fuels. As a result, geothermal power has the potential to help mitigate global warming if widely deployed in place of fossil fuels. The Earth's geothermal resources are theoretically more than adequate to supply humanity's energy needs, but only a very small fraction may be profitably exploited. Drilling and exploration for deep resources is very expensive. Forecasts for the future of geothermal power depend on assumptions about technology, energy prices, subsidies, and interest rates.

History Geothermal manifestations: Hot Springs have been used for bathing at least since paleolithic times The oldest known spa is a stone pool on China's Lisan mountain built in the Qin dynasty in the 3rd century BC, at the same site where the Huaqing Chi palace was later built. In the first century AD, Romans conquered Aquae Sulis, now Bath, Somerset, England, and used the hot springs there to feed public baths and underfloor heating. The admission fees for these baths probably represent the first commercial use of geothermal power. The world's oldest geothermal district heating system in ChaudesAigues, France, has been operating since the 14th century. The earliest industrial exploitation began in 1827 with the use of geyser steam to extract boric acid from volcanic mud in Larderello, Italy.

29


In 1892, America's first district heating system in Boise, Idaho was powered directly by geothermal energy, and was copied in Klamath Falls, Oregon in 1900. A deep geothermal well was used to heat greenhouses in Boise in 1926, and geysers were used to heat greenhouses in Iceland and Tuscany at about the same time. Charlie Lieb developed the first downhole heat exchanger in 1930 to heat his house. Steam and hot water from geysers began heating homes in Iceland starting in 1943. In the 20th century, demand for electricity led to the consideration of geothermal power as a generating source. Prince Piero Ginori Conti tested the first geothermal power generator on 4 July 1904, at the same Larderello dry steam field where geothermal acid extraction began. It successfully lit four light bulbs. Later, in 1911, the world's first commercial geothermal power plant was built there. It was the world's only industrial producer of geothermal electricity until New Zealand built a plant in 1958. Lord Kelvin invented the heat pump in 1852, and Heinrich Zoelly had patented the idea of using it to draw heat from the ground in 1912. But it was not until the late 1940s that the geothermal heat pump was successfully implemented. The earliest one was probably Robert C. Webber's home-made 2.2 kW direct-exchange system, but sources disagree as to the exact timeline of his invention. J. Donald Kroeker designed the first commercial geothermal heat pump to heat the Commonwealth Building (Portland, Oregon) and demonstrated it in 1946. Professor Carl Nielsen of Ohio State University built the first residential open loop version in his home in 1948. The technology became popular in Sweden as a result of the 1973 oil crisis, and has been growing slowly in worldwide acceptance since then. The 1979 development of polybutylene pipe greatly augmented the heat pump's economic viability. In 1960, Pacific Gas and Electric began operation of the first successful geothermal electric power plant in the United States at The Geysers in California.

30


Electricity

The International Geothermal Association (IGA) has reported that 10,715 megawatts (MW) of geothermal power in 24 countries is online, which is expected to generate 67,246 GWh of electricity in 2010. This represents a 20% increase in online capacity since 2005. IGA projects growth to 18,500 MW by 2015, due to the projects presently under consideration, often in areas previously assumed to have little exploitable resource. In 2010, the United States led the world in geothermal electricity production with 3,086 MW of installed capacity from 77 power plants. The largest group of geothermal power plants in the world is located at The Geysers, a geothermal field in California. The Philippines is the second highest producer, with 1,904 MW of capacity online. Geothermal power makes up approximately 18% of the country's electricity generation. Geothermal electric plants were traditionally built exclusively on the edges of tectonic plates where high temperature geothermal resources are available near the surface. The development of binary cycle power plants and improvements in drilling and extraction technology enable enhanced geothermal systems over a much greater geographical range. Demonstration projects are operational in Landau-Pfalz, Germany, and Soultz-sous-ForĂŞts, France, while an earlier effort in Basel, Switzerland was shut down after it triggered earthquakes. Other demonstration projects are under construction in Australia, the United Kingdom, and the United States of America. The thermal efficiency of geothermal electric plants is low, around 10-23%, because geothermal fluids do not reach the high temperatures of steam from boilers. The laws of thermodynamics limits the efficiency of heat engines in extracting useful energy. Exhaust heat is wasted, unless it can be used directly and locally, for example in greenhouses, timber mills, and district heating. System efficiency does not materially affect operational costs as it would for plants that use fuel, but it does affect return on the capital used to build the plant. In order to produce more energy than the pumps consume, electricity generation requires relatively hot fields and specialized heat cycles. Because geothermal power does not rely on variable sources of energy, unlike, for example, wind or solar, its capacity factor can be quite large-up to 96% has been demonstrated. The global average was 73% in 2005.

31


Direct application In the geothermal industry, low temperature means temperatures of 300 째F (149 째C) or less. Low-temperature geothermal resources are typically used in direct-use applications, such as district heating, greenhouses, fisheries, mineral recovery, and industrial process heating. However, some low-temperature resources can generate electricity using binary cycle electricity generating technology. Approximately 70 countries made direct use of petajoules (PJ) of geothermal heating in 2004. More than half went for space heating, and another third for heated pools. The remainder supported industrial and agricultural applications. Global installed capacity was 28 GW, but capacity factors tend to be low (30% on average) since heat is mostly needed in winter. The above figures are dominated by 88 PJ of space heating extracted by an estimated 1.3 million geothermal heat pumps with a total capacity of 15 GW. Heat pumps for home heating are the fastest-growing

270

means of exploiting geothermal energy, with a global annual growth rate of 30% in energy production.

Direct heating is far more efficient than electricity generation and places less demanding temperature requirements on the heat resource. Heat may come from co-generation via a geothermal electrical plant or from smaller wells or heat exchangers buried in shallow ground. As a result, geothermal heating is economic at many more sites than geothermal electricity generation. Where natural hot springs are available, the heated water can be piped directly into radiators. If the ground is hot but dry, earth tubes or downhole heat exchangers can collect the heat. But even in areas where the ground is colder than room temperature, heat can still be extracted with a geothermal heat pump more cost32


effectively and cleanly than by conventional furnaces. These devices draw on much shallower and colder resources than traditional geothermal techniques, and they frequently combine a variety of functions, including air conditioning, seasonal energy storage, solar energy collection, and electric heating. Geothermal heat pumps can be used for space heating essentially anywhere. Geothermal heat supports many applications. District heating applications use networks of piped hot water to heat many buildings across entire communities. In Reykjav铆k, Iceland, spent water from the district heating system is piped below pavement and sidewalks to melt snow. Geothermal desalination has been demonstrated.

Economics Geothermal power requires no fuel (except for pumps), and is therefore immune to fuel cost fluctuations. However, capital costs are significant. Drilling accounts for over half the costs, and exploration of deep resources entails significant risks. A typical well doublet (extraction and injection wells) in Nevada can support 4.5 megawatts (MW) and costs about $10 million to drill, with a 20% failure rate. In total, electrical plant construction and well drilling cost about Euro 2-5 million per MW of electrical capacity, while the break-even price is 0.04-0.10 Euro per kW路h. Enhanced geothermal systems tend to be on the high side of these ranges, with capital costs above $4 million per MW and break-even above $0.054 per kW路h in 2007. Direct heating applications can use much shallower wells with lower temperatures, so smaller systems with lower costs and risks are feasible. Residential geothermal heat pumps with a capacity of 10 kilowatt (kW) are routinely installed for around $1-3,000 per kilowatt. District heating systems may benefit from economies of scale if demand is geographically dense, as in cities, but otherwise piping installation dominates capital costs. The capital cost of one such district heating system in Bavaria was estimated at somewhat over 1 million Euro per MW. Direct systems of any size are much simpler than electric generators and have lower maintenance costs per kW路h, but they must consume electricity to run pumps and compressors. Some governments subsidize geothermal projects. Geothermal power is highly scalable: from a rural village to an entire city. Chevron Corporation is the world's largest private geothermal electricity producer. The most developed geothermal field is the Geysers in California.

33


Sustainability

Geothermal power is considered to be sustainable because any projected heat extraction is small compared to the Earth's heat content. The Earth has an internal heat content of 1031 joules (3路1015 TW路hr). About 20% of this is residual heat from planetary accretion, and the remainder is attributed to higher radioactive decay rates that existed in the past. Natural heat flows are not in equilibrium, and the planet is slowly cooling down on geologic timescales. Human extraction taps a minute fraction of the natural outflow, often without accelerating it.

Even though geothermal power is globally sustainable, extraction must still be monitored to avoid local depletion. Over the course of decades, individual wells draw down local temperatures and water levels until a new equilibrium is reached with natural flows. The three oldest sites, at Larderello, Wairakei, and the Geysers have experienced reduced output because of local depletion. Heat and water, in uncertain proportions, were extracted faster than they were replenished. If production is reduced and water is reinjected, these wells could theoretically recover their full potential. Such mitigation strategies have already been implemented at some sites. The long-term sustainability of geothermal energy has been demonstrated at the Lardarello field in Italy since 1913, at the Wairakei field in New Zealand since 1958, and at The Geysers field in California since 1960.

Falling electricity production may be boosted through drilling additional supply boreholes, as at Poihipi and Ohaaki. The Wairakei power station has been running much longer, with its first unit commissioned in November 1958, and it attained its peak generation of 173MW in 1965, but already the supply of high-pressure steam was faltering, in 1982 being derated to intermediate pressure and the station managing 157MW. At the turn of the century it was managing about 150MW, then in 2005 two 8MW isopentane systems were added, boosting the station's output by about 14MW. Detailed data are unavailable, being lost due to re-organisations. One such re-organisation in 1996 causes the absence of early data for Poihipi (started 1996), and the gap in 1996/7 for Wairakei and Ohaaki; half-hourly data for Ohaaki's first few months of operation are also missing, as well as for most of Wairakei's history.

34


Environmental effects Fluids drawn from the deep earth carry a mixture of gases, notably carbon dioxide (CO2), hydrogen sulfide (H2S), methane (CH4) and ammonia (NH3). These pollutants contribute to global warming, acid rain, and noxious smells if released. Existing geothermal electric plants emit an average of 122 kilograms (270 lb) of CO2 per megawatt-hour (MW路h) of electricity, a small fraction of the emission intensity of conventional fossil fuel plants. Plants that experience high levels of acids and volatile chemicals are usually equipped with emission-control systems to reduce the exhaust.

In addition to dissolved gases, hot water from geothermal sources may hold in solution trace amounts of toxic chemicals such as mercury, arsenic, boron, and antimony. These chemicals precipitate as the water cools, and can cause environmental damage if released. The modern practice of injecting cooled geothermal fluids back into the Earth to stimulate production has the side benefit of reducing this environmental risk. Direct geothermal heating systems contain pumps and compressors, which may consume energy from a polluting source. This parasitic load is normally a fraction of the heat output, so it is always less polluting than electric heating. However, if the electricity is produced by burning fossil fuels, then the net emissions of geothermal heating may be comparable to directly burning the fuel for heat. For example, a geothermal heat pump powered by electricity from a combined cycle natural gas plant would produce about as much pollution as a natural gas condensing furnace of the same size. Therefore the environmental value of direct geothermal heating applications is highly dependent on the emissions intensity of the neighboring electric grid. Plant construction can adversely affect land stability. Subsidence has occurred in the Wairakei field in New Zealand and in Staufen im Breisgau, Germany. Enhanced geothermal systems can trigger earthquakes as part of hydraulic fracturing. The project in Basel, Switzerland was suspended because more than 10,000 seismic events measuring up to 3.4 on 35


the Richter Scale occurred over the first 6 days of water injection. Geothermal has minimal land and freshwater requirements. Geothermal plants use 3.5 square kilometres (1.4 sq mi) per gigawatt of electrical production (not capacity) versus 32 square kilometres (12 sq mi) and 12 square kilometres (4.6 sq mi) for coal facilities and wind farms respectively. They use 20 litres (5.3 US gal) of freshwater per MW路h versus over 1,000 litres (260 US gal) per MW路h for nuclear, coal, or oil.

36


GLI ALTRI PAESI PARTNERS HANNO AFFRONTATO TEMI COME: BIOMASSE, ENERGEIA EOLICA, ENERGIA DELL’ACQUA, ENERGIA SOLARE

37


38


39


40


41


Coordinator: Lorella Gilotti

The solar rays pass through the atmosphere; when they are in contact with earth they should be reflected with a lower intensity. In the athmosphere there are some particles that don’t let the rays to be released.In the last time the particles have been increased avoiding the rays to be released or better they have caused their return to the earth provoking the planet warming.

42


THE LAST MEETING IN BIALYSTOK

43


44


che possono essere integrate nei curricula:

MODUL INFORMATION PAGE BIOMASS

GENERAL GOAL : BY TAKING THIS COURSE STUDENTS WILL UNDERSTAND BIOMASS AND THE WAYS OF BENEFITING BIOMASS. SPECIFIC GOALS: 1. Will learn biomass energy concept and sources. 2. Will learn the ways of benefiting biomass energy sources. CONTENT BIOMASS ENERGY -what is biomass energy - history of biomass energy use -wood (energy forests and forest waste) -oil seed plants (sunflower, colza, soybean etc.) -carbohydrate rich plants (potatoes, wheats, corn, pancarditis etc.) -fibrous plants (linen, hemp, kenaf, sorghum etc.) -herbal wastes -animal wastes -domestic and industrial wastes -obtaining biomass -physical process -size decreasing -grounding and crushing -drying -filtration -briquetting -transition periods (biofuels) -biochemical -bioethanol -biobüthanol -biodiesel -biogas -thermochemical -biochar -hydrogen advantages of biomass use

BENEFITING BIOMASS AS ENERGY SOURCE -direct burning, heatin -using as engine fuel -as türbine fuel -using as fuel cell fuel -using as natural gas additive -use in chemical synthesising process

BİOGAS -formation of biogas -materials used in biogas production - biogas production system batch fermentation - continuous fermantation bioreactors -dome shaped -moving dome shaped bag type -animal wastes herbal wastes ındustrial wastes

45


MODUL INFORMATION PAGE Geothermal Energy GENERAL GOAL : By taking this course students will understand geothermal energy and learn the ways of benefiting geothermal energy SPECIFIC GOALS: By this modul students will; Learn about geothermal energy concept and the sources of geothermal energy. 1. Learn the ways of reaching geothermal energy. 2. Lean the ways of benefiting geothermal energy. CONTENT GEOTHERMAL EXTRACTION OF USING EOTHERMAL ENERGY GEOTHERMAL ENERGY SOURCES -What is geothermal -Drilling methods -Direct use energy. -Classification according to -Use in industry as procces heat -History of geothermal deepness and drying etc. energy use. -Clasification according to - Central heating, central cooling, -Source of geothermal well diameter greenhouse heating etc. energy (Magma) -Classification according to -Production of chemicals such as -Layers reĹ&#x;ated with of drilling place carbodioxide, lithium, fertilizer geoeothermal energy. -Classification according hydrogen etc. -Heat source topurpose -Use in thermal springs,spa’s -Reservoir -Petrol drills -Use in aquculture (fish farms)up -Heat transferring fluid -Water drills to 30oC -Geothermal system -Ground survey drills -Use in mineral water production -Hot water system -Enjection drills -Electric generation -Supeheated vapour -Mining drills -Dry steam geothermal plants system -Private purpose drills -Steam seperating plansts -Hot dry rock system -Classification according to -Steam seperating and water -Regions where methods evaporating (2 phase) plants geothermal energy can be -Percussion drilling -Steam seperating and water found -Rod drilling evaporating multi phase plants. -Normal heat gradiant -Rope drilling -Single phase fluid evapotaring regions -Rotary drilling plants to which fluid is supplied -Radiogenic regions -Rotary percussion system by a pump -High heat current -Piping -Binary plants which uses regions -Cementing secondary thermodynamic -Geothermal regions -Well tests conversion fluid. under pressure -Temperatute test -Hybrid plants -A point heat region -Pressure test -Importanat geothermal -Production test regions of The World: -Gas measurements -Why we must use -Interface test geothermal energy? -Re-injection test a) Low cost -Monitoring test b) Cleanliness c) High efficiency

46


MODUL INFORMATION PAGE Solar Energy GENERAL GOAL: By taking this course students will understand solar energy and the necessity of solar energy SPECIFIC GOALS: 1. will gather information about the systems to benefit solar energy. 2. identify the ways to convert the solar energy to other types. 3. learn the reasons to benefit solar energy. 4. Learn about problems in solar energy use and be able to take precautions CONTENT SOLAR ENERGY

-Source of solar energy and its formation. - Factors effecting on solar radiation intensity and duration. -Decrease and increase in solar energy. -Change in distance between the earth and the sun. -Rotation-Revolution -Inclined axis of the earth. -Effect of atmosphere on solar radiation -Measuring insolation period. - Systems to benefit solar energy. -Obtaining low temperatures from solar energy -Vacuum pipe collectors -Flat collectors -Sun pools -Water distillation systems in pools -Residential heating by solar energy -Green houses -Drying,Cooling -Solar fireboxes -Water pumps -Mechanical power generation -Electricity generation by solar energy -Electricity generation by concentrators -Groove type parabolic collectors -Parabolic dish systems -Central receiver systems -Solar chimneys -Satellite systems -Energy production with solar batteries

ENERGY PRODUCTİON WİTH SOLAR ENERGY

PROBLEMS REASONS TO BENEFİT SOLAR ENERGY İN SOLAR ENERGY USE

-Energy production by using solar collector - Solar thermal power stations - Solar chimney systems - Energy production with solar battery power stations

47


ODUL INFORMATION PAGE Wind Energy GENERAL GOAL : By taking this course students will understand wind energy GOALS : 1. Learn about advantage and disadvantages of wind energy and be able to choose appropriate place for installing wind turbines. 2. Have knowledge about wind energy and wind turbines and be able make purpose targeted installation of the components. CONTENT WİND POWER DETERMİNATİON OF NEW DESINGS IN -Wind concepts; -Wind; -Wind speed, SUİTABLE PLACE FOR WIND ENERGY -Wind distribution; -Wind turbulence, WİND FARMS SYSTEM -Wind direction; -Wind power intensity. -Properties of the place -Ascending air -Benefiting wind power; -History -Wind property current turbines -Wind power use in the world -Topographic -Flying electric -Wind power use in Turkey -Properties of infrastructure generator -Classification of winds -Use of field -Magenn Air Rotor -General wind circulation -Long term records Sytems(MARS) -Dominant winds -Short term records -Wind lens turbines -Temporary air circulations -Properties of -Aerogenerator -Global winds and their properties superstructure -Vibro-Wind -Alizes, Western winds, Polar winds, -Wind atlas and potential Installation Seasonal winds analysis -Factors effecting wind speed and -Wind analysis direction -Measurement of wind -Pressure gradiant; -Coriolis force speed -Effect of centrifugal force -Anemometers, -Delk effect -Anemograph, -Local conditions -Direction, temperature, -Effect of coast pressure and humidity -Effect of hillsides sensors, -Mountain and valley breeze Draining -Data collecting systems winds -Wind rose -Daily change in wind speed -Beaufort wind scale -Advantages and disadvantages of wind -Changes in wind speed energy -Calculation of wind power -Environmental effect of wind turbines intensity -Decrease in CO2 emission -Basic calculations -Use of agricultural fields -Beltz limit -Effects on natural life (birds) -Wind turbine power curve -Noise problem -Selecting wind data -Visual effect -Electromagnetic interaction -Social coast of energyi -Viewpoint of society to wind energy

48

Profile for lillo lilloposta

Opuscolo leonardo1  

Opuscolo leonardo1  

Advertisement

Recommendations could not be loaded

Recommendations could not be loaded

Recommendations could not be loaded

Recommendations could not be loaded