David Lewiston Sharpe - Eastern Cities, Prelude for Strings

Page 1

Eastern Cities Prelude for Strings

David Lewiston Sharpe


Scoring String Orchestra

Duration: 5 mins approx.


Eastern Cities Prelude for Strings Allegro e ritmico q = c.108

 

   Violin II        

     Viola    

  pizz. Violin I   

f mp arco pizz.

f mp arco pizz.

   

       

mf poco leggiero

pizz.         Double bass       mf

4     Vln I   



  





 



Vln II

 Vla     Vc.  Db.



  

      mf p div.     3           p mf

f mp

  Violoncello 

  

 

  

  

 

3        

  

 

 

  

  

3

  

mp

    

 

   



  

  



mp

unis.

unis.

mp

        

non div.

3     

div.

       

  

          

David LEWISTON SHARPE

   

arco

  

ten.



p

  

arco                                  

 



mf

  



  





  





mf

mf

           

Copyright © 2003 by David Lewiston Sharpe

       

         

  



          

p

   

   

     

      

poco più f

   pizz.          poco più f


2

  Vln I   8



ten.

  



mp Vln II    

  Vla       Vc.  

ten.



mp









 p

















ten.

mp

p

          

          

           

  Vln I    

div.

A   

unis.

p

mf

Vln II

 



     



         

mf

p



mf

 

 

        più cresc.

arco

p sostenuto



  



mf

      mf    mf

p

div.                Vc.        p sostenuto

      Db.       



        

    

p

 

non div.

  

mf

Vla

     

      

 pizz.            poco p

arco                           Db.            p

12

 

p

non div.

 

  



 

 

 

 









 

   

 

 

mf

mf


3 17          Vln I 

Vln II

 

p

pp

 

 

div.

mp

 

 

    

unis.

p





   

 

 

poco                 

   

p

Db.

p

p

Vc.

molto

                        

   

     Vla  

pp

p

molto

pp

p

      

p

p

    Vln I    mf

  

non div.

21

  

  

 f

     Vln II          



  



     Vla 

 

mf

 unis.  Vc.      mf

Db.

      mf

  

non div.

  f  f





    

 

f

mf

  

    f

mf

f

   f



     

        

 

              mf 

mf

 molto

f

mf

(non div.)

mf

   

 

   

molto

molto

       

                mp

pizz.


4

  Vln I    25

Vln II

mf

  

  

  

mf

  Vla    mf

 Vc.    

B  



div.



  

 

          

mp

 



          

         Db.    

3

Vln II

Vla

  unis.   mp

p

 mf

mp

    p

       p

 



                p

  

 



unis.

mf

 

arco



mf

p

  



   

div.

  



       mf

  

                        pp

        mf

   

                        pp

 Vc.

Db.



mf

          

30

 Vln I      mf

 mp

     

div.

       

  

rit. - - - - - meno mosso q = c.96

div.

  

   

p



unis.

mf

 mf

p

p



div.

 p  p

  

   pp

p legato

 

unis.



 



 



pp








5

 

unis.

  Vln I    

p



37

Vln II





C

     

   

     

p

   

  Db.  

p

44

 Vln I     

   mf



    



 

sul G

              pp









            

pp

  

     mf

   





               

    

  







   

mf

   

  

(sul E)



mf

Db.

 



mf

  Vc. 

   

p

      Vc.  

Vla

 

mp

     Vla        p

Vln II   

 

    

   p sul D

 p

(espress.)

       

      

mf

  

    



 









p

mf

div.

  mf 

mf

 

unis.







p

 p


6 52

D

   ten.  Vln I  

 

       

mf Vln II    

ten.

Vla

   

 

   



 

mf

     









    



 



  Db.    



[p]

mf

  

p

     p

  

mf

    

    

pizz.

  p

p



  

p

[p]

 

sul A

 

[p]

Vc.

 

     

E Maestoso

     Vln I  

sul D - - - - - - - -

59



mf

 Vln II        mf

    Vla      mf

 Vc.

Db.



    

    

arco

mf



   mf

(sul D)



  f

      mf f       f mf

div.

  

f

      pesante  f pesante

 

             sffz

          

 

mf

    

 

sffz

   ff

mf

  mf

  ff

mf

  p 

mf

  p



   



p

div.

unis.

p

         sffz

 

p

mf

mf

mf

  


7

F 67

(sul G - - - - - - - - - - - - -

  Vln I       

      mp

pp

    mp

    p pp

    Vla      

   

   

Vc.

Db.



  

  

pp

  

 

            mp

pp

p

pp

mp

  

Ritmico

pp

p

     

Vln II

  

     

)



  

   mp



   pp



              p     

   

 

 



 



                    

 

pp

mp

p

G accel. - - - - - - - - - - a tempo q = c.108

75

Vln I

    

div.

p

 Vln II       div.     Vla    

    

p

non div.            f

unis.

      

         

poco

poco

      Vc.     

  

          



Db.

     pizz.

mf pizz.

   

non div.      f

non div.       f

          mf

      

mf

          

mf poco leggiero

        

pizz.                          mf


8







  

        

 







  

   



 







  

  



  arco Vln I   

  

 

Vln II      

     

80

mp

arco mp

 unis.  Vla   mp

Vc.

     p

       

p

  

         Db.     

  Vc.        Db.  



          

        

  

       

        





mf



  







          

  









     

 Vla     

  

   

83

 Vln I      Vln II

  

mf

mf

mp

           

arco



   

poco più f

          

  pizz.         poco più f



  

    

     

           

 

 


9 86    Vln I   





mp

Vln II

  



   

non div.











      

        Db.    

      















mp

p sub.

  Vln I     89

Vln II

div.

  

H 

unis.

mf

mp

  



mf

  Vla    mf

 









  



p sub.

 

  

  

  

  

    





mp

 mp

    

  

  



mp

      

 pizz.         poco p sub.

arco    

                         mp                    Db.    Vc.

p sub.

     

   

  

 

p sub.

mp

   Vc.  

  



cresc.

mp

Vla

               



p

  

 p

  



  

  



p

                p 



p




10

93

 Vln I    



    3



   



     3

                   Db.    

 Vln I   Vln II

 

 

Vc.

  mf



 

 





 



mf

  Vla          mf

  





  

   



                     

Vc.

 

  

p

p

97



p

Vln II     

  Vla   

    

  

3



  

  



    

         Db.       mf

 

  



più p

poco cresc.

   più p

       

           

poco cresc.

  

più p

       

            più p

  

pizz.

pizz.

     f



      3

mf

         3

 p

mp



   

f

mp

    



poco cresc.

p

mf



più p

p







  

     

pizz.

    f div.  pizz.          mf f

div.          f


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.