Page 229

218

SINUSOIDAL STEADY-STATE CIRCUIT ANALYSIS

9.57

Obtain the The´veinin and Norton equivalent circuits at terminals ab for the network of Fig. 9-53. Ans: V 0 ¼ 11:18 93:438 V; I 0 ¼ 2:24 56:568 A; Z 0 ¼ 5:0 36:878 

9.58

In the circuit of Fig. 9-54, v1 ¼ 10 V and v2 ¼ 5 sin 2000t. Ans: i ¼ 1  0:35 sin ð2000t  458Þ

[CHAP. 9

Find i.

Fig. 9-54

Fig. 9-55

9.59

In the circuit of Fig. 9-55, v1 ¼ 6 cos !t and v2 ¼ cos ð!t þ 608). Find vA if ! ¼ 2 rad/sec. KCL at node A in the phasor domain. Ans: vA ¼ 1:11 sin 2t

Hint: Apply

9.60

In the circuit of Problem 9.59 find phasor currents I1 and I2 drawn from the two sources. phasor KVL to the loops on the left and right sides of the circuit. Ans: I1 ¼ 508 100:48; I2 ¼ 1057 1458, both in mA

Hint: Apply

9.61

Find vA in the circuit of Problem 9.59 if ! ¼ 0:5 rad/s.

9.62

In the circuit of Fig. 9-55, v1 ¼ V1 cos ð0:5t þ 1 Þ and v2 ¼ V2 cosð0:5t þ 2 Þ. Find the current through the 4 H inductor. Ans: i ¼ ðV2 =4Þ sin ð0:5t þ 2 Þ  ðV1 =3Þ sin ð0:5t þ 1 Þ

9.63

In the circuit of Fig. 9-55, v1 ¼ V1 cos ðt þ 1 Þ and v2 ¼ V2 cos ðt þ 2 Þ. Ans: vA ¼ 1, unless V1 ¼ V2 ¼ 0, in which case vA ¼ 0

9.64

In the circuit of Fig. 9-55, v1 ¼ V1 cos ð2tÞ and v2 ¼ V2 cos ð0:25tÞ. Ans: vA ¼ 0:816V1 cos ð2tÞ  0:6V2 cos ð0:25tÞ

Ans:

Va ¼ 0

Find vA .

Find vA .

Mahmood_Nahvi_eBook_Schaum_s_Outlines_Theory_An  
Mahmood_Nahvi_eBook_Schaum_s_Outlines_Theory_An  
Advertisement