Issuu on Google+

‫ﻫﺬﺍ ﺍﳌﻘﺎﻝ ﻣﺎﺧﻮﺫ ﻋﻦ ﳎﻠﺔ ﺍﻟﻌﻠﻮﻡ ﺍﻟﱵ ﺗﺼﺪﺭ ﻋﻦ ﻣﺆﺳﺴﺔ ﺍﻟﻜﻮﻳﺖ ﻟﻠﺘﻘﺪﻡ ﺍﻟﻌﻠﻤﻲ‬ ‫ﺍﻟﻌﺪﺩ‬

‫ﻳﻨﺎﻳﺮ‬

‫‪2002‬‬

‫ﺗﺮﲨﺔ‪:‬‬

‫ﳏﻤﺪ ﻋﻠﻲ ﺍﻟﻌﻤﺮ‬

‫ﻣﺮﺍﺟﻌﺔ‪:‬‬

‫ﳏﻤﺪ ﺑﻐﺪﺍﺩﻱ‬

‫ﻜﺸﻑ ﺍﻟﻨﻘﺎﺏ ﻋﻥ ﺍﻟﺜﻘﻭﺏ ﺍﻟﺴﻭﺩﺍﺀ‬

‫)*(‬

‫ﺣﱴ ﻭﻗﺖ ﻗﺮﻳﺐ ﻛﺎﻧﺖ ﺍﻟﺪﻻﺋﻞ ﻋﻠﻰ ﻭﺟﻮﺩ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ َﻋﺮَﺿﻴﺔ‬ ‫ﻭﻏﲑ ﻣﺒﺎﺷﺮﺓ‪ .‬ﺃﻣﺎ ﺍﻵﻥ ﻓﻘﺪ ﻭﺟﺪ ﺍﻟﻔﻠﻜﻴﻮﻥ ﻋﻠﻰ ﺍﻷﺭﺟﺢ‪ ،‬ﺑﺮﻫﺎﻧﺎ ﻣﺒﺎﺷﺮﺍ‪:‬‬ ‫ﲣﺘﻔﻲ ﺍﻟﻄﺎﻗﺔ ﰲ ﺑﻌﺾ ﻣﻨﺎﻃﻖ ﺍﻟﻔﻀﺎﺀ ﻣﻦ ﺩﻭﻥ ﺃﻥ ﺗﺘﺮﻙ ﻭﺭﺍﺀﻫﺎ ﺃﻱ ﺃﺛﺮ‪.‬‬ ‫>‪ .P.-J‬ﻻﺳﻮﺗﺎ<‬ ‫><‬

‫ﻳﻌﺘﻘﺪ ﺍﻟﻔﻠﻜﻴﻮﻥ ﺃﻥ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﻣﻮﺟﻮﺩﺓ ﰲ ﲨﻴﻊ ﺃﺭﺟﺎﺀ ﺍﻟﻜﻮﻥ‪ .‬ﻭﺗﻘﻊ ﻫﺬﻩ‬ ‫ﺍﻷﺟﺴﺎﻡ ﺍﳋﻼﺑﺔ ﰲ ﻣﺮﺍﻛﺰ ﺍﻟﻌﺪﻳﺪ ﻣﻦ ﺍﺠﻤﻟﺮﺍﺕ )ﲟﺎ ﻓﻴﻬﺎ ﳎﺮﺗﻨﺎ‪ ،‬ﺩﺭﺏ ﺍﻟﺘﺒﺎﻧﺔ(‪ ،‬ﺣﻴﺚ ﺗﺘﺰﺍﻭﺝ‬ ‫ﻣﻊ ﳒﻮﻡ ﻋﺎﺩﻳﺔ ﺃﺧﺮﻯ ﻟﺘﺸﻜﻞ ﻣﻨﻈﻮﻣﺎﺕ ﺛﻨﺎﺋﻴﺔ؛ ﻭﻗﺪ ﺗﺴﲑ ﺍﻟﺜﻘﻮﺏ ﻣﻨﻔﺮﺩﺓ ﰲ ﺍﻟﻔﻀﺎﺀ ﺑﲔ‬

‫ﺍﻟﻨﺠﻮﻡ )ﺍﻟﺒﻴﻨﺠﻤﻲ(‪ .‬ﻭﲢﺘﻮﻱ ﻫﺬﻩ ﺍﻷﺟﺴﺎﻡ‪ ،‬ﻭﻫﻲ ﺍﻷﻛﺜﺮ ﺗﺮﺍﺻّﺎ ﰲ ﺍﻟﻜﻮﻥ‪ ،‬ﻋﻠﻰ ﺍﳌﺎﺩﺓ ﰲ‬

‫ﺃﻏﺮﺏ ﺣﺎﻻ‪‬ﺎ ﺍﳌﻌﺮﻭﻓﺔ ﻋﻠﻤﻴﺎ ـ ﺣﻴﺚ ﺗﺘﺠﻤﻊ ﻛﺘﻠﺔ ﻻﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﻜﱪ ﰲ ﺣﺠﻢ ﻻﻣﺘﻨﺎ ‪‬ﻩ ﰲ‬ ‫ﺍﻟﺼﻐﺮ ـ ﺣﺠﻢ ﻳﻜﺎﺩ ﻳﺸﻜﻞ ﻧﻘﻄﺔ ﻣﻦ ﺍﻟﻨﺎﺣﻴﺔ ﺍﻟﺮﻳﺎﺿﻴﺎﺗﻴﺔ‪ .‬ﻟﺬﻟﻚ ﻓﺈﻥ ﻫﺬﻩ ﺍﻷﺟﺴﺎﻡ ﺗ‪‬ﺸﻜﱢﻞ‬ ‫ﲢﺪﻳﺎ ﻗﻮﻳﺎ ﻟﻠﺮﺍﺻﺪﻳﻦ‪ ،‬ﺇﺫ ﺇ‪‬ﺎ ﺣﻘﺎ ﺳﻮﺩﺍﺀ‪ ،‬ﻓﻬﻲ ﻻ ﺗ‪‬ﺼﺪﺭ ﺃﻳﺔ ﺇﺷﻌﺎﻋﺎﺕ ﻛﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ‬

‫)ﻛﺎﻟﻀﻮﺀ ﻣﺜﻼ( ـ ﻋﻠﻰ ﺍﻷﻗﻞ ﻟﻴﺲ ﻋﻠﻰ ﺍﳌﺴﺘﻮﻯ ﺍﻟﺬﻱ ﳝﻜﻦ ﺍﺳﺘﺸﻌﺎﺭﻩ‪.‬‬

‫<‬ ‫>‬


‫ﻫﺒﻮﻁ ﻏﺎﺯﻱ ﳏﻔﻮﻑ ﺑﺎﻷﺧﻄﺎﺭ ﰲ ﺛﻘﺐ ﺃﺳﻮﺩ‪ ،‬ﺗﻌﺘﻤﺪ ﻧﺘﺎﺋﺠﻪ ﻋﻠﻰ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻐﺎﺯ ﺍﳍﺎﺑﻂ ﲰﻴﻜﺎ )ﺍﻟﻨﺼﻒ ﺍﻷﻳﺴﺮ( ﺃﻭ ﺭﻗﻴﻘﺎ‬

‫(ﺍﻟﻨﺼﻒ ﺍﻷﳝﻦ(‪ .‬ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﻟﻐﺎﺯ ﲰﻴﻜﺎ‪ ،‬ﺗﺘﺼﺎﺩﻡ ﺍﳉﺴﻴﻤﺎﺕ ﺑﻜﺜﺮﺓ ـ ﻣﻄﻠﻘ ﹰﺔ ﻓﻮﺗﻮﻧﺎﺕ‪ ،‬ﳑﺎ ﻳﺆﺩﻱ ﺇﱃ ﲢﻮﻳﻞ ﺣﺮﻛﺔ ﺍﳍﺒﻮﻁ‬ ‫ﺇﱃ ﺣﺮﻛﺔ ﻋﺸﻮﺍﺋﻴﺔ )ﺗ‪‬ﻌﺮﻑ ﺑﺎﳊﺮﺍﺭﺓ( ﻭﺇﺷﻌﺎﻉ‪ .‬ﻭﻋﻨﺪﻣﺎ ﲣﺘﺮﻕ ﺍﳉﺴﻴﻤﺎﺕ ﺍﻷﻓﻖ ﺍﳊﺪﺛﻲ ﻟﻠﺜﻘﺐ ﺗﻜﻮﻥ ﻫﺬﻩ ﺍﳉﺴﻴﻤﺎﺕ ﻗﺪ‬ ‫ﻓﻘﺪﺕ ‪‬ﺟ ﱠﻞ ﻃﺎﻗﺘﻬﺎ‪ .‬ﻭﺗﻔﻘﺪ ﺍﻟﻔﻮﺗﻮﻧﺎﺕ ﺍﳋﺎﺭﺟﺔ ﺑﻌﺾ ﺍﻟﻄﺎﻗﺔ ﺑﺴﺒﺐ ﺗﺂﺛﺮﻫﺎ ﻣﻊ ﺍﳌﺎﺩﺓ‪ .‬ﺃﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻐﺎﺯ ﺭﻗﻴﻘﺎ‪ ،‬ﻓﺘﻜﻮﻥ‬

‫ﺍﻟﺘﺼﺎﺩﻣﺎﺕ ﻧﺎﺩﺭﺓ ﺍﳊﺪﻭﺙ‪ ،‬ﻭﺍﻟﻔﻮﺗﻮﻧﺎﺕ ﻧﺎﺩﺭًﺍ ﻣﺎ ﺗﺘﺂﺛﺮ ﻣﻊ ﺍﳌﺎﺩﺓ‪ .‬ﻭﻋﻨﺪﻣﺎ ﺗﺴﻘﻂ ﺍﳉﺴﻴﻤﺎﺕ ﻋﱪ ﺍﻷﻓﻖ‪ ،‬ﻓﺈ‪‬ﺎ ﺗﺄﺧﺬ ﻃﺎﻗﺘﻬﺎ‬ ‫ﺍﳊﺮﻛﻴﺔ ﻣﻌﻬﺎ‪ .‬ﻭﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﺗﻜﻮﻥ ﻗﺪﺭﺓ ﺍﻟﺜﻘﺐ )ﻛﻨﻘﻄﺔ ﺍﻧﻔﺮﺍﺩﻳﺔ )‪ singularity‬ﻋﻠﻰ ﺍﺑﺘﻼﻉ ﺍﻟﻄﺎﻗﺔ ﺳﻬﻠﺔ‬ ‫ﺍﳌﺸﺎﻫﺪﺓ‪.‬‬

‫ﻭﻟﻜﻲ ﻳﺴﺘﻄﻴﻊ ﺍﻟﺒﺎﺣﺜﻮﻥ ﺍﺳﺘﻨﺘﺎﺝ ﻭﺟﻮﺩ ﻫﺬﻩ ﺍﻟﺜﻘﻮﺏ‪ ،‬ﻭﺟﺐ ﻋﻠﻴﻬﻢ ﺍﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ‬ ‫ﻧﻮﻋﲔ ﻣﻦ ﺍﳊﺠﺞ ﻏﲑ ﺍﳌﺒﺎﺷﺮﺓ‪ .‬ﺃﻭﻻ‪ :‬ﺗﺘﺤﺮﻙ ﺍﻟﻨﺠﻮﻡ ﰲ ﺍﳌﻨﺎﻃﻖ ﺍﻟﻘﺮﻳﺒﺔ ﻣﻦ ﻣﺮﺍﻛﺰ ﺍﺠﻤﻟﺮﺍﺕ‬ ‫ﺑﺴﺮﻋﺔ ﻋﺎﻟﻴﺔ ﻟﺪﺭﺟﺔ ﲡﻌﻠﻬﺎ ﺗﻄﲑ ﺑﻌﻴﺪﺍ ﰲ ﺍﻟﻔﻀﺎﺀ ﻟﻮﻻ ﻭﺟﻮﺩ ﻛﺘﻠﺔ ﻣﺮﻛﺰﻳﺔ ﻫﺎﺋﻠﺔ ـ ﻣﺎ‬ ‫ﻳﻌﺎﺩﻝ ﺑﻠﻴﻮﻥ ﻛﺘﻠﺔ ﴰﺴﻴﺔ ـ ﲡﺬ‪‬ﺎ ﺑﻔﻌﻞ ﺍﻟﺜﻘﺎﻟﺔ ﳓﻮ ﺍﻟﺪﺍﺧﻞ‪ .‬ﻭﻻ ﺑﺪ ﻟﻠﺠﺴﻢ ﺍﻟﺬﻱ ﳛﺘﻮﻱ‬ ‫ﻋﻠﻰ ﻫﺬﻩ ﺍﻟﻜﺘﻠﺔ ﺍﳍﺎﺋﻠﺔ ﺃﻥ ﻳﻜﻮﻥ ﺫﺍ ﻛﺜﺎﻓﺔ ﻋﺎﻟﻴﺔ ﺣﻘﺎ‪ ،‬ﻭﻻ ﻳﻌﺮﻑ ﺍﻟﻌﻠﻤﺎﺀ ﺍﻟﻨﻈﺮﻳﻮﻥ ﺟﺴﻤًﺎ‬

‫‪‬ﺬﻩ ﺍﳋﺎﺻﻴﺔ ﺳﻮﻯ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ‪ .‬ﻭﺛﺎﻧﻴﺎ‪ :‬ﻳﻘﻮﻡ ﺍﻟﻌﺪﻳﺪ ﻣﻦ ﻣﺮﺍﻛﺰ ﺍﺠﻤﻟﺮﺍﺕ ﻭﺍﳌﻨﻈﻮﻣﺎﺕ‬ ‫ﺍﻟﻨﺠﻤﻴﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ ﺑﺈﻃﻼﻕ ﻛﻤﻴﺎﺕ ﻣﻦ ﺍﻹﺷﻌﺎﻋﺎﺕ ﻭﺍﳌﺎﺩﺓ ﲟﻌﺪﻻﺕ ﻫﺎﺋﻠﺔ‪ .‬ﻟﺬﺍ ﻻ ﺑﺪ ﺃﻥ ﲢﺘﻮﻱ‬

‫ﻫﺬﻩ ﺍﻷﺟﺴﺎﻡ ﻋﻠﻰ ﺁﻟﻴﺔ ﻓﻌﺎﻟﺔ ﻭﻏﲑ ﻣﺄﻟﻮﻓﺔ ﻹﻧﺘﺎﺝ ﺍﻟﻄﺎﻗﺔ‪ ،‬ﻭﺍﻷﺩﺍﺓ ﺍﻷﻛﺜﺮ ﻓﺎﻋﻠﻴﺔ ﰲ ﺫﻟﻚ ﻫﻲ‬

‫ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ ﻧﻔﺴﻪ ـ ﻣﻦ ﺍﻟﻨﺎﺣﻴﺔ ﺍﻟﻨﻈﺮﻳﺔ‪ ،‬ﻋﻠﻰ ﺍﻷﻗﻞ‪.‬‬ ‫ﻫﺬﻩ ﺍﻷﺩﻟﺔ ﲨﻴﻌﻬﺎ ﺗﱪﻫﻦ ﻓﻘﻂ ﻋﻠﻰ ﻭﺟﻮﺩ ﺟﺴﻢ ﻣﺎ ‪‬ﻣﺘَﺮﺍﺹ‪ ،‬ﻭﻟﻜﻨﻬﺎ ﻻ ﺗﺆﻛﺪ ﻭﺟﻮﺩ‬


‫ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﺍﻋﺘﻤﺎﺩﺍ ﻋﻠﻰ ﺃﻱ ﻣﻦ ﺧﺼﺎﺋﺼﻬﺎ ﺍﻟﻔﺮﻳﺪﺓ ـ ﺇﺫ ﺇﻥ ﺇﺛﺒﺎﺕ ﻭﺟﻮﺩ ﺍﻟﺜﻘﺐ ﻫﻨﺎ‬ ‫ﻻ ﻳﺄﰐ ﺇﻻ ﻣﻦ ﻏﻴﺎﺏ ﺍﻟﺒﺪﻳﻞ‪ .‬ﺑﻞ ﺇﻥ ﺍﻟﻐﻤﻮﺽ ﻳﻜﺘﻨﻒ ﺍﻟﺘﺤﻘﻖ ﰲ ﺣﺎﻟﺔ ﺍﳌﻨﻈﻮﻣﺎﺕ ﺍﻟﻨﺠﻤﻴﺔ‬ ‫ﺍﻟﺜﻨﺎﺋﻴﺔ‪ ،‬ﺣﻴﺚ ﻳﻌﻠﻢ ﺍﻟﻔﻠﻜﻴﻮﻥ ﺑﻮﺟﻮﺩ ﺟﺴﻢ ﻣﺘﺮﺍﺹ ﻟﻪ ﺑﻌﺾ ﺧﻮﺍﺹ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ‪ ،‬ﻭﻫﻮ‬

‫ﺍﻟﻨﺠﻢ ﺍﻟﻨﺘﺮﻭﱐ ‪ .star Neutron‬ﻭﳝﺜﻞ ﻫﺬﺍ ﺍﳉﺴﻢ ﺃﻳﻀﺎ ﺣﺎﻟﺔ ﻣﺘﻄﺮﻓﺔ ﻣﻦ ﺣﺎﻻﺕ ﺍﳌﺎﺩﺓ ـ‬ ‫ﻣﺮﺻﻮﺻﺔ ﺑﻔﻌﻞ ﺍﻟﺜﻘﺎﻟﺔ ﺇﱃ ﻛﺜﺎﻓﺎﺕ ﻫﺎﺋﻠﺔ ـ ﺣﱴ ﺇ‪‬ﺎ ﺗﺸﺒﻪ ﻧﻮﺍﺓ ﺫﺭﻳﺔ ﻭﻟﻜﻦ ﲝﺠﻢ ﻣﺪﻳﻨﺔ‬ ‫ﻛﺎﻣﻠﺔ! ﻭﺗ‪‬ﻤﺜﱢﻞ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ‪‬ﺎﻳﺔ ﺍﳊﻴﺎﺓ ﻟﻠﻌﺪﻳﺪ ﻣﻦ ﺍﻟﻨﺠﻮﻡ ﺫﺍﺕ ﺍﻟﻜﺘﻞ ﺍﻟﻌﺎﻟﻴﺔ‪ .‬ﰒ ﺇﻥ ﻧﺼﻒ‬ ‫ﻗﻄﺮ ﳒﻢﹴ ﻧﺘﺮﻭﱐ ﺫﻱ ﻛﺘﻠﺔ ﺗﺴﺎﻭﻱ ﻛﺘﻠﺔ ﺍﻟﺸﻤﺲ ﻫﻮ ﳓﻮ ‪ 30‬ﻛﻴﻠﻮﻣﺘﺮﺍ ﻭﻫﺬﺍ ﻳﻌﺎﺩﻝ "ﺃﻓﻖ‬

‫ﺍﳊﺪﺙ" ‪ event horizon‬ﺍﻟﺬﻱ ﻳﻌﲔ ﲣﻮﻡ ﺛﻘﺐ ﺃﺳﻮﺩ ﺫﻱ ‪ 10‬ﻛﺘﻞ ﴰﺴﻴﺔ‪ .‬ﻭﻟﻜﻦ‬ ‫ﺍﳋﺼﺎﺋﺺ ﺍﳌﺮﺻﻮﺩﺓ‪ ،‬ﻣﺜﻞ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺍﳌﺎﺩﺓ ﺍﻟﱵ ﺗﺴﻘﻂ ﳓﻮ ﺍﳉﺴﻢ‪ ،‬ﻻ ﺗﺴﺘﻄﻴﻊ ﺍﻟﺘﻤﻴﻴﺰ ﺑﲔ‬ ‫ﺍﳉﺴﻤﲔ ـ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ ﻭﺍﻟﻨﺠﻢ ﺍﻟﻨﺘﺮﻭﱐ‪ .‬ﻭﻫﻜﺬﺍ ﺑﻘﻴﺖ ﺍﳌﺸﻜﻠﺔ ﺍﻟﺮﺋﻴﺴﻴﺔ ﰲ ﺩﺭﺍﺳﺔ‬ ‫ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﻫﻲ ﰲ ﺍﻛﺘﺸﺎﻑ ﺍﻟﻄﺮﺍﺋﻖ ﺍﻟﺼﺤﻴﺤﺔ ﻟﻠﺘﻤﻴﻴﺰ ﺑﻴﻨﻬﺎ ﻭﺑﲔ ﺍﻟﻨﺠﻮﻡ ﺍﻟﻨﺘﺮﻭﻧﻴﺔ‪.‬‬


‫ﺗﺸﻜﱢﻞ ﺍﻟﻨﺠﻮﻡ ﺍﳊﻴﺔ ﻭﺍﳌﻴﺘﺔ ﺑﺆﺭﺓ ﺍﻟﱰﺍﻉ ﺑﲔ ﺍﻟﺜﻘﺎﻟﺔ ﻭﻧﻮﻉ ﻣﺎ ﻣﻦ ﺍﻟﻀﻐﻂ‬ ‫ﳓﻮ ﺍﳋﺎﺭﺝ‪ ،‬ﻭﳛﺪﺩ ﺗﻮﺍﺯﻥ ﻫﺬﻩ ﺍﻟﻘﻮﻯ ﻣﻊ ﺑﻌﻀﻬﺎ ﺣﺠﻢ ﺍﻟﻨﺠﻢ‪.‬‬

‫)ﺍﻷﺟﺴﺎﻡ ﺍﻟﺜﻼﺛﺔ ﺍﳌﺮﺳﻮﻣﺔ ﲢﺖ ﺍﻟﺸﻤﺲ ﰲ ﺍﻟﺸﻜﻞ ـ ﳍﺎ ﲨﻴﻌًﺎ ﻛﺘﻠﺔ‬

‫ﺍﻟﺸﻤﺲ ﻧﻔﺴﻬﺎ(‪ .‬ﻭﰲ ﳒﻢ ﺣﻲ ﻋﺎﺩﻱ ﻛﺎﻟﺸﻤﺲ‪ ،‬ﻳﻜﻮﻥ ﻣﺼﺪﺭ ﺍﻟﻀﻐﻂ‬ ‫ﻫﻮ ﺍﻟﻐﺎﺯ‪ ،‬ﺍﻟﺬﻱ ﻳﻨﺠﻢ ﻋﻦ ﺍﻟﺘﻔﺎﻋﻼﺕ ﺍﻟﻨﻮﻭﻳﺔ ﰲ ﻗﻠﺐ ﺍﻟﻨﺠﻢ‪ .‬ﺃﻣﺎ ﰲ‬ ‫ﺍﻟﻘﺰﻡ ﺍﻷﺑﻴﺾ ‪ -‬ﻭﻫﻮ "ﺟﺴﺪ" ﻛﺜﻴﻒ ﻣﺘﻮﻫﺞ ﻟﻨﺠﻢ ﻣﻴﺖ ﻳﺸﺒﻪ‬

‫ﺍﻟﺸﻤﺲ‪ -‬ﻓﺎﻟﻀﻐﻂ ﺍﳓﻼﻝ ﻛﻤﻮﻣﻲ ﳛﺪﺛﻪ ﺍﻟﺘﺮﺍﺹ ﺍﻟﺸﺪﻳﺪ‬ ‫ﻟﻺﻟﻜﺘﺮﻭﻧﺎﺕ‪ .‬ﺃﻣﺎ ﰲ ﳒﻢ ﻧﺘﺮﻭﱐ‪ ،‬ﻭﻫﻮ ﻣﻦ ﳐﻠﻔﺎﺕ ﺍﺣﺘﺮﺍﻕ ﻭﺍﻧﻔﺠﺎﺭ‬

‫ﳒﻢ ﺫﻱ ﻛﺘﻠﺔ ﻫﺎﺋﻠﺔ‪ ،‬ﻓﺘﻜﻮﻥ ﺍﻟﺬﺭﺍﺕ ﻗﺪ ﲢﻄﻤﺖ ﻭﺑﻘﻴﺖ ﺍﻟﻨﻮﻯ ﻣﻜﺪﺳﺔ‬ ‫ﻓﻮﻕ ﺑﻌﻀﻬﺎ ‪.‬ﻭﺃﺧﲑﺍ ﰲ ﺣﺎﻟﺔ ﺛﻘﺐ ﺃﺳﻮﺩ‪ ،‬ﻟﻴﺲ ﲦﺔ ﺃﻱ ﺿﻐﻂ ﳓﻮ‬

‫ﺍﳋﺎﺭﺝ؛ ﻭﻣﻦ ﰒ ﻟﻴﺲ ﲦﺔ ﺃﻱ ﻣﻌﺎﺭﺿﺔ ﻟﻠﺜﻘﺎﻟﺔ‪ ،‬ﻭﻳﻨﻬﺎﺭ ﺍﻟﻨﺠﻢ ﳓﻮ‬

‫ﺍﻟﺪﺍﺧﻞ ﺇﱃ ﻧﻘﻄﺔ ﺭﻳﺎﺿﻴﺎﺗﻴﺔ ﺗﻘﺮﻳﺒًﺎ ﺩﺍﺧﻞ ﺳﻄﺢ ﻻ ﻋﻮﺩﺓ ﻣﻨﻪ ﻳﺴﻤﻰ ﺃﻓﻖ‬

‫ﺍﳊﺪﺙ‪.‬‬


‫ﻭﻟﻌﻞ ﺍﻟﻔﻠﻜﻴﲔ ﺍﻛﺘﺸﻔﻮﺍ ﻃﺮﻳﻘﺔ ﻟﺬﻟﻚ‪ ،‬ﻭﻫﻲ ﻃﺮﻳﻘﺔ ﺗﻌﺘﻤﺪ ﻋﻠﻰ ﺍﺧﺘﻼﻑ ﻭﺍﺿﺢ ﺑﲔ‬ ‫ﺍﻟﻨﺠﻮﻡ ﺍﻟﻨﺘﺮﻭﻧﻴﺔ ﻭﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ‪ :‬ﻓﺎﻟﻨﺠﻮﻡ ﺍﻟﻨﺘﺮﻭﻧﻴﺔ ﳍﺎ ﺳﻄﻮﺡ ﻗﺎﺳﻴﺔ ﳝﻜﻦ ﺃﻥ ﺗﺘﺮﺍﻛﻢ‬

‫ﻋﻠﻴﻬﺎ ﺍﳌﺎﺩﺓ ﺍﳌﻨﺠﺬﺑﺔ ﳓﻮ ﺍﳉﺴﻢ؛ ﺃﻣﺎ ﺍﳌﺎﺩﺓ ﺍﻟﱵ ﺗﺴﻘﻂ ﻋﻠﻰ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﻓﺘ‪‬ﺒﺘﻠﻊ ﻭﲣﺘﻔﻲ‬

‫ﺇﱃ ﺍﻷﺑﺪ‪ .‬ﻭﻳﺆﺩﻱ ﻫﺬﺍ ﺍﻻﺧﺘﻼﻑ ﺇﱃ ﺗﻐﲑ ﺩﻗﻴﻖ ﰲ ﺍﻷﺷﻌﺔ ﺍﳌﻨﺒﻌﺜﺔ ﻣﻦ ﺍﳌﻨﻄﻘﺘﲔ ﺍﶈﻴﻄﺘﲔ‬ ‫‪‬ﺬﻳﻦ ﺍﳉﺴﻤﲔ‪ ،‬ﳑﺎ ﻳﺘﻴﺢ ﻟﻠﻔﻠﻜﻴﲔ ﺃﻥ ﻳﱪﻫﻨﻮﺍ ﻋﻠﻰ ﺃﻥ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ ـ ﺍﳉﺴﻢ ﺍﻷﻛﺜﺮ ﻏﺮﺍﺑﺔ‬ ‫ﰲ ﺍﻟﻜﻮﻥ ـ ﻫﻮ ﺣﻘﻴﻘﺔ ﻭﺍﻗﻌﺔ‪.‬‬

‫ﻋﺒﺭ ﺍﻟﺴﻤﻴﻙ ﻭﺍﻟﺭﻗﻴﻕ‬

‫)**(‬

‫ﺇﻥ ﺍﻟﺜﻘﺎﻟﺔ ﺍﻟﺸﺪﻳﺪﺓ ﺩﺍﺧﻞ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﻫﻲ ﺍﻟﱵ ﲡﻌﻞ ﻣﻨﻬﺎ ﳏﺮﻛﺎﺕ ﻓﻌﱠﺎﻟﺔ‪ .‬ﻭﺃﻓﻖ‬ ‫ﺍﳊﺪﺙ ﻫﻮ ﺳﻄﺢ ﳛﻴﻂ ﺑﺎﻟﺜﻘﺐ ﻭﻻ ﻳﺴﻤﺢ ‪‬ﺮﻭﺏ ﺃﻱ ﺷﻲﺀ ﻣﻨﻪ‪ ،‬ﺣﱴ ﻟﻮ ﺑﻠﻐﺖ ﺳﺮﻋﺔ ﻫﺬﺍ‬

‫ﺍﻟﺸﻲﺀ ﺳﺮﻋﺔ ﺍﻟﻀﻮﺀ‪ .‬ﻭﺗﻨﺠﺬﺏ ﺍﻷﺟﺴﺎﻡ ﳓﻮ ﺍﻷﻓﻖ ﺑﺴﺮﻋﺔ ﻋﺎﻟﻴﺔ ﻣﻨﺎﺳﺒﺔ‪ ،‬ﻭﺗﺘﻌﺮﺽ ﰲ‬ ‫ﻃﺮﻳﻘﻬﺎ ﻟﻠﺘﺼﺎﺩﻡ ﺑﺄﺟﺴﺎﻡ ﺃﺧﺮﻯ ﻭﺗﺘﺤﻄﻢ‪ ،‬ﳑﺎ ﻳﺆﺩﻱ ﺇﱃ ﺗﺴﺨﲔ ﺍﳌﻮﺍﺩ ﻗﺮﺏ ﺍﻟﺜﻘﺐ‪ .‬ﻭﳌﺎ‬ ‫ﻛﺎﻧﺖ ﻫﺬﻩ ﺍﻷﺟﺴﺎﻡ ﺗﺘﺤﺮﻙ ﺑﺴﺮﻋﺔ ﻋﺎﻟﻴﺔ ﺗ‪‬ﻘﺎﺭﺏ ﺳﺮﻋﺔ ﺍﻟﻀﻮﺀ‪ ،‬ﻓﺈﻥ ﺍﻟﻄﺎﻗﺔ ﺍﳊﺮﻛﻴﺔ ﺍﻟﱵ‬ ‫ﳝﻜﻦ ﲢﻮﻳﻠﻬﺎ ﺇﱃ ﺣﺮﺍﺭﺓ ﺗ‪‬ﻘﺎﺭﺏ ﺍﻟﻄﺎﻗﺔ ﺍﳌﻼﺯﻣﺔ ﻟﻠﻜﺘﻠﺔ ﺍﻟﺴﺎﻛﻨﺔ )ﺍﻟﻄﺎﻗﺔ = ﺍﻟﻜﺘﻠﺔ ﻣﻀﺮﻭﺑﺔ‬ ‫ﲟﺮﺑﻊ ﺳﺮﻋﺔ ﺍﻟﻀﻮﺀ‪ .(1 (2mc = E ،‬ﻭﺣﱴ ﻳﻌﻮﺩ ﺍﳉﺴﻢ ﺇﱃ ﻣﻮﻗﻌﻪ ﺍﻷﻭﻝ‪ ،‬ﺑﻌﻴﺪﺍ ﻋﻦ‬

‫ﺍﻟﺜﻘﺐ‪ ،‬ﺳﻴﺤﺘﺎﺝ ﺍﳉﺴﻢ ﺇﱃ ﺃﻥ ﻳﺘﻨﺎﺯﻝ ﻋﻦ ﺟﺰﺀ ﻛﺒﲑ ﻣﻦ ﻛﺘﻠﺘﻪ‪ ،‬ﳏﻮ ﹰﻻ ﺇﻳﺎﻩ ﺇﱃ ﻃﺎﻗﺔ ﺻﺮﻓﺔ‪.‬‬ ‫ﻭﻫﻜﺬﺍ ﻓﺈﻥ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﺗﺴﺘﻄﻴﻊ ﲢﻮﻳﻞ ﺍﻟﻜﺘﻠﺔ ﺍﻟﺴﺎﻛﻨﺔ ﺇﱃ ﻃﺎﻗﺔ ﺣﺮﺍﺭﻳﺔ‪.‬‬ ‫ﻭﺗﻌﺘﻤﺪ ﻓﻌﺎﻟﻴﺔ ﻫﺬﺍ ﺍﻟﺘﺤﻮﻳﻞ ﻋﻠﻰ ﺳﺮﻋﺔ ﺩﻭﺭﺍﻥ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ ﺣﻮﻝ ﻧﻔﺴﻪ؛ ﺇﻥ ﺍﻟﺰﺧﻢ‬ ‫ﺍﻟﺰﺍﻭﻱ ‪ momentum angular‬ﻫﻮ ﺇﺣﺪﻯ ﺍﳋﻮﺍﺹ ﺍﻟﻘﻠﻴﻠﺔ ﺍﻟﱵ ﻻ ﺗﻔﻘﺪﻫﺎ ﺍﳌﺎﺩﺓ ﻋﻨﺪﻣﺎ‬ ‫ﺗﺼﺒﺢ ﺟﺰﺀًﺍ ﻣﻦ ﺍﻟﺜﻘﺐ‪ .‬ﻭﻣﻊ ﺃﻧﻪ ﻻ ﳝﻜﻦ ﻣﺸﺎﻫﺪﺓ ﺍﻟﺪﻭﺭﺍﻥ ﻣﺒﺎﺷﺮﺓ‪ ،‬ﺇﻻ ﺃﻥ ﻫﺬﺍ ﺍﻟﺪﻭﺭﺍﻥ‬ ‫ﻳﻔﺘﻞ ‪ twists‬ﺍﻟﺰﻣﻜﺎﻥ ‪ space-time‬ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻭﺭﺓ ﻟﻸﻓﻖ‪ .‬ﻭﻣﻦ ﻧﺎﺣﻴﺔ ﺃﺧﺮﻯ ﻻ ﻳﺴﺘﻄﻴﻊ‬

‫ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ ﺃﻥ ﻳﺪﻭﱠﻡ ‪ spin‬ﺑﺴﺮﻋﺔ ﻋﺎﻟﻴﺔ ﻏﲑ ﳏﺪﺩﺓ‪ ،‬ﺇﺫ ﺇﻧﻪ ﻋﻨﺪﻣﺎ ﺗﻔﻮﻕ ﺍﻟﺴﺮﻋﺔ ﺍﻟﺪﻭﺭﺍﻧﻴﺔ‬ ‫ﻗﻴﻤﺔ ﻋﻈﻤﻰ ﻣﻌﻴﻨﺔ‪ ،‬ﻓﺈﻥ ﺳﻄﺢ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ ﻳﺘﻘﻠﺺ ﰒ ﳜﺘﻔﻲ ﲤﺎﻣﺎ‪ .‬ﻭﻫﻜﺬﺍ ﻓﺈﻥ ﺍﻟﺜﻘﺐ ﺍﻟﺬﻱ‬ ‫ﻳﺪﻭﱠﻡ ﻗﺮﺏ ﺳﺮﻋﺘﻪ ﺍﻟﻌﻈﻤﻰ ﻳﺴﺘﻄﻴﻊ ﲢﻮﻳﻞ ‪ 42‬ﰲ ﺍﳌﺌﺔ ﻣﻦ ﺍﻟﻜﺘﻠﺔ ﺍﻟﺴﺎﻗﻄﺔ ﻋﻠﻴﻪ ﺇﱃ ﻃﺎﻗﺔ‪،‬‬ ‫ﰲ ﺣﲔ ﺃﻥ ﺛﻘﺒﺎ ﺳﺎﻛﻨﺎ ﻳﺴﺘﻄﻴﻊ ﲢﻮﻳﻞ ‪ 6‬ﰲ ﺍﳌﺌﺔ ﻓﻘﻂ‪ .‬ﻭﺑﺎﳌﻘﺎﺭﻧﺔ ﻓﺈﻥ ﻓﻌﺎﻟﻴﺔ ﺍﻟﺘﺤﻮﻳﻞ ﰲ‬

‫ﺍﻻﻧﺪﻣﺎﺝ ﺍﻟﻨﻮﻭﻱ ﺍﳊﺮﺍﺭﻱ ‪ thermonuclear fusion‬ﰲ ﺍﻟﻨﺠﻮﻡ ﺍﻟﻌﺎﺩﻳﺔ ﻫﻲ ﳎﺮﺩ ‪0.7‬‬


‫ﰲ ﺍﳌﺌﺔ‪ ،‬ﻭﰲ ﺍﻧﺸﻄﺎﺭ ﺍﻟﻴﻮﺭﺍﻧﻴﻮﻡ‪ ،‬ﺗﺒﻠﻎ ﻧﺴﺒﺔ ﺍﻟﺘﺤﻮﻳﻞ ‪ 0.1‬ﰲ ﺍﳌﺌﺔ ﻓﺤﺴﺐ‪.‬‬

‫ﺗَﻔﺠﱡﺮ ﺇﺷﻌﺎﻋﺎﺕ ﺳﻴﻨﻴﺔ ﻣﻦ ﻣﺼﺪﺭ ﻋﺎﺑﺮ ﺑﻠﻎ ﺫﺭﻭﺗﻪ ﰲ ‪1975/8/13‬؛‬

‫ﻭﻋﻠﻰ ﻣﺪﻯ ﺑﻀﻌﺔ ﺃﺳﺎﺑﻴﻊ ﺗﻀﺎﻋﻔﺖ ﺍﻟﺸﺪﺓ )ﺍﶈﻮﺭ ﺍﻟﺮﺃﺳﻲ )ﲟﻌﺎﻣﻞ‬

‫‪ 10000‬ﻋﻠﻰ ﺍﻷﻗﻞ‪ .‬ﻫﺬﺍ ﺍﳌﺼﺪﺭ ﺍﻟﺴﻴﲏ‪ ،‬ﺍﳌﻌﺮﻭﻑ ﺑـ‪A0620-‬‬ ‫‪ ،00‬ﻭﺍﻟﻮﺍﻗﻊ ﰲ ﻛﻮﻛﺒﺔ ﻭﺣﻴﺪ ﺍﻟﻘﺮﻥ‪ ، Monoceros‬ﻫﻮ ﺍﻷﻛﺜﺮ‬

‫ﺳﻄﻮﻋًﺎ ﻋﻠﻰ ﺍﻹﻃﻼﻕ‪ .‬ﻭﻗﺪ ﺷﺎﻫﺪ ﺍﻟﻔﻠﻜﻴﻮﻥ ﺗﻔﺠﺮﺍ ﰲ ﺍﻟﻀﻮﺀ ﺍﳌﺮﺋﻲ ﻣﻦ‬ ‫ﺍﳌﻨﻄﻘﺔ ﻧﻔﺴﻬﺎ ﻗﺒﻞ ‪ 58‬ﻋﺎﻣﺎ‪ ،‬ﻟﻜﻦ ﺍﳌﻜﺎﺷﻴﻒ ﺍﻟﺴﻴﻨﻴﺔ ﱂ ﺗﻜﻦ ﻣﻌﺮﻭﻓﺔ ﰲ‬

‫ﺫﻟﻚ ﺍﻟﻮﻗﺖ‪.‬‬

‫ﻟﻮ ﺍﺳﺘﻄﺎﻋﺖ ﺍﳉﺴﻴﻤﺎﺕ ﺍﳌﻮﺟﻮﺩﺓ ﺣﻮﻝ ﺍﻟﺜﻘﺐ ﺃﻥ ﺗﺘﻘﺎﺳﻢ ﺍﻟﻄﺎﻗﺔ ﻓﻴﻤﺎ ﺑﻴﻨﻬﺎ ـ‬ ‫ﺑﺎﻟﺘﺼﺎﺩﻡ‪ ،‬ﻣﺜﻼ ـ ﻟﻜﺎﻧﺖ ﺍﳌﺎﺩﺓ ﺍﳍﺎﺑﻄﺔ ﺳﺎﺧﻨﺔ ﺇﱃ ﺩﺭﺟﺔ ﺗﻔﻮﻕ ﺍﻟﺘﺨﻴﻞ‪ .‬ﻓﺪﺭﺟﺔ ﺣﺮﺍﺭﺓ‬ ‫ﭘﺮﻭﺗﻮﻥ ﻣﺎ ﺧﺎﺭﺝ ﻣﻨﻄﻘﺔ ﺍﻷﻓﻖ‪ ،‬ﻭﺍﻟﱵ ﺗﻌﺎﺩﻝ ﲢﻮﻳﻞ ﺟﺰﺀ ﻛﺒﲑ ﻣﻦ ﻛﺘﻠﺘﻪ ﺇﱃ ﻃﺎﻗﺔ ﺣﺮﺍﺭﻳﺔ‬

‫ﺻﺮﻓﺔ‪ ،‬ﻫﻲ ﳓﻮ ‪ 1013‬ﺩﺭﺟﺔ‪ .‬ﻭﺗﺘﻮﻫﺞ ﺍﳌﺎﺩﺓ ﰲ ﻣﺜﻞ ﻫﺬﻩ ﺍﻟﺪﺭﺟﺎﺕ ﻣ‪‬ﻄﻠِﻘ ﹰﺔ ﺃﺷﻌﺔ ﮔﺎﻣﺎ‬

‫‪ .&- rays‬ﻭﻣﻊ ﺃﻧﻪ ﻳﺴﻬﻞ ﺗﺴﺨﲔ ﺍﻟﭙﺮﻭﺗﻮﻧﺎﺕ )ﻭﺍﻷﻳﻮﻧﺎﺕ‪ ،‬ﺑﺼﻮﺭﺓ ﻋﺎﻣﺔ(‪ ،‬ﻓﺈ‪‬ﺎ ﻻ ﺗﺸﻊ‬

‫ﺍﻟﻄﺎﻗﺔ ﺑﺼﻮﺭﺓ ﺟﻴﺪﺓ‪ ،‬ﺇﺫ ﺇ‪‬ﺎ ﻏﺎﻟﺒﺎ ﻣﺎ ﺗﻨﻘﻞ ﻃﺎﻗﺘﻬﺎ‪ ،‬ﺑﺎﻟﺘﺼﺎﺩﻡ‪ ،‬ﺇﱃ ﻣﺼﺎﺩﺭ ﺇﺷﻌﺎﻉ ﺃﻓﻀﻞ ﻣﻨﻬﺎ‬ ‫ﻭﺧﺎﺻﺔ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ‪ ،‬ﺍﻟﱵ ﺗﻄﻠﻖ ﻓﻮﺗﻮﻧﺎﺕ ﺫﺍﺕ ﻃﺎﻗﺎﺕ ﻣﻨﺨﻔﻀﺔ‪ ،‬ﻣﺜﻞ ﺍﻹﺷﻌﺎﻋﺎﺕ‬ ‫ﺍﻟﺴﻴﻨﻴﺔ)‪ .(2‬ﻭﳍﺬﺍ ﻳﻨﺒﻐﻲ ﺃﻥ ﻳﺸﺎﻫﺪ ﺍﻟﻔﻠﻜﻴﻮﻥ ﺩﻓﻘﹰﺎ ﻗﻮﻳًﺎ ﻣﻦ ﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﺴﻴﻨﻴﺔ ﻣﻦ ﻣﻨﻄﻘﺔ‬

‫ﻏﻨﻴﺔ ﺑﺎﻹﻟﻜﺘﺮﻭﻧﺎﺕ‪.‬‬

‫ﻭﻫﺬﺍ ﺑﺎﻟﻀﺒﻂ ﻣﺎ ﻳﺮﺻﺪﻩ ﺍﻟﻔﻠﻜﻴﻮﻥ ﻓﻌﻼ ﰲ ﺑﻌﺾ ﻣﻨﻈﻮﻣﺎﺕ ﺍﻟﺜﻨﺎﺋﻴﺎﺕ ﺍﻟﻨﺠﻤﻴﺔ ﺍﻟﺴﻴﻨﻴﺔ‬

‫)‪(3‬‬

‫‪ .systems x-ray binary‬ﻭﻗﺪ ﰎ ﺍﻛﺘﺸﺎﻑ ﺃﻭﻝ ﻣﻨﻈﻮﻣﺔ ﻣﻦ ﻫﺬﺍ ﺍﻟﻨﻮﻉ ﻋﺎﻡ ‪،1962‬‬


‫ﻭﻣﻨﺬﺋﺬ ﲢﻘﻖ ﺍﻟﻔﻠﻜﻴﻮﻥ ﻣﻦ ﻫﻮﻳﺔ ﻋﺪﺓ ﻣﺌﺎﺕ ﻣﻦ ﻫﺬﺍ ﺍﻟﻨﻮﻉ ﻣﻦ ﺍﻟﺜﻨﺎﺋﻴﺎﺕ‪ :‬ﺇ‪‬ﺎ ﺃﻛﺜﺮ ﻣﺼﺎﺩﺭ‬ ‫ﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﺴﻴﻨﻴﺔ ﺳﻄﻮﻋًﺎ ﰲ ﺍﻟﺴﻤﺎﺀ‪ .‬ﻭﻳ‪‬ﻌﺘﻘﺪ ﺃ‪‬ﺎ ﺗﺘﺄﻟﻒ ﻣﻦ ﳒﻢ ﻋﺎﺩﻱ ﻳﺘﺤﺮﻙ ﰲ ﻣﺪﺍﺭ‬

‫ﺸ ﱡﻊ ﺑﻌﻀﻬﺎ ﺍﻵﺧﺮ ﻣﻦ ﺣﲔ‬ ‫ﺣﻮﻝ ﺟﺴﻢ ﻏﲑ ﻣﺮﺋﻲ‪ .‬ﻭﺑﻌﻀﻬﺎ ﻳ‪‬ﻄﻠﻖ ﺇﺷﻌﺎﻋًﺎ ﺑﺎﺳﺘﻤﺮﺍﺭ‪ ،‬ﰲ ﺣﲔ ‪‬ﻳ ِ‬ ‫ﺇﱃ ﺁﺧﺮ ﻭﻟﻔﺘﺮﺓ ﺇﺷﻌﺎﻉﹴ ﺗﻘﺪﺭ ﺑﺎﻟﺸﻬﻮﺭ ﺃﻭ ﺗﻜﺎﺩ )ﻭﺗﺴﻤﻰ ﺍﻷﺷﻌﺔ ﺍﻟﺴﻴﻨﻴﺔ ﺍﻟﻌﺎﺑﺮﺓ‬

‫‪x-ray‬‬

‫‪(transients‬؛ ﻟﻜﻨﻬﺎ ﺗﻘﻀﻲ ﻣﻌﻈﻢ ﻋﻤﺮﻫﺎ ﰲ ﺣﺎﻟﺔ ﻫﺎﻣﺪﺓ‪ ،‬ﻣ‪‬ﻄﻠﻘ ﹰﺔ ﺍﻟﻘﻠﻴﻞ ﻣﻦ ﺍﻷﺷﻌﺔ‬ ‫ﺍﻟﺴﻴﻨﻴﺔ‪ ،‬ﺑﻞ ﺇﻥ ﻣﻌﻈﻢ ﻫﺬﻩ ﺍﻟﻨﻈﻢ ﱂ ﺗ‪َ ‬ﺮ ﺳﻮﻯ ﻣﺮﺓ ﻭﺍﺣﺪﺓ‪ .‬ﻭﰲ ﺣﺎﻟﺔ ﺍﻟﺘﻔﺠﺮ‪ ،‬ﻓﺈﻥ ﻫﺬﻩ‬

‫ﺍﻷﺟﺴﺎﻡ ﺗﻄﻠﻖ ﻣﻦ ‪ 3010‬ﺇﱃ ‪31 10‬ﻭﺍﻁ ﻣﻦ ﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﺴﻴﻨﻴﺔ ـ ﺃﻱ ﻣﺎ ﻳﻌﺎﺩﻝ‬ ‫‪ 100000‬ﺿﻌﻒ ﻣﻦ ﺍﳋﺮﺝ ‪ output‬ﺍﻟﻜﻠﻲ ﻟﻠﺸﻤﺲ‪.‬‬ ‫ﺇﻥ ﺗﻮﺯﻉ ﺍﻟﻄﺎﻗﺔ ﰲ ﻫﺬﺍ ﺍﻹﺷﻌﺎﻉ ﻳﻜﺎﺩ ﻳﺸﺒﻪ ﺷﻜﻞ ﻃﻴﻒ ﻣﺎ ﻳﻌﺮﻑ ﺑـ »ﺍﳉﺴﻢ ﺍﻷﺳﻮﺩ«‬

‫‪ ،black body‬ﺃﻱ ﺇﻧﻪ ﳝﺎﺛﻞ )ﻭﻟﻜﻨﻪ ﺃﺷﺪ ﺑﻜﺜﲑ ﻣﻦ( ﺍﻟﻄﻴﻒ ﺍﳌﻨﺒﻌﺚ ﻣﻦ ﺃﺟﺴﺎﻡ ﻋﺪﻳﺪﺓ‬ ‫ﻣﺘﻨﻮﻋﺔ ﻛﺎﻟﺸﻤﺲ‪ ،‬ﻭﺍﻟﻔﺤﻢ ﺍﳌﺘﻮﻫﺞ‪ ،‬ﻭﺣﱴ ﺟﺴﻢ ﺍﻹﻧﺴﺎﻥ‪ .‬ﻭﻳﻨﺒﻌﺚ ﻃﻴﻒ ﺍﳉﺴﻢ ﺍﻷﺳﻮﺩ ﻣﻦ‬ ‫ﻭﺳﻂ ﺫﻱ »ﲰﺎﻛﺔ ﺿﻮﺋﻴﺔ« ﻋﺎﻟﻴﺔ‪ ،‬ﺃﻱ ﻭﺳﻂ ﺫﻱ ﻛﺜﺎﻓﺔ ﻣﺮﺗﻔﻌﺔ‪ ،‬ﲝﻴﺚ ﺇﻥ ﺍﻟﻔﻮﺗﻮﻧﺎﺕ ﺍﳌﺘﻮﻟﺪﺓ‬

‫ﺩﺍﺧﻞ ﺍﻟﻮﺳﻂ ﻻ ﺗﺴﺘﻄﻴﻊ ﺃﻥ ﺗﻐﺎﺩﺭﻩ ﺇﻻ ﺑﻌﺪ ﺃﻥ ﺗﺼﻄﺪﻡ ﻣﺮﺍﺕ ﻋﺪﻳﺪﺓ ﺑﺎﻹﻟﻜﺘﺮﻭﻧﺎﺕ‪ .‬ﻭﺗﺆﺩﻱ‬ ‫ﻫﺬﻩ ﺍﻟﺘﺼﺎﺩﻣﺎﺕ ﺇﱃ ﺑﻌﺜﺮﺓ ﺍﻟﻔﻮﺗﻮﻧﺎﺕ ﺃﻭ ﺗﺪﻣﲑﻫﺎ‪ ،‬ﺃﻭ ﺇﱃ ﺇﻧﺘﺎﺝ ﻓﻮﺗﻮﻧﺎﺕ ﺟﺪﻳﺪﺓ‪ ،‬ﳑﺎ ﻳﻌﲏ‬ ‫ﺇﺧﻔﺎﺀ ﺍﳌﻨﺒﻊ ﺍﻷﺻﻠﻲ ﻟﻠﻔﻮﺗﻮﻥ ﻣﻦ ﺟﻬﺔ ﻭﺇﻋﻄﺎﺀ ﻗﻴﻤﺔ ﻭﺳﻄﻴﺔ ﻟﻜﻞ ﺗﺂﺛﺮ ﻣﻦ ﺟﻬﺔ ﺃﺧﺮﻯ‪.‬‬ ‫ﻭﻫﻜﺬﺍ ﻓﺈﻥ ﺍﻟﻄﻴﻒ ﺍﻟﻨﺎﺗﺞ ﻳﻌﺘﻤﺪ ﻓﻘﻂ ﻋﻠﻰ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﻭﺍﳌﺴﺎﺣﺔ ﺍﻟﻜﻠﻴﺔ ﻟﻠﺴﻄﺢ ﺍ ﹸﳌﺸِﻊ‪.‬‬ ‫ﻭﺑﺎﳌﻘﺎﺑﻞ ﻓﺈﻥ ﺍﻟﻔﻮﺗﻮﻧﺎﺕ ﺍﳌﻨﺒﻌﺜﺔ ﻣﻦ ﺟﺴﻢ ﻏﺎﺯﻱ‪ ،‬ﺃﻱ ﻭﺳﻂ »ﺭﻗﻴﻖ ﺿﻮﺋﻴﺎ«‪ ،‬ﻻ ﺗﺘﺂﺛﺮ ﺇﻻ‬

‫ﻧﺎﺩﺭﺍ ﻣﻊ ﺍﻟﻮﺳﻂ ﻗﺒﻞ ﺍﻹﻓﻼﺕ ﻣﻨﻪ‪ ،‬ﻟﺬﺍ ﻓﺈﻥ ﻃﻴﻔﻬﺎ ﺍﻻﻧﺒﻌﺎﺛﻲ ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﺍﳋﻮﺍﺹ ﻭﺍﻟﺪﻗﺎﺋﻖ‬ ‫ﺍﻟﺘﻔﺼﻴﻠﻴﺔ ﻟﻠﻤﺎﺩﺓ )ﺃﻱ ﺍﻟﻐﺎﺯ(‪.‬‬ ‫ﺇﻥ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﺍﳌﺮﺗﻘﺒﺔ ﻟﻠﺜﻨﺎﺋﻴﺎﺕ ﺍﻟﺴﻴﻨﻴﺔ ﻫﻲ ﳓﻮ ‪ 710‬ﺩﺭﺟﺔ‪ ،‬ﻭﻫﻲ ﺩﺭﺟﺔ ﻣﺘﻮﺍﻓﻘﺔ‬ ‫ﻣﻊ ﺗﻠﻚ ﺍﳌﺘﻮﻗﻌﺔ ﻣﻦ ﻭﺟﻮﺩ ﺛﻘﺐ ﺃﺳﻮﺩ‪ .‬ﻭﻟﻜﻲ ﻳﻮﻟﱢﺪ ﺍﻻﻧﺒﻌﺎﺙ ﺍﳌﺮﺻﻮﺩ‪ ،‬ﻓﺈﻥ ﻋﻠﻰ ﺍﻟﺜﻘﺐ ﺃﻥ‬

‫ﻳﺒﺘﻠﻊ )ﺃﻱ ﻳﺘﻨﺎﻣﻰ(‪ ،‬ﳓﻮ ‪ 10-9‬ﺇﱃ ‪ 10-8‬ﻛﺘﻠﺔ ﴰﺴﻴﺔ ﰲ ﺍﻟﻌﺎﻡ‪ ،‬ﻭﻫﻮ ﻣﺎ ﻳﺘﻔﻖ ﻣﻊ ﺗﻘﺪﻳﺮﺍﺕ‬

‫ﻛﻤﻴﺔ ﺍﻟﻜﺘﻠﺔ ﺍﻟﱵ ﻳﻔﻘﺪﻫﺎ ﺍﻟﻨﺠﻢ ﺍﻟﻌﺎﺩﻱ ﺑﺎﻧﺘﻘﺎﳍﺎ ﺇﱃ ﺭﻓﻴﻘﻪ )ﰲ ﺍﻟﺜﻨﺎﺋﻴﺔ(‪ .‬ﻭﻫﻜﺬﺍ ﻓﻘﺪ ﺗﺸﻜﻞ‬ ‫ﺍﻟﺜﻨﺎﺋﻴﺎﺕ ﺍﻟﺴﻴﻨﻴﺔ ﺍﻵﻥ ﺃﻓﻀﻞ ﺑﺮﻫﺎﻥ ﻋﻠﻰ ﻭﺟﻮﺩ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ)‪.(4‬‬


‫ﺠﺱ ﺍﻟﻨﺒﺽ‬

‫)***(‬

‫ﺇﻻ ﺃﻥ ﺍﳊﺠﺞ ﻧﻔﺴﻬﺎ ﺗﻨﻄﺒﻖ ﺃﻳﻀﺎ ﻋﻠﻰ ﺍﻟﻨﺠﻢ ﺍﻟﻨﺘﺮﻭﱐ‪ ،‬ﺍﻟﺬﻱ ﻳﺸﻜﻞ ﳏﺮﻛﹰﺎ ﻣﺪﻫﺸًﺎ ﰲ‬ ‫ﻏﺎﻳﺔ ﺍﻟﻘﻮﺓ؛ ﻭﺇﻥ ﻛﺎﻥ ﺃﺿﻌﻒ ﻣﻦ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ‪ .‬ﻭﺗﺴﺘﻄﻴﻊ ﺍﳌﻮﺍﺩ ﺃﻥ ﺗﺮﺗﻄﻢ ﺑﺴﻄﺢ ﺍﻟﻨﺠﻢ‬

‫ﺑﻨﺼﻒ ﺳﺮﻋﺔ ﺍﻟﻀﻮﺀ‪ ،‬ﻣﺜﻼ‪ ،‬ﻣﺘﺤﻮﻟﺔ ﺑﺬﻟﻚ ﺇﱃ ﻃﺎﻗﺔ ﺑﻜﻔﺎﺀﺓ ‪ 10‬ﰲ ﺍﳌﺌﺔ ﺗﻘﺮﻳﺒﺎ ـ ﻭﻫﻲ‬ ‫ﻟﻴﺴﺖ ﺑﺎﻟﺒﻌﻴﺪﺓ ﻋﻦ ﺍﻟﻜﻔﺎﺀﺓ ﰲ ﺣﺎﻟﺔ ﺛﻘﺐ ﳕﻮﺫﺟﻲ‪.‬‬ ‫ﻭﻳﻌﺮﹺﻑ ﺍﻟﻔﻠﻜﻴﻮﻥ ﺣﻘﺎ ﺃﻥ ﺍﳉﺴﻢ ﺍﳌﺘﺮﺍﺹ ‪ compact‬ﰲ ﺍﻟﻌﺪﻳﺪ ﻣﻦ ﺍﳌﻨﻈﻮﻣﺎﺕ ﺍﻟﺜﻨﺎﺋﻴﺔ‬

‫ﻟﻴﺲ ﺛﻘﺒﺎ ﺃﺳﻮﺩ‪ ،‬ﻭﻳﻌﺘﻘﺪﻭﻥ ﺃﻥ ﺍﻟﻨﺒﺎﺿﺎﺕ ‪ pulsars‬ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺍﳌﻮﺟﻮﺩﺓ ﰲ ﺍﻟﺜﻨﺎﺋﻴﺎﺕ‪ ،‬ﻣﺜﻠﻬﺎ‬ ‫ﻣﺜﻞ ﺍﻟﻨﻮﺍﺑﺾ ﺍﳌﻨﻔﺮﺩﺓ‪ ،‬ﻟﻴﺴﺖ ﺳﻮﻯ ﳒﻮﻡ ﻧﺘﺮﻭﻧﻴﺔ ﳑﻐﻨﻄﺔ ﺗﺪﻭﺭ ﺑﺴﺮﻋﺔ ﻛﺒﲑﺓ‪ .‬ﺃﻣﺎ ﺍﻟﺜﻘﻮﺏ‬ ‫ﺍﻟﺴﻮﺩﺍﺀ ﺍﻟﻔﻠﻜﻴﺔ ﻓﻼ ﳝﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﳍﺎ ﺣﻘﻞ ﻣﻐﻨﻄﻴﺴﻲ‪ ،‬ﻭﺇﳕﺎ ﻫﻲ ﻋﺒﺎﺭﺓ ﻋﻦ ﺃﺟﺴﺎﻡ ﻣﺴﻄﺤﺔ‬ ‫‪ ،featureless‬ﻭﻻ ﺗﺴﺘﻄﻴﻊ ﺗﻮﻟﻴﺪ ﺍﻟﻨﺒﻀﺎﺕ ﺍﳌﻨﺘﻈﻤﺔ ﺍﻟﱵ ﺗﻄﻠﻘﻬﺎ ﺍﻟﻨﺒﺎﺿﺎﺕ ﺍﻟﻨﺠﻤﻴﺔ‪ .‬ﻛﺬﻟﻚ‬

‫ﻻ ﳝﻜﻦ ﺃﻥ ﳜﺘﻠﻂ ﺍﻷﻣﺮ ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﺍﻟﻨﺒﺎﺿﺎﺕ ﺍﻟﺴﻴﻨﻴﺔ ﺍﳌﻨﻔﺮﺩﺓ‪ ،‬ﻓﻬﻲ ﻻ ﳝﻜﻦ ﺃﻥ ﺗﻜﻮﻥ ﺛﻘﻮﺑًﺎ‬ ‫ﺳﻮﺩﺍﺀ‪ ،‬ﺣﻴﺚ ﺇﻥ ﺇﺷﻌﺎﻋًﺎ ﻧﺒﻀﻴًﺎ ﻣﻨﺘﻈﻤًﺎ ﻭﻣﺴﺘﻘﺮًﺍ ﻳﺴﺘﺒﻌﺪ ﻭﺟﻮﺩ ﺍﻟﺜﻘﺐ؛ ﻭﺣﱴ ﺍﻟﺘﻔﺠﺮﺍﺕ‬ ‫ﺍﻟﺴﻴﻨﻴﺔ ﻏﲑ ﺍﳌﻨﺘﻈﻤﺔ ﺗﺪﻝ ﻋﻠﻰ ﻭﺟﻮﺩ ﳒﻢ ﻧﺘﺮﻭﱐ‪ ،‬ﻓﻬﻮ ﻳﻮﻓﺮ ﺳﻄﺤﺎ ﳝﻜﻦ ﺃﻥ ﺗﺘﺮﺍﻛﻢ ﻋﻠﻴﻪ‬

‫ﺍﳌﺎﺩﺓ ﺗﺪﺭﳚﻴﺎ‪ ،‬ﻭﺗﻨﻔﺠﺮ ﻣﻦ ﺣﲔ ﻵﺧﺮ)‪.(5‬‬

‫ﺛﻼﺛﺔ ﺃﺳﺎﻟﻴﺐ ﻟﺘﻨﺎﻣﻲ ﺍﳌﺎﺩﺓ ﺗ‪‬ﺼﺪِﺭ ﺇﺷﻌﺎﻋﺎﺕ ﺑﻄﺮﻕ ﳐﺘﻠﻔﺔ‪ .‬ﻋﻨﺪﻣﺎ ﻳﺴﻘﻂ ﺍﻟﻐﺎﺯ ﻟﻮﻟﺒﻴًﺎ ﻓﻮﻕ ﳒﻢ ﻧﺘﺮﻭﱐ‪ ،‬ﻓﺈﻧﻪ ﻳﻄﻠﻖ ﻣﻌﻈﻢ‬ ‫ﻃﺎﻗﺘﻪ ﻋﻨﺪ ﺍﻻﺭﺗﻄﺎﻡ ﺑﺎﻟﺴﻄﺢ )ﰲ ﺍﻟﻴﺴﺎﺭ(‪ .‬ﺃﻣﺎ ﺍﻟﻐﺎﺯ ﺍﻟﺴﺎﻗﻂ ﻟﻮﻟﺒﻴﹰﺎ ﳓﻮ ﺛﻘﺐ ﺃﺳﻮﺩ‪ ،‬ﻓﺈﻧﻪ ﻻ ﻳﺮﺗﻄﻢ ﺑﺸﻲﺀ‪ ،‬ﻭﺇﳕﺎ ﳜﺘﻔﻲ‬

‫ﻋﱪ ﺍﻷﻓﻖ‪ .‬ﻭﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ‪ ،‬ﺇﻣﺎ ﺃﻥ ﻳﻄﻠﻖ ﺍﻟﻐﺎﺯ ﻃﺎﻗﺘﻪ ﻗﺒﻞ ﻭﺻﻮﻟﻪ ﺇﱃ ﺍﻷﻓﻖ )ﺍﻟﻮﺳﻂ )ﻛﻤﺎ ﻳﻔﻌﻞ ﺇﺫﺍ ﻛﺎﻧﺖ ﻛﺜﺎﻓﺘﻪ‬ ‫ﻋﺎﻟﻴﺔ‪ ،‬ﲝﻴﺚ ﺗﺘﺼﺎﺩﻡ ﺫﺭﺍﺕ ﺍﻟﻐﺎﺯ‪ ،‬ﻭﺇﻣﺎ ﺃﻥ ﳛﻤﻞ ﺍﻟﻄﺎﻗﺔ ﻣﻌﻪ ﺇﱃ "ﺍﻟﻘﱪ" )ﰲ ﺍﻟﻴﻤﲔ(‪ .‬ﻭﻫﻜﺬﺍ ﻳﺴﺘﻄﻴﻊ ﺍﻟﻔﻠﻜﻴﻮﻥ ﺃﻥ‬ ‫ﻳﺴﺘﺨﺪﻣﻮﺍ ﻧﻮﻉ ﺍﻹﺷﻌﺎﻉ ﺍﻟﺼﺎﺩﺭ ﻟﺘﺤﺪﻳﺪ ﻧﻮﻉ ﺍﳉﺴﻢ ﺍﳌﻮﺟﻮﺩ ﰲ ﺍﻟﺪﺍﺧﻞ‪.‬‬


‫ﻭﻟﺴﻮﺀ ﺍﳊﻆ‪ ،‬ﻓﺈﻥ ﺍﻟﻌﻜﺲ ﻟﻴﺲ ﺻﺤﻴﺤﺎ‪ ،‬ﻓﻐﻴﺎﺏ ﺍﻟﻨﺒﻀﺎﺕ ﺃﻭ ﺍﻟﺘﻔﺠﺮﺍﺕ ﻻ ﻳﻌﲏ ﻭﺟﻮﺩ‬ ‫ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ ﺑﺎﻟﻀﺮﻭﺭﺓ‪ ،‬ﻓﻠﻴﺲ ﻣﻦ ﺍﳌﺘﻮﻗﻊ‪ ،‬ﻋﻠﻰ ﺳﺒﻴﻞ ﺍﳌﺜﺎﻝ‪ ،‬ﺃﻥ ﻳ‪‬ﻨﺘِﺞ ﳒﻢ ﻧﺘﺮﻭﱐ ﺗﺰﺩﺍﺩ‬

‫ﺍﳌﺎﺩﺓ ﻓﻴﻪ ﲟﻌﺪﻝ ﻋﺎﻝﹴ ﺟﺪًﺍ ﺗﻔﺠﺮﺍﺕ ﺳﻴﻨﻴﺔ‪ .‬ﻟﻜﻦ ﻣﻌﺪﻻﺕ ﺍﺯﺩﻳﺎﺩ ﺍﳌﺎﺩﺓ ﺗﺘﻐﲑ ﻣﻊ ﺍﻟﺰﻣﻦ‪ ،‬ﳑﺎ‬

‫ﻳﺆﺩﻱ ﺇﱃ ﺣﺪﻭﺙ ﻣﻔﺎﺟﺂﺕ‪ .‬ﻋﻠﻰ ﺳﺒﻴﻞ ﺍﳌﺜﺎﻝ‪ ،‬ﻛﺎﻥ ﺍﻟﻔﻠﻜﻴﻮﻥ ﻳﻈﻨﻮﻥ ﺃﻥ ﺍﳌﻨﻈﻮﻣﺔ ﺳﲑْﺳﻴﻨَﺲ‬ ‫‪1-Circinus X‬ﲢﺘﻮﻱ ﻋﻠﻰ ﺛﻘﺐ ﺃﺳﻮﺩ‪ ،‬ﻭﻟﻜﻦ ﺫﻟﻚ ﺍﻧﺘﻔﻰ ﻋﻨﺪﻣﺎ ﻇﹶﻬﺮ ﺃ‪‬ﺎ ﺗﻄﻠﻖ ﺗﻔﺠﺮﺍﺕ‬ ‫ﺳﻴﻨﻴﺔ‪.‬‬ ‫ﺗﺘﻤﻴﺰ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﲞﺎﺻﻴﺘﲔ ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻣﻬﻤﺎ ﻟﻠﺘﺄﻛﺪ ﻣﻦ ﻭﺟﻮﺩﻫﺎ ﰲ ﺍﳌﻨﻈﻮﻣﺎﺕ‬ ‫ﺍﻟﺜﻨﺎﺋﻴﺔ‪ :‬ﻭﺟﻮﺩ ﻛﺘﻠﺔ ﻛﺒﲑﺓ ﻏﲑ ﳏﺪﻭﺩﺓ‪ ،‬ﻭﻋﺪﻡ ﻭﺟﻮﺩ ﺳﻄﺢ ﺻﻠﺪ ﺣﻮﻝ ﺍﳉﺴﻢ‪ .‬ﻓﻜﺘﻠﺔ‬ ‫ﺍﻟﺜﻘﺐ ﳏﺪﺩﺓ ﺑﻄﺮﻳﻘﺔ ﺗﻜﻮﻳﻨﻪ ـ ﻭﺧﺼﻮﺻﺎ ﺑﻜﺘﻠﺔ ﺍﻟﻨﺠﻢ ﺍﻟﺬﻱ ﺗﻄﻮﺭ ﺍﻟﺜﻘﺐ ﻣﻨﻪ ـ ﻭﺃﻳﻀﺎ‬

‫ﺑﻜﻤﻴﺔ ﺍﳌﺎﺩﺓ ﺍﻟﱵ ﺍﺑﺘﻠﻌﻬﺎ ﺍﻟﺜﻘﺐ‪ .‬ﻭﻟﻴﺲ ﲦﺔ ﺃﻱ ﻣﺒﺪﺃ ﻓﻴﺰﻳﺎﺋﻲ ﻳ‪‬ﻌﻴﱢﻦ ﺣﺪﺍ ﺃﻋﻠﻰ ﻟﻜﺘﻠﺔ ﺍﻟﺜﻘﺐ؛‬ ‫ﺧﻼﻓﺎ ﳌﺎ ﻋﻠﻴﻪ ﺍﳊﺎﻝ ﰲ ﺍﻷﺟﺴﺎﻡ ﺍﳌﺮﺻﻮﺻﺔ ﺍﻷﺧﺮﻯ‪ ،‬ﻛﺎﻟﻨﺠﻮﻡ ﺍﻟﻨﺘﺮﻭﻧﻴﺔ‪ ،‬ﺣﻴﺚ ﳍﺎ ﺣﺪﻭﺩ‬ ‫ﻋﻈﻤﻰ ﰲ ﺍﻟﻜﺘﻠﺔ ﻻ ﳝﻜﻦ ﲡﺎﻭﺯﻫﺎ‪.‬‬ ‫ﺇﻥ ﻛﺘﻠﺔ ﺃﻱ ﺟﺴﻢ ﻓﻠﻜﻲ‪ ،‬ﻋﺪﺍ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ‪ ،‬ﳏﺪﺩﺓ ﺑﻘﺪﺭﺗﻪ ﻋﻠﻰ ﺍﻟﺘﻤﺎﺳﻚ ﲢﺖ ﻭﻃﺄﺓ‬ ‫ﻭﺯﻧﻪ‪ .‬ﻓﻔﻲ ﺍﻟﻨﺠﻮﻡ ﺍﻟﻌﺎﺩﻳﺔ‪ ،‬ﺗ‪‬ﻮﻟﱢﺪ ﺍﳊﺮﻛﺔ ﺍﳊﺮﺍﺭﻳﺔ ﻟﻠﺠﺴﻴﻤﺎﺕ ـ ﺣﻴﺚ ﺗﺄﰐ ﻃﺎﻗﺘﻬﺎ ﻣﻦ‬ ‫ﺍﻻﻧﺪﻣﺎﺝ ﺍﻟﻨﻮﻭﻱ ﺍﳊﺮﺍﺭﻱ ـ ﺍﻟﻀﻐﻂ ﺍﻟﻼﺯﻡ ﳌﻨﻊ ﺍ‪‬ﻴﺎﺭ ﺍﻟﻨﺠﻢ‪ .‬ﺃﻣﺎ ﺍﻟﻨﺠﻮﻡ ﺍﳌﻴﺘﺔ‪ ،‬ﻣﺜﻞ ﺍﻟﻨﺠﻮﻡ‬

‫ﺍﻟﻨﺘﺮﻭﻧﻴﺔ ﻭﺍﻷﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ‪ ،‬ﻓﺈ‪‬ﺎ ﻻ ﺗﻮﻟﱢﺪ ﺃﻱ ﻃﺎﻗﺔ‪ ،‬ﻭﻣﻦ ﰒ ﻓﺈﻥ ﺍﻟﻀﻐﻂ )ﳓﻮ ﺍﳋﺎﺭﺝ(‬ ‫ﺍﳌﻌﺎﻛﺲ ﻟﻠﺸﺪ ﺍﻟﺜﻘﺎﱄ ﻫﻮ ﻧﺘﻴﺠﺔ ﻣﺎ ﻳﺴﻤﻰ ﺍﻟﺘﺮﺩﻱ ‪ degeneracy‬ﺍﻟﻜﻤﻮﻣﻲ‪ ،‬ﻭﻫﺬﻩ ﺍﻟﻈﺎﻫﺮﺓ‬ ‫ﺗ‪‬ﻮﻟﱢﺪ ﻗﻮﺓ ﺧﺎﻣﻠﺔ ‪ ،passive‬ﻧﺎﲡﺔ ﻣﻦ ﺗﺂﺛﺮﺍﺕ ﻣﻴﻜﺎﻧﻴﻜﻴﺔ ﻛﻤﻮﻣﻴﺔ‪َ ،‬ﺗﻈﹾﻬﺮ ﺑﺼﻔﺔ ﺧﺎﺻﺔ ﰲ‬ ‫ﺣﺎﻻﺕ ﺍﻟﻜﺜﺎﻓﺔ ﺍﻟﻌﺎﻟﻴﺔ ﺟﺪﺍ‪.‬‬

‫ﻃﺒﻘﺎ ﳌﺒﺪﺃ ﭘﺎﻭﱄ ﻟﻺﻗﺼﺎﺀ ‪ ،principle Pauli exclusion‬ﻫﻨﺎﻙ ﺣﺪ ﺃﻋﻠﻰ ﻟﻌﺪﺩ‬ ‫ﺍﻟﻔﺮﻣﻴﻮﻧﺎﺕ ‪) fermions‬ﺇﺣﺪﻯ ﻃﺎﺋﻔﺘﲔ ﻣﻦ ﺍﳉﺴﻴﻤﺎﺕ ﺍﻷﻭﻟﻴﺔ‪ ،‬ﺍﻟﱵ ﺗﺸﻤﻞ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ‬ ‫ﻭﺍﻟﭙﺮﻭﺗﻮﻧﺎﺕ ﻭﺍﻟﻨﺘﺮﻭﻧﺎﺕ()‪ (6‬ﺍﻟﱵ ﳝﻜﻦ ﺃﻥ ﺗﺘﺮﺍﺹ ﰲ ﺣﺠﻢ ﻣﻌﲔ ﻣﻦ ﺍﻟﻔﺮﺍﻍ‪ .‬ﻓﻔﻲ ﳒﻢ ﻣﻦ‬

‫ﻧﻮﻉ ﺍﻷﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ‪ ،‬ﲢﺎﻭﻝ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﺃﻥ ﺗﺘﻮﺿﻊ ﰲ ﺃﺩﱏ ﻣﺴﺘﻮﻳﺎﺕ ﺍﻟﻄﺎﻗﺔ ﺍﳌﻤﻜﻨﺔ‪،‬‬ ‫ﻭﻟﻜﻨﻬﺎ‪ ،‬ﺑﺴﺒﺐ ﻣﺒﺪﺃ ﭘﺎﻭﱄ ﺍﳌﺬﻛﻮﺭ‪ ،‬ﻻ ﺗﺴﺘﻄﻴﻊ ﺃﻥ ﺗﻜﻮﻥ ﻛﻠﻬﺎ ﰲ ﺍﳌﺴﺘﻮﻯ ﺍﻷﺩﱏ‪ .‬ﻓﺎﳌﺒﺪﺃ ﻻ‬


‫ﻳﺴﻤﺢ ﺇﻻ ﻹﻟﻜﺘﺮﻭﻧﲔ ﻓﻘﻂ ﺑﺎﺣﺘﻼﻝ ﻣﺴﺘﻮﻯ ﻣﺎ ﻣﻦ ﺍﻟﻄﺎﻗﺔ‪ .‬ﻟﺬﺍ ﻓﺈﻥ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﺗﺘﺮﺍﻛﻢ ﰲ‬ ‫ﻣﺴﺘﻮﻳﺎﺕ ﺍﻟﻄﺎﻗﺔ ﺯﻭﺟﺎ ﺗﻠﻮ ﺍﻵﺧﺮ‪ ،‬ﻭﺑﺪﺍﻳﺔ ﻣﻦ ﺍﳌﺴﺘﻮﻯ ﺍﻷﺩﱏ‪ ،‬ﺇﱃ ﺃﻥ ﻳﺼﻞ ﺁﺧﺮﻫﺎ‬

‫)ﺍﻷﺯﻭﺍﺝ( ﺇﱃ ﻣﺴﺘﻮﻯ ﺃﻋﻠﻰ ﻣﻨﺎﺳﺐ‪ ،‬ﺗﻌﺘﻤﺪ ﻗﻴﻤﺘﻪ ﻋﻠﻰ ﻛﺜﺎﻓﺔ ﺍﳉﺴﻢ ﻣﻮﺿﻊ ﺍﻟﺪﺭﺍﺳﺔ‪.‬‬ ‫ﻭﻳ‪‬ﺤﺪﺙ ﻫﺬﺍ ﺍﻟﺘﺮﺍﻛﻢ ﺿﻐﻄﹰﺎ ﻣﻌﺎﻛﺴًﺎ ﻟﻠﺜﻘﺎﻟﺔ‪) .‬ﳝﻨﻊ ﻧﻔﺲ ﺍﳌﻔﻌﻮﻝ ﻣﺴﺘﻮﻳﺎﺕ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﰲ‬ ‫ﺍﻟﺬﺭﺓ ﻣﻦ ﺍﻻ‪‬ﻴﺎﺭ ﻓﻮﻕ ���ﻌﻀﻬﺎ ﺑﻌﻀًﺎ(‪ .‬ﻭﻫﻜﺬﺍ ﻓﺈﻥ ﻛﺘﻠﺔ ﺍﻟﻘﺰﻡ ﺍﻷﺑﻴﺾ ﻻ ﺑﺪ ﺃﻥ ﺗﻜﻮﻥ ﺃﻗﻞ‬ ‫ﻣﻦ ‪ 1.4‬ﻣﺮﺓ ﻛﺘﻠﺔ ﴰﺴﻴﺔ‪ ،‬ﻭﻓﻘﹰﺎ ﳌﺎ ﺑﺮﻫﻨﻪ >‪ .S‬ﺷﺎﻧﺪﺭﺍﺳﻴﺨﺎﺭ< ﻋﺎﻡ ‪.1930‬‬

‫ﺍﻟﻘﺒﺽ ﻋﻠﻰ ﺜﻘﺏ ﺃﺴﻭﺩ ﻤﺘﻠﺒﺴًﺎ‬

‫)****(‬

‫‪<E.J.‬ﻣﻜﻠﻴﻨﺘﻮﻙ>‬

‫ﺇﺫﺍ ﺃﺭﺍﺩ ﺍﻟﻔﻠﻜﻴﻮﻥ ﻣﺮﺍﻗﺒﺔ ﺛﻘﻮﺏ ﺳﻮﺩﺍﺀ ﻭﻫﻲ ﺗﺒﺘﻠﻊ‬ ‫ﺍﻟﻄﺎﻗﺔ‪ ،‬ﻓﻠﻴﺲ ﻫﻨﺎﻙ ﻣﻜﺎﻥ ﺃﻓﻀﻞ ﻣﻦ ﺍﻟﻨﻈﺮ ﺇﱃ‬

‫ﺍﳌﺼﺎﺩﺭ ﺍﻟﺴﻴﻨﻴﺔ ﺍﻟﻌﺎﺑﺮﺓ‪ .‬ﻭﺍﳌﺼﺪﺭ ﺍﻟﻨﻤﻮﺫﺟﻲ ﻣﻦ ﻫﺬﺍ‬ ‫ﺍﻟﻨﻮﻉ ﻫﻮ ﺟﺴﻢ ﲰﺎﻭﻱ ﻳﺰﺩﺍﺩ ﺳﻄﻮﻋًﺎ ﺧﻼﻝ ﺃﺳﺒﻮﻉ‬

‫ﲟﻘﺪﺍﺭ ﻣﻠﻴﻮﻥ ﺿﻌﻒ ﰲ ﻣﻨﻄﻘﺔ ﺍﻟﻄﻴﻒ ﺍﻟﺴﻴﲏ ﻭﻣﺌﺔ‬ ‫ﺿﻌﻒ ﰲ ﻣﻨﻄﻘﺔ ﺍﻟﻀﻮﺀ ﺍﳌﺮﺋﻲ‪ .‬ﻭﻳﻈﻞ ﺍﳌﺼﺪﺭ ﺳﺎﻃﻌًﺎ‬ ‫ﻫﻜﺬﺍ ﻣﺪﺓ ﺳﻨﺔ ﺗﻘﺮﻳﺒﺎ‪ ،‬ﰒ ﻳﺘﻼﺷﻰ ﺗﺪﺭﳚﻴﺎ ﻭﳜﺘﻔﻲ‬

‫ﻋﻘﺪﺍ ﺃﻭ ﺭﲟﺎ ﻗﺮﻧﺎ ﻣﻦ ﺍﻟﺰﻣﻦ ﻗﺒﻞ ﺍﻟﻌﻮﺩﺓ ﺇﱃ ﺍﻟﻈﻬﻮﺭ‬ ‫ﻣﺮﺓ ﺃﺧﺮﻯ‪ .‬ﺃﻣﺎ ﺍﳌﺼﺎﺩﺭ ﺍﻟﺴﻴﻨﻴﺔ ﺍﳌﺘﻐﲑﺓ ﺍﻷﺧﺮﻯ‪ ،‬ﻣﺜﻞ‬ ‫ﺍﳌﺼﺎﺩﺭ ﺍﻟﺴﻴﻨﻴﺔ ﺍﻟﺘﻔﺠﺮﻳﺔ ﻭﺍﻟﻨﺒﺎﺿﺎﺕ ﺍﻟﻨﺠﻮﻣﻴﺔ‬

‫ﺍﻟﺴﻴﻨﻴﺔ‪ ،‬ﻓﺈ‪‬ﺎ ﻻ ﺗﺆﺩﻱ ﺇﱃ ﻣﺜﻞ ﻫﺬﺍ ﺍﻻﺭﺗﻔﺎﻉ ﺍﻟﺸﺪﻳﺪ‬ ‫ﻭﺍﻟﻨﺎﺩﺭ ﻭﺍﻟﻄﻮﻳﻞ ﺍﻷﻣﺪ ﰲ ﺍﻟﺴﻄﻮﻉ‪.‬‬ ‫ﻭﻳ‪‬ﻘﺪﱢﺭ ﺍﻟﻔﻠﻜﻴﻮﻥ ﺃﻥ ﻋﺪﺓ ﺁﻻﻑ ﻣﻦ ﺍﳌﺼﺎﺩﺭ ﺍﻟﺴﻴﻨﻴﺔ‬ ‫ﺍﻟﻌﺎﺑﺮﺓ ﻭﺍﻟﻜﺎﻣﻨﺔ ‪ dormant‬ﻗﺎﺑﻌﺔ ﰲ ﺃﳓﺎﺀ ﳐﺘﻠﻔﺔ ﻣﻦ‬ ‫ﳎﺮﺗﻨﺎ‪ ،‬ﻭﻟﻜﻨﻬﺎ ﻏﲑ ﻣﻜﺘﺸﻔﺔ ﺣﱴ ﺍﻵﻥ ‪.‬ﻭﻗﺪ ﺭﺻﺪ‬ ‫ﺃﻛﺜﺮ ﻣﻦ ﻋﺸﺮﻳﻦ ﺟﺴﻤًﺎ ﻣﻦ ﻫﺬﻩ ﺍﻷﺟﺴﺎﻡ ﻭﻫﻲ ﰲ‬

‫ﺣﺎﻟﺔ ﺗﻔﺠﺮ‪ .‬ﻭﻛﻞ ﻭﺍﺣﺪ ﻣﻨﻬﺎ ﻫﻮ ﺟﺴﻢ ﻣﺘﺮﺍﺹ‪-‬‬


‫ﺛﻘﺐ ﺃﺳﻮﺩ ﺃﻭ ﳒﻢ ﻧﺘﺮﻭﱐ‪ -‬ﰲ ﺳﲑﻭﺭﺓ ﺗﻨﺎﻡﹴ ﻭﺍﺑﺘﻼﻉ‬ ‫ﻏﺎﺯ ﻣﻦ ﳒﻢ ﺭﻓﻴﻖ ﺳﻴﺊ ﺍﳊﻆ‪.‬‬ ‫ﻭﻣﻦ ﺑﲔ ﻫﺬﻩ ﺍﳌﻨﻈﻮﻣﺎﺕ ﻛﻠﻬﺎ‪ ،‬ﻓﺈﻥ ﺍﳌﻨﻈﻮﻣﺔ ﺍﻟﱵ‬ ‫ﻭﻓﺮﺕ ﻟﻨﺎ ﺃﻛﱪ ﻗﺪﺭ ﻣﻦ ﺍﳌﻌﻠﻮﻣﺎﺕ ﺍﻟﻘﻴﻤﺔ ﻫﻲ ﺍﻟﺜﻘﺐ‬ ‫ﺍﻷﺳﻮﺩ ﺍﻟﻌﺎﺑﺮ ﺍﳌﻌﺮﻭﻑ‬

‫ﺑـ‪GRO J1655-‬‬

‫‪40.‬ﻭﻗﺪ ﰎ ﺍﻛﺘﺸﺎﻑ ﻫﺬﻩ ﺍﳌﻨﻈﻮﻣﺔ ﻣﻦ ﻗﺒﻞ‬

‫‪<N.S.‬ﺯﺍﻧﮓ >ﻭﻣﺴﺎﻋﺪﻳﻪ ]ﻣﻦ ﻣﺮﻛﺰ ﻣﺎﺭﺷﺎﻝ‬ ‫ﻟﻠﻄﲑﺍﻥ ﺍﻟﻔﻀﺎﺋﻲ ﺍﻟﺘﺎﺑﻊ ﻟﻠﻮﻛﺎﻟﺔ]‪، NASA‬‬ ‫ﺑﺎﺳﺘﺨﺪﺍﻡ ﺳﺎﺗﻞ ﻣﺮﺻﺪ ﺃﺷﻌﺔ ﮔﺎﻣﺎ‪ .‬ﻭﻣﻨﺬﺋﺬ ﺍﺳﺘﻄﺎﻉ‬

‫ﺍﻟﻔﻠﻜﻴﻮﻥ ﻣﺸﺎﻫﺪﺓ ﺗﻐﲑﺍﺕ ﰲ ﺍﻟﺴﺮﻋﺔ ﺍﳌﺪﺍﺭﻳﺔ ﻟﻨﺠﻤﻪ‬

‫ﺍﻟﺮﻓﻴﻖ‪) ،‬ﻭﻫﻮ ﻣﺎ ﺃﺩﻯ ﺇﱃ ﺍﳊﺼﻮﻝ ﻋﻠﻰ ﻗﻴﺎﺳﺎﺕ‬ ‫ﺩﻗﻴﻘﺔ ﻟﻜﺘﻠﺔ ﺍﳉﺴﻢ ﺍﳌﺘﺮﺍﺹ(؛ ﻛﻤﺎ ﺷﺎﻫﺪﻭﺍ ﺩﻻﺋﻞ‬ ‫ﻋﻠﻰ ﺃﻥ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ ﻳ‪‬ﺪﻭﱠﻡ ﺑﺴﺮﻋﺔ؛ ﻭﺃﻥ ﻫﻨﺎﻙ‬

‫ﺍﻫﺘﺰﺍﺯﺍﺕ ﻗﺮﻳﺒﺔ ﻣﻦ ﺍﻟﺜﻘﺐ‪ ،‬ﻭﺩﻓﻘﺎﺕ ﻣﻦ ﺍﳌﺎﺩﺓ ﺗﻨﺒﺜﻖ‬ ‫ﺑﺴﺮﻋﺔ ﺗﻘﺮﺏ ﻣﻦ ﺳﺮﻋﺔ ﺍﻟﻀﻮﺀ‪.‬‬ ‫ﻭﻗﺪ ﲰﺤﺖ ﺳﺮﻋﺔ ﺍﻟﻨﺠﻢ ﻟﺮﻓﻴﻖ ﻟﻠﻔﻠﻜﻴﲔ ﺃﻥ‬ ‫ﻳﺴﺘﻨﺘﺠﻮﺍ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺪﻧﻴﺎ ﻟﻜﺘﻠﺔ ﺍﳉﺴﻢ ﺍﳌﺘﺮﺍﺹ‪ ،‬ﻭﻫﻲ‬

‫‪ 3.2‬ﻛﺘﻠﺔ ﴰﺴﻴﺔ‪ .‬ﻭﻣﻦ ﺍﻟﻌﺴﲑ ﺍﻟﻮﺻﻮﻝ ﺇﱃ ﺗﻘﺪﻳﺮ‬ ‫ﺃﻓﻀﻞ ﻟﻠﻜﺘﻠﺔ‪ ،‬ﺫﻟﻚ ﺃﻧﻪ ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﻣﻌﺮﻓﺔ ﻛﻤﻴﺘﲔ‬ ‫ﺇﺿﺎﻓﻴﺘﲔ ﺃﺧﺮﻳﲔ‪ :‬ﻛﺘﻠﺔ ﺍﻟﻨﺠﻢ ﺍﳌﺮﺋﻲ ﻧﻔﺴﻪ‪ ،‬ﻭ َﻣﻴْﻞ‬ ‫ﺍﳌﺪﺍﺭ ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﺧﻂ ﺍﻟﻨﻈﺮ )ﻣﻦ ﺍﳌﺮﺍﻗﺐ ﺇﱃ‬

‫ﺍﳌﻨﻈﻮﻣﺔ(‪ .‬ﻟﻜﻦ ﰎ ﺗﻌﻴﲔ ﻫﺎﺗﲔ ﺍﻟﻜﻤﻴﺘﲔ ﻣﻦ ﺍﻟﺘﻐﲑﺍﺕ‬

‫ﰲ ﺷﺪﺓ ﺍﻟﻀﻮﺀ ﺍﻟﺼﺎﺩﺭ ﻋﻦ ﺍﻟﻨﺠﻢ ﺍﳌﺮﺋﻲ‪ ،‬ﻭﻫﻮ ﻳﺪﻭﺭ‬ ‫ﺣﻮﻝ ﺍﻟﺜﻘﺐ )ﳝﲔ ﺍﻟﻮﺳﻂ(‪ .‬ﻓﺎﻟﺸﺪﺓ ﺍﻟﻀﻮﺋﻴﺔ ﺍﻟﻌﻈﻤﻰ‬ ‫ﲢﺼﻞ ﻋﻨﺪﻣﺎ ﻧﺸﺎﻫﺪ ﺍﻟﻨﺠﻢ ـ ﺍﻟﺬﻱ ﺍﺳﺘﻄﺎﻝ )ﱂ ﻳﻌﺪ‬

‫ﻛﺮﻭﻳﺎ( ﺑﻔﻌﻞ ﺍﻟﺜﻘﺎﻟﺔ ﺍﻟﻨﺎﲨﺔ ﻋﻦ ﺍﻟﺜﻘﺐ ـ ﻣﻦ ﺟﺎﻧﺒﻪ‬


‫ﺍﻟﻌﺮﻳﺾ‪ .‬ﺃﻣﺎ ﺍﻟﺸﺪﺓ ﺍﻟﻀﻮﺋﻴﺔ ﺍﻟﺪﻧﻴﺎ ﻓﺘﺤﺼﻞ ﺑﻌﺪ ﺫﻟﻚ‬

‫ﺑﺮﺑﻊ ﺩﻭﺭﺓ‪ ،‬ﻋﻨﺪﻣﺎ ﻧﻨﻈﺮ ﺇﱃ ﺍﻟﻨﺠﻢ ﻣﻦ ﺇﺣﺪﻯ ‪‬ﺎﻳﺘﻴﻪ‪.‬‬ ‫ﻭﳊﺴﻦ ﺍﳊﻆ‪ ،‬ﻓﻘﺪ ﺗﺒﲔ ﺃﻥ ﺍﳌﹸﺸﺎﻫِﺪ ﻣﻦ ﻣﺴﺘﻮﻯ ﺧﻂ‬ ‫ﺍﻟﻨﻈﺮ ﻳﺮﻯ ﺍﳌﺴﺘﻮﻯ ﺍﳌﺪﺍﺭﻱ ﻭﻗﺮﺹ ﺍﻟﺘﻨﺎﻣﻲ ﻣ‪‬ﺠﺎﻧﺒ ﹰﺔ‬

‫‪edge-on‬ﺗﻘﺮﻳﺒًﺎ‪ ،‬ﺇﺿﺎﻓﺔ ﺇﱃ ﺃﻥ ﺳﻄﺢ ﺍﻟﻨﺠﻢ ﺍﻟﺮﻓﻴﻖ‬

‫ﺧﻼ ﻣﻦ ﺃﻱ ﺗﺸﻮﻫﺎﺕ‪ ،‬ﻣﺜﻞ ﺍﻟﺒﻘﻊ ﺍﻟﻨﺠﻤﻴﺔ‪ .‬ﻭﻛﺎﻧﺖ‬ ‫ﺍﻟﻨﺘﻴﺠﺔ ﻫﻲ ﺍﳊﺼﻮﻝ ﻋﻠﻰ ﺃﻓﻀﻞ ﻭﺃﺩﻕ ﻗﻴﺎﺱ ﻋﻠﻰ‬ ‫ﺍﻹﻃﻼﻕ ﻟﻜﺘﻠﺔ ﺛﻘﺐ ﺃﺳﻮﺩ ﻣﺮﺷﱠﺢ‪ ،‬ﻭﻫﻲ ‪ 7.0‬ﻛﺘﻞ‬ ‫ﴰﺴﻴﺔ‪.‬‬ ‫ﻭﰲ ﺳﻠﻮﻙ ﻏﲑ ﻣﺴﺒﻮﻕ ﳌﻨﻈﻮﻣﺔ ﺳﻴﻨﻴﺔ ﻋﺎﺑﺮﺓ‪ ،‬ﺗﻌﺮﺽ‬ ‫‪GRO J1655-40‬ﻻﻧﻔﺠﺎﺭﻳﻦ ﻣﺘﻘﺎﺭﺑﲔ ﰲ‬ ‫ﻉ‬ ‫ﻋﺎﻣﻲ ‪ 1994‬ﻭ‪ .1996‬ﻭﻗﺪ ﺳﺒﻖ ﺍﻟﺴﻄﻮ ‪‬‬ ‫ﺍﻟﺜﺎﺑﺖ ﰲ ﺍﻟﻀﻮﺀ ﺍﳌﺮﺋﻲ ﺑﻨﺤﻮ ﺳﺘﺔ ﺃﻳﺎﻡ ﺑﺪ َﺀ ﺍﻟﺘﻔﺠﺮ‬

‫ﺍﻟﺴﻴﲏ ﺍﻟﺬﻱ ﺣﺼﻞ ﰲ ‪) 1996/4/25‬ﺃﺳﻔﻞ‬ ‫ﺍﻟﻴﻤﲔ(‪ .‬ﻭﻳﻌﺘﻘﺪ ﺍﻟﻨﻈﺮﻳﻮﻥ ﺃﻥ ﻫﺬﺍ ﺍﻟﺘﺄﺧﲑ ﻧﺎﺟﻢ ﻋﻦ‬ ‫ﺍﻟﺰﻣﻦ ﺍﻟﻀﺮﻭﺭﻱ ﻟﻜﻲ ﺗﻨﺘﺸﺮ ﺍﳌﺎﺩﺓ ﳓﻮ ﺍﻟﺪﺍﺧﻞ ﻭﺗﺰﻳﺪ‬ ‫ﻣﻦ ﺳ‪‬ﻤﻚ ﺍﻟﻐﺎﺯ ﺑﺎﻟﻘﺮﺏ ﻣﻦ ﺍﻟﺜﻘﺐ‪ .‬ﰒ ﺇﻥ ﺷﻜﻞ‬

‫ﺍﻟﻄﻴﻒ ﺍﻟﺴﻴﲏ ﻳﻮﺣﻲ ﺑﺄﻥ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ ﺗﺪ ﱠﻭ َﻡ ﲟﻌﺪﻝ‬ ‫‪ 90‬ﰲ ﺍﳌﺌﺔ ﺗﻘﺮﻳﺒﺎ ﻣﻦ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﻈﻤﻰ ﺍﳌﺴﻤﻮﺣﺔ ﻟﻪ‪.‬‬ ‫ﻭﺑﻌﺪ ﻣﻀﻲ ﺃﺭﺑﻌﺔ ﺃﺷﻬﺮ ﻋﻠﻰ ﺫﻟﻚ‪ ،‬ﺍﺳﺘﺨﺪﻡ‬ ‫‪<A.R.‬ﻟﻴﻤﻴﻼﺭﺩ[ >ﻣﻦ ﻣﻌﻬﺪ ﻣﺎﺳﺎﺗﺸﻮﺳﺘﺲ‬

‫ﻼ ﻳﻀﻢ ﻣﺴﺒﺎ َﺭ ﺭﻭﺳّﻲ ﻟﻘﻴﺎﺱ‬ ‫ﻟﻠﺘﻘﺎﻧﺔ[ ﻭﻣﺴﺎﻋﺪﻭﻩ ﺳﺎﺗ ﹰ‬ ‫ﺍﻟﺘﻮﻗﻴﺖ ﺍﻟﺴﻴﲏ‬

‫‪the Rossi x-ray Timing‬‬

‫‪ ،Explorer Satellite‬ﻓﺸﺎﻫﺪﻭﺍ ﺍﻫﺘﺰﺍﺯﺍﺕ َﻋﺮَﺿﻴﺔ‬ ‫‪occasional‬ﰲ ﺍﻷﺷﻌﺔ ﺍﻟﺴﻴﻨﻴﺔ‪ .‬ﻭﺑﻠﻎ ﻋﺪﺩ‬

‫ﺍﻻﻫﺘﺰﺍﺯﺍﺕ ﳓﻮ ‪ 300‬ﺍﻫﺘﺰﺍﺯ ﰲ ﺍﻟﺜﺎﻧﻴﺔ‪ ،‬ﻭﻛﺎﻧﺖ‬


‫ﺃﺳﺮﻉ ﻣﺎ ﺷﻮﻫﺪ ﻋﻠﻰ ﺍﻹﻃﻼﻕ ﰲ ﻣﻨﻈﻮﻣﺔ ﺛﻘﺐ‬

‫ﺃﺳﻮﺩ‪ .‬ﻭﻣﻦ ﺍﻟﻨﺎﺣﻴﺔ ﺍﻟﻨﻈﺮﻳﺔ‪ ،‬ﻓﺈﻥ ﺗﺮﺩﺩ ﺍﻻﻫﺘﺰﺍﺯﺍﺕ‬ ‫ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﻧﺼﻒ ﻗﻄﺮ ﺃﻓﻖ ﺍﳊﺪﺙ ﻟﻠﺜﻘﺐ ﺍﻷﺳﻮﺩ‪،‬‬ ‫ﺍﻟﺬﻱ ﻳﻌﺘﻤﺪ ﺑﺪﻭﺭﻩ ﻋﻠﻰ ﻛﺘﻠﺔ ﺍﻟﺜﻘﺐ ﻭﺳﺮﻋﺔ ﺩﻭﺭﺍﻧﻪ‪.‬‬ ‫ﻭﺑﺎﺳﺘﺨﺪﺍﻡ ﻗﻴﻤﺔ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻘﻴﺴﺔ ﳍﺬﻩ ﺍﳌﻨﻈﻮﻣﺔ‪ ،‬ﳛﺎﻭﻝ‬

‫ﺍﻟﻔﻠﻜﻴﻮﻥ ﺍﻵﻥ ﺗﻌﻴﲔ ﺳﺮﻋﺔ ﺩﻭﺭﺍﻥ ﺍﻟﺜﻘﺐ ﺑﺼﻮﺭﺓ‬ ‫ﺃﻛﻴﺪﺓ ﻭﺫﻟﻚ ﻟﻠﻤﺮﺓ ﺍﻷﻭﱃ‪.‬‬ ‫ﻭﺧﻼﻝ ﺑﻀﻌﺔ ﺃﺷﻬﺮ ﺑﻌﺪ ﺍﻟﺘﻔﺠﺮ‪ ،‬ﺍﻧﺒﺜﻘﺖ ﻣﻦ ﺍﳌﻨﻈﻮﻣﺔ‬ ‫ﺩﻓﻘﺘﺎﻥ ﻣﻦ ﺍﳌﺎﺩﺓ‪ ،‬ﺩﻓﻘﺔ ﻣﻦ ﻛ ﱟﻞ ﻣﻦ ﺟﺎﻧﱯ ﺍﳌﺼﺪﺭ‪،‬‬

‫ﺑﺴﺮﻋﺔ ﻗﺪﺭﻫﺎ ‪ 92‬ﰲ ﺍﳌﺌﺔ ﻣﻦ ﺳﺮﻋﺔ ﺍﻟﻀﻮﺀ‪ .‬ﺇﻥ‬ ‫ﺍﻟﺘﺴﺎﺭﻉ ﺍﻟﺬﻱ ﺣﻘﻘﺘﻪ ﺍﳌﺎﺩﺓ ﺭﲟﺎ ﺣﺪﺙ ﻋﻠﻰ ﺍﳊﺎﻓﺔ‬ ‫ﺍﻟﺪﺍﺧﻠﻴﺔ ﻟﻘﺮﺹ ﺍﻟﺘﻨﺎﻣﻲ‪ ،‬ﺣﻴﺚ ﻳﺪﻭﺭ ﺍﻟﻐﺎﺯ ﺑﺎﻟﻀﺮﻭﺭﺓ‬ ‫ﺣﻮﻝ ﺍﻟﺜﻘﺐ ﺑﺴﺮﻋﺔ ﺗﻘﺎﺭﺏ ﺳﺮﻋﺔ ﺍﻟﻀﻮﺀ‪.‬‬ ‫ﻫﺬﺍ ﻭﻗﺪ ﻋﺎﺩﺕ ﺍﳌﻨﻈﻮﻣﺔ ﺍﻵﻥ ﺇﱃ ﺣﺎﻟﺘﻬﺎ ﺍﳋﺎﻣﺪﺓ‪،‬‬ ‫ﻭﺑﺪﻻ ﻣﻦ ﻗﻴﺎﻡ ﺍﻟﻐﺎﺯ ﺍﳌﻮﺟﻮﺩ ﺣﻮﻝ ﺍﻟﺜﻘﺐ ﺑﺎﳍﺒﻮﻁ‬

‫ﺣﻠﺰﻭﻧﻴﺎ ﳓﻮ ﺍﻟﺪﺍﺧﻞ ﻭﺇﺻﺪﺍﺭ ﺇﺷﻌﺎﻋﺎﺕ ﺳﻴﻨﻴﺔ‪ ،‬ﻓﺈﻧﻪ‬ ‫(ﺃﻱ ﺍﻟﻐﺎﺯ( ﻳﻬﻮﻱ ﻣﺒﺎﺷﺮﺓ ﺇﱃ ﺍﻟﺪﺍﺧﻞ‪ ،‬ﻭﻣﻦ ﺩﻭﻥ‬ ‫ﻑ ﻹﺻﺪﺍﺭ ﺇﺷﻌﺎﻉ ﻗﺒﻞ ﺍﺑﺘﻼﻋﻪ ﻣﻦ ﻗﺒﻞ‬ ‫ﻭﻗﺖ ﻛﺎ ‪‬‬

‫ﺍﻟﺜﻘﺐ‪ .‬ﻭﰲ ﻫﺬﻩ ﺍﻟﺴﲑﻭﺭﺓ‪ ،‬ﻓﺈﻥ ﺍﻟﺬﺭﺍﺕ ﺍﻟﻐﺎﺯﻳﺔ ﻭﳓﻮ‬ ‫‪99.9‬ﰲ ﺍﳌﺌﺔ ﻣﻦ ﻃﺎﻗﺘﻬﺎ ﺍﳊﺮﺍﺭﻳﺔ ﳚﺮﻱ ﺗﺼﺮﻳﻔﻬﺎ‬ ‫ﻣﻦ ﺍﻟﻜﻮﻥ ﻭﲣﺘﻔﻲ ﺇﱃ ﺍﻷﺑﺪ‪.‬‬

‫ﺍﳌﺆﻟﻒ‬ ‫‪Jeffrey E. McClintock‬‬ ‫ﻓﻠﻜﻲ ﻓﻴﺰﻳﺎﺋﻲ ﺃﻭﻝ ﰲ ﻣﺮﻛﺰ ﻫﺎﺭﭬﺎﺭﺩ‪-‬ﲰﻴﺜﻮﻧﻴﺎﻥ ﻟﻠﻔﻴﺰﻳﺎﺀ ﺍﻟﻔﻠﻜﻴﺔ‪ .‬ﻭﻗﺪ‬ ‫ﺍﻛﺘﺸﻒ ﻣﻊ ﻣﺴﺎﻋﺪﻳﻪ ﺃﻭﻝ ﺛﻘﺐ ﺃﺳﻮﺩ ﰲ ﻣﺼﺪﺭ ﺳﻴﲏ ﻋﺎﺑﺮ ﻋﺎﻡ‬


‫‪1986.‬‬

‫ﻟﻠﻨﺠﻢ ﺍﻟﺮﻓﻴﻖ ﺳﻄﻮﻉ ﻣﺘﺬﺑﺬﺏ‪ ، oscillating‬ﲰﺢ‬ ‫ﻟﻠﻔﻠﻜﻴﲔ ﺃﻥ ﳛﺪﺩﻭﺍ ﻭﺯْﻥ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ ﰲ ﺍﳌﻨﻈﻮﻣﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ‬ ‫‪GRO J1655-40.‬ﺇﻥ ﺍﻟﻨﺠﻮﻡ ﻻ ﺗﺴﻄﻊ ﻭﺗ‪‬ﻈﻠِﻢ ﻋﺎﺩﺓ‬

‫‪‬ﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ‪ ،‬ﻭﻟﻜﻦ ﻫﺬﺍ ﺍﻟﻨﺠﻢ ﻗﺪ ﺗﺸﻮﻩ ﺑﻔﻌﻞ ﺛﻘﺎﻟﺔ ﺍﻟﺜﻘﺐ‪.‬‬

‫ﻭﳌﺎ ﻛﺎﻥ ﻟﻪ ﺷﻜﻞ ﺍﻹﺟﺎﺻﺔ )ﺍﻟﻜﻤﺜﺮﻯ‪ ،) pear‬ﺃﻱ ﺇﻧﻪ‬

‫ﻋﺮﻳﺾ ﺇﺫﺍ ﻧ‪‬ﻈﺮ ﺇﻟﻴﻪ ﻣﻦ ﺍﳉﺎﻧﺐ‪ ،‬ﻓﺈﻧﻪ ‪‬ﻳﺼْﺪﺭ ﻛﻤﻴﺔ ﺃﻛﱪ ﻣﻦ‬ ‫ﺍﻟﻀﻮﺀ )ﺍﻹﻃﺎﺭ ﺍﻟﺼﻐﲑ(‪ .‬ﻫﺬﺍ ﻭﻳﻌﻜﺲ ﺍﻟﺪﻭﺭ ﺍﳌﺪﺍﺭﻱ ﻛﺘﻠﺔ‬

‫ﺍﻟﺜﻘﺐ‪.‬‬

‫ﺑﻌﺪ ﺳﺘﺔ ﺃﻳﺎﻡ ﻣﻦ ﺑﺪﺍﻳﺔ ﺳﻄﻮﻉ ﺍﳌﻨﻈﻮﻣﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ ‪GRO‬‬ ‫‪J1655-40‬ﰲ ﺍﻟﻀﻮﺀ ﺍﳌﺮﺋﻲ )ﰲ ﺍﻟﻴﺴﺎﺭ(‪ ،‬ﺑﺪﺃﺕ ﺃﻳﻀﺎ‬

‫ﺑﺪﻟﻖ ﻛﻤﻴﺎﺕ ﻛﺒﲑﺓ ﻣﻦ ﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﺴﻴﻨﻴﺔ )ﰲ ﺍﻟﻴﻤﲔ‪).‬‬

‫ﻤﻘﺎﻭﻤﺔ ﺍﻟﺜﻘﺎﻟﺔ‬

‫)*****(‬

‫ﰲ ﺍﻟﻨﺠﻮﻡ ﺍﻟﻨﺘﺮﻭﻧﻴﺔ‪ ،‬ﺗﺼﻞ ﺍﻟﻜﺜﺎﻓﺔ ﺇﱃ ﻗﻴﻢ ﻋﺎﻟﻴﺔ ﻻ ﻳﺴﺘﻄﻴﻊ ﻣﻌﻬﺎ ﺍﻟﺘﺮﺩﻱ ﺍﻹﻟﻜﺘﺮﻭﱐ‬ ‫ﺍﻵﻧﻒ ﺍﻟﺬﻛﺮ ﻣﻘﺎﻭﻣﺘﻬﺎ‪ .‬ﻭﻫﻜﺬﺍ ﺗﺘﺤﻄﻢ ﺍﻟﺬﺭﺍﺕ )ﻭﻧﻮﺍﻫﺎ( ﻭﻳﻨﺘﺞ ﻣﻦ ﺫﻟﻚ ﺇﻟﻜﺘﺮﻭﻧﺎﺕ‬ ‫ﻭﭘﺮﻭﺗﻮﻧﺎﺕ ﻭﻧﺘﺮﻭﻧﺎﺕ ﺣﺮّﺓ؛ ﰒ ﺗﺘﺮﺍﺹ ﺍﻟﭙﺮﻭﺗﻮﻧﺎﺕ ﻭﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﺑﻌﻀﻬﺎ ﻣﻊ ﺑﻌﺾ ﻣﺸﻜﻠﺔ‬

‫ﻧﺘﺮﻭﻧﺎﺕ‪ ،‬ﻭﺗﻠﺘﺤﻢ ﻧﻮﻯ ﺍﻟﺬﺭﺍﺕ‪ ،‬ﻭﺑﺬﺍ ﻳﺘﺤﻮﻝ ﺍﳉﺴﻢ ﻛﻠﻪ ﺇﱃ ﻛﺮﺓ ﻣﻦ ﺍﻟﻨﺘﺮﻭﻧﺎﺕ‪ .‬ﻭﳌﺎ ﻛﺎﻧﺖ‬


‫ﺍﳉﺴﻴﻤﺎﺕ ﻻ ﳝﻜﻨﻬﺎ ﺃﻥ ﺗﺘﻮﺿﻊ ﲨﻴﻌﻬﺎ ﰲ ﻣﺴﺘﻮﻯ ﺍﻟﻄﺎﻗﺔ ﻧﻔﺴﻪ‪ ،‬ﻓﺈ‪‬ﺎ ﺗﺘﺮﺍﻛﻢ ﻣﻮﻟﺪﺓ ﺿﻐﻄﹰﺎ‬ ‫ﳓﻮ ﺍﳋﺎﺭﺝ‪.‬‬

‫ﻳﺘﺄﻟﻒ ﺗﺪﻓﻖ ﺍﻟﺘﻨﺎﻣﻲ ﰲ ﳎﻤﻮﻋﺔ ﺳﻴﻨﻴﺔ ﻋﺎﺑﺮﺓ ﻣﻦ ﻏﺎﺯ ﺷﺒﻪ ﻛﺮﻭﻱ‪ ،‬ﺭﻗﻴﻖ‬ ‫ﻭﺳﺎﺧﻦ )ﺍﻟﻠﻮﻥ ﺍﻟﺰﻫﺮﻱ( ﳏﺎﻁ ﺑﻘﺮﺹ ﺗﻨﺎ ﹴﻡ ﻛﺜﻴﻒ ﻭﺑﺎﺭﺩ( ﺍﻷﲪﺮ(‪ .‬ﰲ‬

‫ﺍﳊﺎﻟﺔ ﺍﳍﺎﻣﺪﺓ )ﺍﳌﻌﺘﺎﺩﺓ‬

‫)‪(1‬‬

‫)ﻳﺴﻘﻂ ﺍﻟﻐﺎﺯ ﺍﻟﺴﺎﺧﻦ ﰲ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ‪،‬‬

‫ﻣ‪‬ﺼﺪﺭًﺍ ﻛﻤﻴﺔ ﺿﺌﻴﻠﺔ ﻣﻦ ﺍﻹﺷﻌﺎﻉ ـ ﻭﻫﻮ ﻭﺿﻊ ﻳﺴﻤﻴﻪ ﺍﻟﻔﻠﻜﻴﻮﻥ ﺗﺪﻓﻖ‬ ‫ﺍﻟﺘﻨﺎﻣﻲ ﺍﻟﺘﺄﻓﻘﻲ ‪ (ADAF).‬ﻭﻟﻜﻦ ﺧﻼﻝ ﺍﻟﺘﻔﺠﺮ‪ ،‬ﻳﺴﺨﻦ ﺍﻟﻘﺮﺹ‬ ‫)‪(2‬‬

‫ﺍﳌﻀﻄﺮﺏ ﻭﻳﺘﻮﻫﺞ ﰲ ﺍﻟﻀﻮﺀ ﺍﳌﺮﺋﻲ ‪.‬‬

‫ﻭﺗﺒﺪﺃ ﺍﳊﺎﻓﺔ ﺍﻟﺪﺍﺧﻠﻴﺔ ﻟﻠﻘﺮﺹ‬

‫ﺑﺎﻟﺘﻘﺪﻡ ﳓﻮ ﺍﻟﺜﻘﺐ ‪ ،(5 ،4 ،3‬ﺁﺧﺬﺓ ﻣﻜﺎﻥ ﺍﳌﻨﻄﻘﺔ ﺍﻟﺘﺄﻓﻘﻴﺔ‪ ،‬ﺣﱴ ﺗﺒﺪﺃ‬ ‫ﺑﺈﺻﺪﺍﺭ ﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﺴﻴﻨﻴﺔ‪ .‬ﻭﻳ‪‬ﻔﺴﺮ ﻫﺬﺍ ﺍﻟﻨﻤﻮﺫﺝ ﺗﺄﺧﺮ ﺗﻔﺠﺮ ﺍﻷﺷﻌﺔ‬

‫ﺍﻟﺴﻴﻨﻴﺔ ﺳﺘﺔ ﺃﻳﺎﻡ ﻋﻦ ﺗﻔﺠﺮ ﺍﻟﻀﻮﺀ ﺍﳌﺮﺋﻲ‪ ،‬ﻭﻫﻮ ﺍﻟﺘﺄﺧﺮ ﺍﻟﺬﻱ ﺭﺻﺪﻩ‬


‫ﺍﻟﻔﻠﻜﻴﻮﻥ ﰲ ﺍﻟـ‪GRO J1655-40.‬‬

‫ﺇﻥ ﺧﺼﺎﺋﺺ ﺍﳌﺎﺩﺓ ﺍﻟﻨﻮﻭﻳﺔ ﺍﳌﺘﺮﺩﻳﺔ ﻟﻴﺴﺖ ﻣﻌﺮﻭﻓﺔ ﺟﻴﺪﺍ‪ ،‬ﺇﺫ ﳚﺐ ﺃﻥ ﻳﺆﺧﺬ ﰲ ﺍﻻﻋﺘﺒﺎﺭ‬ ‫ﺍﻟﺘﺂﺛﺮﺍﺕ ﺍﻟﻘﻮﻳﺔ ﺑﲔ ﺍﻟﻨﺘﺮﻭﻧﺎﺕ ـ ﻭﻣﻜﻮﱢﻧﺎ‪‬ﺎ ﻣﻦ ﺍﻟﻜﻮﺍﺭﻛﺎﺕ)‪ .quarks (7‬ﻟﺬﺍ ﻓﺈﻥ ﺍﻟﺒﺎﺣﺜﲔ‬ ‫ﻏﲑ ﻭﺍﺛﻘﲔ ﻣﻦ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﻈﻤﻰ ﻟﻜﺘﻠﺔ ﺍﻟﻨﺠﻢ ﺍﻟﻨﺘﺮﻭﱐ‪ ،‬ﻋﻠﻰ ﺍﻟﺮﻏﻢ ﻣﻦ ﺃﻥ ﺣﺠﺠًﺎ ﻣﺒﺴﻄﺔ‬

‫ﺗﻮﺿﺢ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﻈﻤﻰ ﺍﳌﻄﻠﻘﺔ ﳍﺬﻩ ﺍﻟﻜﺘﻠﺔ‪ .‬ﻓﻔﻲ ﳒﻢ ﻣﺘﺮﺩﱟ‪ ،‬ﻳﺘﺰﺍﻳﺪ ﺍﻟﺸﺪ ﺍﻟﺜﻘﺎﱄ ﻣﻊ ﺍﺯﺩﻳﺎﺩ‬

‫ﺍﻟﻜﺘﻠﺔ‪ .‬ﻭﳌﻘﺎﻭﻣﺔ ﺫﻟﻚ ﺍﻟﺸﺪ‪ ،‬ﳚﺐ ﺃﻥ ﺗﺰﺩﺍﺩ ﺍﳌﺎﺩﺓ ﺻﻼﺑﺔ‪ ،‬ﳑﺎ ﻳﺆﺩﻱ‪ ،‬ﻋﻨﺪﻣﺎ ﺗﺘﺠﺎﻭﺯ ﺍﻟﻜﺘﻠﺔ‬ ‫ﻗﻴﻤﺔ ﺣﺮﺟﺔ‪ ،‬ﺇﱃ ﻗﻴﻤﺔ ﻣﻦ ﺍﻟﺼﻼﺑﺔ ﺗﺼﺒﺢ ﻋﻨﺪﻫﺎ ﺳﺮﻋﺔ ﺍﻟﺼﻮﺕ )ﰲ ﺍﻟﻨﺠﻢ( ﺃﻋﻠﻰ ﻣﻦ ﺳﺮﻋﺔ‬ ‫ﺍﻟﻀﻮﺀ )ﰲ ﺍﻟﻔﺮﺍﻍ( ﻭﻫﻮ ﻣﺎ ﻳﻨﺎﻗﺾ ﻣﺒﺎﺩﺉ ﺃﺳﺎﺳﻴﺔ ﰲ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﻨﺴﺒﻴﺔ ‪.relativity theory‬‬ ‫ﻭﻗﺪ ﻭ‪‬ﺟﺪ ﺃﻥ ﺍﻟﻜﺘﻠﺔ ﺍﻟﻌﻈﻤﻰ ﺍﳊﺮﺟﺔ‪ ،‬ﺍﻟﱵ ﳝﻜﻦ ﺃﻥ ﺗﺘﺠﻨﺐ ﻓﻴﻬﺎ ﺍﳌﺎﺩﺓ ﻫﺬﺍ ﺍﻟﺘﻨﺎﻗﺾ‪ ،‬ﻫﻲ ﳓﻮ‬

‫ﻼ ﻗﺎﻣﺖ ‪‬ﺎ ﳎﻤﻮﻋﺎﺕ ﺃﻣﺮﻳﻜﻴﺔ‬ ‫ﺳﺘﺔ ﺃﺿﻌﺎﻑ ﻛﺘﻠﺔ ﺍﻟﺸﻤﺲ‪ .‬ﻭﻃﺒﻘﺎ ﳊﺴﺎﺑﺎﺕ ﺃﻛﺜﺮ ﺗﻔﺼﻴ ﹰ‬ ‫ﻭﻓﺮﻧﺴﻴﺔ ﻭﻳﺎﺑﺎﻧﻴﺔ‪ ،‬ﻓﺈﻥ ﺍﻟﻜﺘﻠﺔ ﺍﻟﻌﻈﻤﻰ ﻫﻲ ﰲ ﺍﳊﻘﻴﻘﺔ ﺃﻗﻞ ﻣﻦ ﺛﻼﺙ ﻛﺘﻞ ﴰﺴﻴﺔ‪ .‬ﻭﻧﺸﲑ ﺇﱃ‬ ‫ﺃﻥ ﺍﻟﻨﺠﻮﻡ ﺍﻟﻨﺘﺮﻭﻧﻴﺔ ﺍﳌﻌﺮﻭﻓﺔ ﻻ ﺗﺘﻌﺪﻯ ﻛﺘﻠﺘﻬﺎ ﺿﻌﻒ ﺍﻟﻜﺘﻠﺔ ﺍﻟﺸﻤﺴﻴﺔ‪.‬‬ ‫ﻭﻫﻜﺬﺍ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺳﲑﻭﺭﺓ ﺣﺬﻑ ﻣﺘﺘﺎﻟﻴﺔ ‪ ،process elimination‬ﻧﺘﻮﺻﻞ ﺇﱃ ﺃﻥ ﻣﺎ‬ ‫ﻳﺴﻤﻴﻪ ﺍﻟﻔﻠﻜﻴﻮﻥ ﺛﻘﻮﺑﺎ ﺳﻮﺩﺍﺀ ـ ﺃﻭ ِﻟَﻨ ﹸﻘﻞﹾ‪ ،‬ﻣﻦ ﺑﺎﺏ ﺍﳊﻴﻄﺔ‪ ،‬ﺛﻘﻮﺑﺎ ﺳﻮﺩﺍﺀ ﻣﺮﺷﺤﺔ ـ ﻫﻲ‬ ‫ﺗﻠﻚ ﺍﻷﺟﺴﺎﻡ ﺍﳌﺪﳎﺔ ﺍﻟﱵ ﺗﺘﺠﺎﻭﺯ ﻛﺘﻠﺔ ﻛﻞ ﻣﻨﻬﺎ ﺛﻼﺙ ﻛﺘﻞ ﴰﺴﻴﺔ‪ .‬ﻭﻧﺴﺘﻄﻴﻊ ﲢﺪﻳﺪ ﺍﻟﻘﻴﻤﺔ‬

‫ﺍﻟﺼﻐﺮﻯ ﻟﻜﺘﻠﺔ ﳒﻢ ﺛﻨﺎﺋﻲ ﻭﺫﻟﻚ ﺑﻘﻴﺎﺱ ﺳﺮﻋﺔ ﺍﻟﻨﺠﻢ)‪ (8‬ﻭﺍﺳﺘﺨﺪﺍﻡ ﻗﻮﺍﻧﲔ ﻛِﭙﻠﺮ ﻟﻠﺤﺮﻛﺔ‬ ‫ﺍﳌﺪﺍﺭﻳﺔ‪ .‬ﻭﻳﻌﺮﻑ ﺍﻟﻔﻠﻜﻴﻮﻥ‪ ،‬ﰲ ﺍﻟﻮﻗﺖ ﺍﳊﺎﺿﺮ‪ ،‬ﺳﺒﻊ ﺛﻨﺎﺋﻴﺎﺕ ﺳﻴﻨﻴﺔ ﻋﺎﺑﺮﺓ‬

‫‪x-ray‬‬

‫‪ ،binaries transient‬ﻳ‪‬ﺤﻘﻖ ﻓﻴﻬﺎ ﺍﳉﺴﻢ ﺍﳌﺘﺮﺍﺹ ﺑﺎﻟﺘﺄﻛﻴﺪ ﺷﺮﻁ ﺍﻟﻜﺘﻠﺔ ﺍﳌﻄﻠﻮﺏ ﻟﻠﺜﻘﺐ‬

‫ﺍﻷﺳﻮﺩ‪ .‬ﻭﻣﻊ ﻭﺿﻊ ﺑﻌﺾ ﺍﻻﻓﺘﺮﺍﺿﺎﺕ ﺍﻹﺿﺎﻓﻴﺔ‪ ،‬ﲤﻜﻦ ﻫﺆﻻﺀ ﺍﻟﻔﻠﻜﻴﻮﻥ ﻣﻦ ﺗﻘﺪﻳﺮ ﺍﻟ ﹸﻜﺘَﻞ‬

‫ﺍﳊﻘﻴﻘﻴﺔ ﳍﺬﻩ ﺍﻟﺜﻘﻮﺏ‪ ،‬ﻓﻮﺟﺪﻭﻫﺎ ﺗﺮﺍﻭﺡ ﻣﺎ ﺑﲔ ‪ 4‬ﻭ ‪ 12‬ﻛﺘﻠﺔ ﴰﺴﻴﺔ‪.‬‬


‫ﺟﺎﺀ ﺍﻟﱪﻫﺎﻥ ﻋﻠﻰ ﻭﺟﻮﺩ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﻣﻦ ﻣﻘﺎﺭﻧﺔ ﺳﻄﻮﻉ )ﺍﶈﻮﺭ‬ ‫ﺍﻟﺮﺃﺳﻲ( ﺃﺟﺴﺎﻡ ﺗﺰﻥ ﺃﻛﺜﺮ ﻣﻦ ‪ 3‬ﻛﺘﻞ ﴰﺴﻴﺔ )ﺍﻟﺪﻭﺍﺋﺮ ﺍﻟﺴﻮﺩﺍﺀ( ﺑﺴﻄﻮﻉ‬

‫ﺗﻠﻚ ﺍﻟﱵ ﺗﻘﻞ ﻛﺘﻠﺘﻬﺎ ﻋﻦ ﺛﻼﺙ ﻛﺘﻞ ﴰﺴﻴﺔ )ﺍﻟﺪﻭﺍﺋﺮ ﺍﻟﺒﻴﻀﺎﺀ(‪ .‬ﻭﻛﻤﺎ‬ ‫ﻧﺮﻯ‪ ،‬ﻓﺈﻥ ﺍﻷﺟﺴﺎﻡ ﺍﻷﺛﻘﻞ ﺗﻜﻮﻥ ﺑﺎﻫﺘﺔ ﺃﻛﺜﺮ ﻣﻦ ﺍﻷﺟﺴﺎﻡ ﺍﻷﺧﻒ ﺣﱴ ﻟﻮ‬

‫ﻛﺎﻥ ﺩﻭﺭﳘﺎ ﺍﳌﺪﺍﺭﻱ ﻭﺍﺣﺪًﺍ )ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ(‪ .‬ﺇﻻ ﺃﻥ ﺍﻟﺪﻭﺭ ﺍﳌﺪﺍﺭﻱ ﻫﻮ‬

‫ﺍﻟﺬﻱ ﳛﺪﺩ ﻣﻌﺪﻝ ﺗﻨﺎﻣﻲ ﺍﳌﺎﺩﺓ ﻭﺑﺎﻟﺘﺎﱄ ﻛﻤﻴﺔ ﺍﻹﺷﻌﺎﻉ ﺍﻟﺼﺎﺩﺭ‪ .‬ﻭﳝﻜﻦ‬ ‫ﺗﻔﺴﲑ ﺍﻻﺧﺘﻼﻑ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﳌﺎﺩﺓ ﻭﺍﻟﻄﺎﻗﺔ ﲣﺘﻔﻴﺎﻥ ﻣﻦ ﺍﻟﻜﻮﻥ‪،‬ﻭﻫﻮ ﻣﺎ‬ ‫ﳛﻘﻘﻪ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ ﻭﺣﺪﻩ‪) .‬ﺍﻷﺳﻬﻢ ﺗﺸﲑ ﺇﱃ ﺍﳊﺪﻭﺩ ﺍﻟﻌﻠﻴﺎ‬ ‫ﻟﻠﻘﻴﺎﺳﺎﺕ‪).‬‬

‫ﻭﺗﺼﺒﺢ ﻋﻤﻠﻴﺔ ﺗﺸﺨﻴﺺ ﻫﺬﻩ ﺍﻷﺟﺴﺎﻡ ﻋﻠﻰ ﺃ‪‬ﺎ ﺛﻘﻮﺏ ﺳﻮﺩﺍﺀ ﺃﻛﺜﺮ ﻭﺛﻮﻗﻴﺔ‪ ،‬ﻟﻮ ﺃ‪‬ﺎ‬ ‫ﺃﻇﻬﺮﺕ ﺍﳋﺎﺻﻴﺔ ﺍﻷﺧﺮﻯ ﺍﻟﱵ ﻻ ﲤﺘﻠﻜﻬﺎ ﺍﻟﻨﺠﻮﻡ ﺍﻟﻨﺘﺮﻭﻧﻴﺔ‪ :‬ﻭﻫﻲ ﻋﺪﻡ ﻭﺟﻮﺩ ﺳﻄﺢ ﻗﺎﺱ؛‬ ‫ﻓﺄﻓﻖ ﺍﳊﺪﺙ ﻫﻮ ﺑﺒﺴﺎﻃﺔ ﺳﻄﺢ ﺍﻟﻼﻋﻮﺩﺓ‪ ،‬ﻭﺃﻱ ﺷﻲﺀ ﻳﺴﻘﻂ ﻋﱪﻩ ﳜﺘﻔﻲ ﻣﻦ ﻛﻮﻧﻨﺎ ﺇﱃ ﺍﻷﺑﺪ‪.‬‬

‫ﺇﺫﺍ ﺳﻘﻄﺖ ﻗﻄﺮﺓ ‪ blob‬ﻣﻦ ﺍﻟﭙﻼﺯﻣﺎ ﺍﻟﺴﺎﺧﻨﺔ ﰲ ﺛﻘﺐ ﺃﺳﻮﺩ‪ ،‬ﻭﱂ ﻳﻜﻦ ﻟﺪﻳﻬﺎ ﺍﻟﻮﻗﺖ‬ ‫ﺸ ﱠﻊ ﻃﺎﻗﺘﻬﺎ ﺍﳊﺮﺍﺭﻳﺔ‪ ،‬ﻓﺈﻥ ﻫﺬﻩ ﺍﻟﻄﺎﻗﺔ ﺳﺘﻨﺴﺤﺐ ﻣﻊ ﺍﳌﺎﺩﺓ ﺇﱃ ﺍﻟﺪﺍﺧﻞ‪ .‬ﻭﻻ ﺗﻈﻬﺮ‬ ‫ﺍﻟﻜﺎﰲ ﻟ‪‬ﺘ ِ‬

‫ﻫﺬﻩ ﺍﻟﻄﺎﻗﺔ ﻣﻄﻠﻘﹰﺎ ﻣﺮﺓ ﺃﺧﺮﻯ ﻟﻠﺮﺍﺻﺪ ﺍﻟﺒﻌﻴﺪ‪ ،‬ﻭﺇﳕﺎ ﺗﺘﺄﻓﹼﻖ ‪ 9 be advected‬ﻋﱪ ﺃﻓﻖ‬

‫ﺍﳊﺪﺙ ﻭﲣﺘﻔﻲ ﺇﱃ ﺍﻷﺑﺪ‪ .‬ﻭﻻ ﳜﺎﻟﻒ ﻫﺬﺍ ﺍﻟﺘﺴﺮﺏ ﻗﺎﻧﻮﻥ ﺣﻔﻆ ﺍﻟﻜﺘﻠﺔ ـ ﺍﻟﻄﺎﻗﺔ‪ ،‬ﺇﺫ ﺇﻥ‬ ‫ﺍﻟﻄﺎﻗﺔ ﺍﳊﺮﺍﺭﻳﺔ ﺗﺼﺒﺢ ﺟﺰﺀًﺍ ﻣﻦ ﻛﺘﻠﺔ ﺍﻟﺜﻘﺐ ﻧﻔﺴﻪ‪ .‬ﻟﻜﻦ ﺫﻟﻚ ﻳﻘﻠﱢﻞ ﻛﺜﲑﺍ ﻣﻦ ﺍﻟﻜﻔﺎﺀﺓ‬

‫ﺍﻟﻈﺎﻫﺮﺓ ﻟﻠﺜﻘﺐ ﺍﻷﺳﻮﺩ‪ .‬ﻭﻋﻠﻰ ﻧﻘﻴﺾ ﺫﻟﻚ‪ ،‬ﻋﻨﺪﻣﺎ ﺗﺴﻘﻂ ﺍﻟﭙﻼﺯﻣﺎ ﺍﻟﺴﺎﺧﻨﺔ ﻋﻠﻰ ﳒﻢ ﻧﺘﺮﻭﱐ‪،‬‬

‫ﻓﺈﻥ ﻃﺎﻗﺘﻬﺎ ﺍﳊﺮﺍﺭﻳﺔ ﺳﻮﻑ ‪‬ﺗﺸَﻊ ﺑﺄﻛﻤﻠﻬﺎ ﰲ ‪‬ﺎﻳﺔ ﺍﳌﻄﺎﻑ ـ ﺇﻣﺎ ﻣﻦ ﺍﻟﭙﻼﺯﻣﺎ ﺫﺍ‪‬ﺎ ﺃﻭ ﻣﻦ‬ ‫ﺳﻄﺢ ﺍﻟﻨﺠﻢ ﺍﻟﻨﺘﺮﻭﱐ‪.‬‬


‫ﻟﺬﻟﻚ ﳝﻜﻦ ﲤﻴﻴﺰ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﻭﺍﻟﻨﺠﻮﻡ ﺍﻟﻨﺘﺮﻭﻧﻴﺔ ﺑﺴﻬﻮﻟﺔ ﺑﻌﻀﻬﺎ ﻣﻦ ﺑﻌﺾ‪ ،‬ﻋﻨﺪﻣﺎ‬

‫ﺗﻜﻮﻥ ﺍﳌﺎﺩﺓ ﺍﳌﺘﻨﺎﻣﻴﺔ ‪ -‬ﻭﺃﻳًﺎ ﻛﺎﻥ ﺍﻟﺴﺒﺐ‪ -‬ﻏﲑ ﻗﺎﺩﺭﺓ ﻋﻠﻰ ﺍﻟﺘﺨﻠﺺ ﻣﻦ ﺣﺮﺍﺭ‪‬ﺎ ﻗﺒﻞ ﻭﺻﻮﳍﺎ‬ ‫ﺖ ﻣﺜﻞ‬ ‫ﺇﱃ ﺍﻷﻓﻖ ﺃﻭ ﺳﻄﺢ ﺍﳉﺴﻢ‪ .‬ﻭﰲ ﻭﺭﺷﺔ ﻋﻤﻞ ﰲ ﻛﻴﻮﺗﻮ )ﺍﻟﻴﺎﺑﺎﻥ( ﻋﺎﻡ ‪َ ،1995‬ﺳﻤﱠﻴ ‪‬‬ ‫ﻫﺬﻩ ﺍﻟﺘﺪﻓﻘﺎﺕ ﺗﺪﻓﻘﺎﺕ ﺍﻟﺘﻨﺎﻣﻲ ﺍﻟﺘﺄﻓﻘﻴﺔ‬

‫‪advection-dominated‬‬

‫‪accretion‬‬

‫‪ ، ADAFs flows‬ﻭﺷﺎﻉ ﻫﺬﺍ ﺍﻻﺳﻢ ﻣﻨﺬ ﺫﻟﻚ ﺍﻟﻮﻗﺖ‪ .‬ﺇﻥ ﺍﻟﭙﻼﺯﻣﺎﺕ ﺍﻟﺴﺎﺧﻨﺔ ﺟﺪﺍ‬ ‫ﻭﺍﻟﺮﻗﻴﻘﺔ ﻫﻲ ﺃﻣﺜﻠﺔ ﻟﻠﻤﺸﻌﺎﻋﺎﺕ ‪ radiators‬ﺍﻟﻀﻌﻴﻔﺔ‪ ،‬ﻟﺬﺍ ﻓﺈﻥ ﺍﻟﻔﻠﻜﻴﲔ ﲝﺜﻮﺍ ﻋﻦ ﻣﺼﺎﺩﺭ‬

‫ﺃﺷﻌﺔ ﺳﻴﻨﻴﺔ ﺃﻭ ﮔﺎﻣﺎﺗﻴﺔ ‪ ،gamma-rays‬ﺃﻗﻞ ﺿﻴﺎ ًﺀ ﳑﺎ ﳚﺐ ﺃﻥ ﺗﻜﻮﻥ ﻋﻠﻴﻪ ﻣﻊ ﺍﻓﺘﺮﺍﺽ‬ ‫ﻛﻔﺎﺀﺓ ﺇﺷﻌﺎﻋﻴﺔ ﳓﻮ ‪ 10‬ﰲ ﺍﳌﺌﺔ‪.‬‬

‫ﺘﺼﺭﻴﻑ ﺍﻟﻐﺎﺯﺍﺕ ﻓﻲ ﺍﻟﺜﻘﺏ‬

‫)******(‬

‫ﺇﻥ ﺍﳌﻮﺍﺩ ﺍﻟﱵ ‪‬ﻮﻱ ﳓﻮ ﺟﺴﻢ ﻣﺪﻣﺞ ﻻ ﺗﺴﻘﻂ ﻣﺒﺎﺷﺮﺓ‪ ،‬ﻭﺇﳕﺎ ﺗﺴﺘﻘﺮ ﰲ ﻣﺪﺍﺭﺍﺕ ﺩﺍﺋﺮﻳﺔ‬ ‫ﺗﻘﺮﻳﺒﺎ ﺑﺴﺒﺐ ﺍﳓﻔﺎﻅ ﺍﻟﺰﺧﻢ ﺍﻟﺰﺍﻭﻱ‪ ،‬ﻭﻣﻦ ﰒ ﳝﻜﻨﻬﺎ ﺍﳍﺒﻮﻁ ﺃﻛﺜﺮ ﺇﺫﺍ ﺗﻮﻓﺮ ﺍﻻﺣﺘﻜﺎﻙ ﺍﻟﺬﻱ‬ ‫ﻳﺰﻳﻞ ﺫﻟﻚ ﺍﻟﺰﺧﻢ‪ .‬ﻭﻳﺆﺩﻱ ﺍﻻﺣﺘﻜﺎﻙ ﺃﻳﻀًﺎ ﺇﱃ ﺗﺴﺨﲔ ﺍﻟﻐﺎﺯ ﺍﳌﺘﻨﺎﻣﻲ‪ .‬ﻭﺇﺫﺍ ﺍﺳﺘﻄﺎﻉ ﺍﻟﻐﺎﺯ ﺃﻥ‬

‫ﻳﺘﱪﱠﺩ ﺑﻜﻔﺎﺀﺓ‪ ،‬ﻓﺈﻧﻪ ﻳﻔﻘﺪ ﻃﺎﻗﺔ ﻣﺪﺍﺭﻳﺔ ﻭﻳﺸﻜﻞ ﺑﻨﻴﺔ ﺭﻗﻴﻘﺔ ﻣﺴﻄﺤﺔ‪ ،‬ﺗﺴﻤﻰ ﻗﺮﺹ ﺍﻟﺘﻨﺎﻣﻲ‬ ‫‪ .disk accretion‬ﻭﻗﺪ ﺷﻮﻫﺪﺕ ﺑﺎﻟﻔﻌﻞ ﺃﻗﺮﺍﺹ ﻣﻦ ﻫﺬﺍ ﺍﻟﻨﻮﻉ ﰲ ﻋﺪﺩ ﻣﻦ ﺍﳌﻨﻈﻮﻣﺎﺕ‬ ‫ﺍﻟﺜﻨﺎﺋﻴﺔ)‪ .(10‬ﺃﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺘﱪﻳﺪ ﻗﻠﻴﻞ ﺍﻟﻜﻔﺎﺀﺓ‪ ،‬ﻛﻤﺎ ﰲ ﺣﺎﻻﺕ ﺍﳉﺮﻳﺎﻥ ‪ ،ADAFs‬ﻓﺈﻥ ﺍﳌﺎﺩﺓ‬ ‫ﺗﺄﺧﺬ ﺷﻜﻼ ﻛﺮﻭﻳﺎ ﺗﻘﺮﻳﺒﺎ‪.‬‬ ‫ﻣﻨﺬ ﺯﻣﻦ ﻃﻮﻳﻞ ـ ﰲ ﻋﺎﻡ ‪ 1977‬ـ ﺍﺳﺘﺨﺪﻡ >‪ .S‬ﺇﻳﺸﻴﻤﺎﺭﻭ< ]ﻣﻦ ﺟﺎﻣﻌﺔ‬ ‫ﻃﻮﻛﻴﻮ[ ﻫﺬﺍ ﺍﳌﻔﻬﻮﻡ ﻟﺸﺮﺡ ﺑﻌﺾ ﺧﺼﺎﺋﺺ ﺍﻟﺜﻨﺎﺋﻴﺔ ﺍﻟﺪﺟﺎﺟﺔ ‪ ،1-X Cygnus‬ﺫﺍﺕ ﺍﻟﻜﺘﻠﺔ‬

‫ﺍﻟﻌﺎﻟﻴﺔ‪ ،‬ﻭﺍﻟﱵ ﲢﺘﻮﻱ ﻋﻠﻰ ﺃﻭﻝ ﻣﺮﺷﺢ ﻣﻌﺮﻭﻑ ﻛﺜﻘﺐ ﺃﺳﻮﺩ‪ ،‬ﻭﻟﻜﻦ ﻋﻤﻠﻪ ﻇﻞ ﻣﻐﻤﻮﺭﺍ ﻟﺴﺒﺐ‬ ‫ﻣﺎ‪ .‬ﺃﻣﺎ ﺍﻻﻫﺘﻤﺎﻡ ﺍﳊﺪﻳﺚ ﻭﺍﳌﻜﺜﻒ ﺑﺴﲑﻭﺭﺓ ﺍﳉﺮﻳﺎﻥ ‪ ADAFs‬ﻓﻘﺪ ﺑﺪﺃ ﻋﺎﻡ ‪1994‬‬ ‫ﺑﻨﻤﺎﺫﺝ ﻧﻈﺮﻳﺔ ﺑﺴﻴﻄﺔ ﻟﻠﺤﺎﻻﺕ ﺍﻟﺮﻗﻴﻘﺔ ﺿﻮﺋﻴﺎ‪ ،‬ﻗﺪﻣﻬﺎ ﻛﻞ ﻣﻦ>‪ .R‬ﻧﺎﺭﺍﻳﺎﻥ< ﻭ>‪ .I‬ﻳﻲ<‬

‫]ﻣﻦ ﺟﺎﻣﻌﺔ ﻫﺎﺭﭬﺎﺭﺩ[ﻭ>‪ .M‬ﺃﺑﺮﺍﻣﻮﭬﻴﺶ< ﻭ>‪َ .X‬ﺗﺸِﻦ>ْ ]ﻣﻦ ﺟﺎﻣﻌﺔ ﮔﻮﺗﻨﱪﮒ[‪،‬‬

‫ﻭ>‪ .S‬ﻛﺎﺗﻮ< ]ﻣﻦ ﺟﺎﻣﻌﺔ ﻛﻴﻮﺗﻮ[‪ ،‬ﻭ>‪ .O‬ﺭﳚﻴﭫ< ]ﻣﻦ ﺟﺎﻣﻌﺔ ﺣﻴﻔﺎ[‪ ،‬ﻭﻛﺎﺗﺐ ﻫﺬﻩ‬

‫ﺍﳌﻘﺎﻟﺔ‪ .‬ﻭﻗﺪ ﺣﻘﻘﺖ ﻫﺬﻩ ﺍﻟﻨﻤﺎﺫﺝ ‪ -‬ﻋﻠﻰ ﺃﻳﺪﻱ ﻫﺆﻻﺀ ﺍﻟﺒﺎﺣﺜﲔ ﻭﺁﺧﺮﻳﻦ ﻏﲑﻫﻢ ﻣﺜﻞ>‪.A‬‬


‫ﺇﻳﺴﻦ< ﻭ> ‪ .R‬ﻣﻬﺎﺩﻳﭭﺎﻥ< ﻭ>‪ .E.J‬ﻣﻜﻠﻴﻨﺘﻮﻙ< ]ﻣﻦ ﻣﺮﻛﺰ ﻫﺎﺭﭬﺎﺭﺩ ‪ -‬ﲰﻴﺜﻮﻧﻴﺎﻥ‬ ‫ﻟﻠﻔﻴﺰﻳﺎﺀ ﺍﻟﻔﻠﻜﻴﺔ[ ﰒ>‪ .F‬ﻫﻮﳕﺎ< ﻣﻦ ﻛﻴﻮﺗﻮ ‪ -‬ﳒﺎﺣﺎ ﺗﻠﻮ ﺍﻵﺧﺮ‪ .‬ﻓﻌﻠﻰ ﺳﺒﻴﻞ ﺍﳌﺜﺎﻝ‪ ،‬ﻳﺴﺘﻄﻴﻊ‬

‫ﳕﻮﺫﺝ ‪ ADAFs‬ﺃﻥ ﻳﻔﺴﱢﺮ ﺍﻟﻄﻴﻒ ﺍﻟﺼﺎﺩﺭ ﻋﻦ ﻣﺮﻛﺰ ﳎﺮﺗﻨﺎ‪ ،‬ﻣﺆﻛﺪًﺍ ﺑﺬﻟﻚ ﺍﻗﺘﺮﺍﺣًﺎ ﺳﺎﺑﻘﹰﺎ‬

‫ﻛﺎﻥ ﻗﺪ ﻗﺪﻣﻪ >‪ .J.M‬ﺭﻳﺲ< ]ﻣﻦ ﺟﺎﻣﻌﺔ ﻛﺎﻣﱪﻳﺪﺝ[ ﰲ ﻣﺆﲤﺮ ﻋﻘﺪ ﻋﺎﻡ ‪.1982‬‬ ‫ﻫﻨﺎﻙ ﺃﺣﺪ ﺃﻧﻮﺍﻉ ﺍﳌﻨﻈﻮﻣﺎﺕ ﺍﻟﺜﻨﺎﺋﻴﺔ‪ ،‬ﻭﻫﻲ ﻣﻨﻈﻮﻣﺔ ﺳﻴﻨﻴﺔ ﻋﺎﺑﺮﺓ ﻭﺧﺎﻣﻠﺔ‪ ،‬ﺗﺒﺪﻭ ﻛﺄ‪‬ﺎ‬

‫ﲢﺘﻮﻱ ﻋﻠﻰ ﺗﺪﻓﻖﹴ ﺗﻨﺎﻣ ﱟﻲ ﻳﺘﺄﻟﻒ ﻣﻦ ﻣﻜﻮﻧﲔ‪ :‬ﺍﳉﺰﺀ ﺍﻟﺪﺍﺧﻠﻲ ﻫﻮ ‪ ،ADAF‬ﻭﺍﳉﺰﺀ ﺍﳋﺎﺭﺟﻲ‬ ‫ﻫﻮ ﻗﺮﺹ ﺗﻨﺎﻡ ﻣﻨﺒﺴﻂ‪ ،‬ﻭﺗﺒﻘﻰ ﻫﺬﻩ ﺍﳌﻨﻈﻮﻣﺎﺕ ﺧﺎﻣﻠﺔ ﻣﻌﻈﻢ ﺍﻟﻮﻗﺖ‪ ،‬ﻭﻳَﺼﺪ‪‬ﺭ ﺍﳉﺰﺀ ﺍﻟﺘﺄﻓﻘﻲ‬

‫)‪ (ADAF‬ﰲ ﻫﺬﻩ ﺍﻷﺛﻨﺎﺀ ﺍﻟﻘﺴﻢ ﺍﻷﻛﱪ ﻣﻦ ﺍﻹﺷﻌﺎﻉ ﺍﻟﻀﻌﻴﻒ ﺍﳌﺮﺻﻮﺩ‪ .‬ﻭﻣﻦ ﺣﲔ ﺇﱃ ﺁﺧﺮ‬ ‫ﺗﻄﻠﻖ ﺍﳌﻨﻈﻮﻣﺎﺕ ﺩﻓﻘﺔ ﺷﺪﻳﺪﺓ ﻣﻦ ﺍﻹﺷﻌﺎﻉ‪ .‬ﻭﳌﺎ ﻛﺎﻥ ﺍﳉﺰﺀ ﺍﻟﺘﺄﻓﻘﻲ ﻣﺴﺘﻘﺮﹰﺍ ﺑﻄﺒﻴﻌﺘﻪ‪ ،‬ﻓﺈﻥ ﻫﺬﻩ‬ ‫ﺍﻟﺘﻔﺠﺮﺍﺕ ﻻﺑﺪ ﺃﻥ ﺗﻨﻄﻠﻖ ﰲ ﺍﻟﻘﺮﺹ ﺍﳋﺎﺭﺟﻲ‪.‬‬

‫ﰲ‪ ،1996/4/ 20‬ﻛﺎﻥ ﻓﺮﻳﻖ ﻣﻦ ﺍﻟﻔﻠﻜﻴﲔ )ﻣﻜﻠﻴﻨﺘﻮﻙ‪ ،‬ﻭ>‪ .R‬ﺭﳝﻴﻼﺭﺩ< ]ﻣﻦ‬

‫ﻣﻌﻬﺪ ﻣﺎﺳﺎﺗﺸﻮﺳﺘﺲ ﻟﻠﺘﻘﺎﻧﺔ[‪ ،‬ﻭ>‪ .J‬ﺃﻭﺭﻭﺯ< ]ﻣﻦ ﺟﺎﻣﻌﺔ ﺑﻨﺴﻠﭭﺎﻧﻴﺎ ﺍﳊﻜﻮﻣﻴﺔ[ ﻭ>‪.C‬‬ ‫ﺑﻴﻠﲔ< ]ﻣﻦ ﺟﺎﻣﻌﺔ ﻳﻴﻞ[( ﻳﺸﺎﻫﺪ ﺍﻟﻌﺎﺑﺮ ﺍﻟﺴﻴﲏ ‪ .40-1655J GRO‬ﻭﻗﺪ ﺑﺪﺍ ﻟﻠﻮﻫﻠﺔ‬ ‫ﺍﻷﻭﱃ ﺃﻥ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﳌﺮﺻﻮﺩﺓ ﻟﻴﺴﺖ ﻋﻠﻰ ﻣﺎ ﻳﺮﺍﻡ‪ ،‬ﺇﻻ ﺃﻧﻪ ﺳﺮﻋﺎﻥ ﻣﺎ ﺍﺗﻀﺢ ﺃﻥ ﺍﻟﻔﺮﻳﻖ ﺭﺻﺪ‬ ‫ﻓﻌﻼ‪ ،‬ﻭﺑﻀﺮﺑﺔ ﺣﻆ‪ ،‬ﺣﺪﺛﺎ ﺑﺎﻟﻎ ﺍﻟﻨﺪﺭﺓ‪ ،‬ﺃﻱ ﺗﻔﺠﺮﹰﺍ‪ .‬ﻭﻋﻠﻰ ﻣﺪﺍﺭ ﺍﻷﻳﺎﻡ ﺍﳋﻤﺴﺔ ﺍﻟﺘﺎﻟﻴﺔ‪ ،‬ﺍﺯﺩﺍﺩ‬ ‫ﳌﻌﺎﻥ ﺍﳌﻨﻈﻮﻣﺔ ﰲ ﺍﻟﻀﻮﺀ ﺍﳌﺮﺋﻲ‪ ،‬ﻭﻟﻜﻦ ﺍﻟﻄﻴﻒ ﺍﻟﺴﻴﲏ ﺑﻘﻲ ﻣﻦ ﺩﻭﻥ ﺃﻱ ﻧﺸﺎﻁ‪.‬‬

‫ﻭﻟﻜﻦ ﰲ ﺍﻟﻴﻮﻡ ﺍﻟﺴﺎﺩﺱ‪ ،‬ﺑﺪﺃﺕ ﺍﳌﻨﻈﻮﻣﺔ ﺑﺈﺻﺪﺍﺭ ﺇﺷﻌﺎﻉ ﺳﻴﲏ ﻗﻮﻱ‪ .‬ﻭﻛﻤﺎ ﺃﻭﺿﺢ ﻛﻞ‬

‫ﻣﻦ > ‪ .J.M‬ﻫﺎﻣﻴﻮﺭﻱ < ]ﻣﻦ ﻣﺮﺻﺪ ﺳﺘﺮﺍﺳﺒﻮﺭﮒ[‪ ،‬ﻭﻣﻜﻠﻴﻨﺘﻮﻙ ﻭﻧﺎﺭﺍﻳﺎﻥ ﻭﻛﺎﺗﺐ ﻫﺬﻩ‬ ‫ﺍﳌﻘﺎﻟﺔ‪ ،‬ﻓﺈﻥ ﻫﺬﺍ ﺍﻟﺘﺄﺧﺮ ﺍﻟﺰﻣﲏ ﻫﻮ ﺑﺎﻟﻀﺒﻂ ﻣﺎ ﳝﻜﻦ ﺗﻮﻗﻌﻪ ﻣﻦ ﺗﺪﻓﻖﹴ ﺗﻨﺎﻣ ﱟﻲ ﻳﺘﺄﻟﱠﻒ ﻣﻦ ﻣﻜﻮﻧﲔ‪،‬‬ ‫ﺇﺫ ﻳﺼﺪﺭ ﺍﻟﻘﺮﺹ ﺍﳋﺎﺭﺟﻲ‪ ،‬ﺍﻟﺒﻌﻴﺪ ﻋﻦ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ‪ ،‬ﺿﻮﺀﹰﺍ ﻭﻻ ﻳﺼﺪﺭ ﺇﺷﻌﺎﻋﺎﺕ ﺳﻴﻨﻴﺔ‪.‬‬ ‫ﻭﻫﻜﺬﺍ ﻓﺈﻥ ﺑﺪﺍﻳﺔ ﺍﻟﺘﻔﺠﺮ ﻻ ﺗﺮﻯ ﺇﻻ ﰲ ﺃﻃﻮﺍﻝ ﺍﳌﻮﺟﺎﺕ ﺍﳌﺮﺋﻴﺔ‪ .‬ﻟﻜﻦ ﺑﻌﺪ ﺫﻟﻚ ﺗﺄﺧﺬ ﺍﳌﺎﺩﺓ‬

‫ﺑﺎﻻﻧﺘﺸﺎﺭ ‪ diffusion‬ﳓﻮ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ ﲟﻌﺪﻝ ﺃﺳﺮﻉ‪ ،‬ﻭﺗﺒﺪﺃ ﺍﳌﻨﻄﻘﺔ ﺍﻟﺮﻗﻴﻘﺔ ﻣﻦ ﺍﻟـ‬ ‫‪ ADAF‬ﺑﺎﻻﻣﺘﻼﺀ ﺇﱃ ﺃﻥ ﺗﺸﺮﻉ ﰲ ﺇﺻﺪﺍﺭ ﺇﺷﻌﺎﻋﺎﺕ ﺳﻴﻨﻴﺔ‪ .‬ﻟﻘﺪ ﺃﻋﻄﺖ ﺍﻷﺭﺻﺎﺩ ﺗﺄﻛﻴﺪﺍ‬ ‫ﺭﺍﺋﻌﺎ ﻭﻏﲑ ﻣﺘﻮﻗﻊ ﳍﺬﻩ ﺍﻟﻨﻈﺮﻳﺔ ]ﺍﻧﻈﺮ ﺍﻹﻃﺎﺭ ﰲ ﺍﻟﺼﻔﺤﺔ ‪.[49‬‬


‫ﻭﻗﺪ ﺍﺳﺘﺨﺪﻡ ﻛﻞ ﻣﻦ ﻧﺎﺭﺍﻳﺎﻥ ﻭﻣﻜﻠﻴﻨﺘﻮﻙ ﻭ>‪ .M‬ﮔﺎﺭﺳﻴﺎ< ]ﻣﻦ ﻣﺮﻛﺰ ﻫﺎﺭﭬﺎﺭﺩ ‪-‬‬

‫ﲰﻴﺜﻮﻧﻴﺎﻥ ﻟﻠﻔﻴﺰﻳﺎﺀ ﺍﻟﻔﻠﻜﻴﺔ [ ﺍﻟﺴﻴﻨﻴﺎﺕ ﺍﻟﻌﺎﺑﺮﺓ ﺍﳋﺎﻣﻠﺔ ﻟﻴﻘﺪﻣﻮﺍ ﺃﻭﻝ ﻣﻌﻴﺎﺭ ﻛﻤﻲ ﻟﺘﻤﻴﻴﺰ‬

‫ﺍﻷﺟﺴﺎﻡ ﺫﺍﺕ ﺍﻟﺴﻄﻮﺡ ﺍﻟﻘﺎﺳﻴﺔ )ﺍﻟﻨﺠﻮﻡ ﺍﻟﻨﺘﺮﻭﻧﻴﺔ( ﻣﻦ ﺗﻠﻚ ﺍﳋﺎﻟﻴﺔ ﻣﻨﻬﺎ )ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ(‪.‬‬ ‫ﺖ ﻻﺣﻘﹰﺎ ﻣﻌﻴﺎﺭﹰﺍ ﳐﺘﻠﻔﹰﺎ ﻳﻘﻮﻡ ﻋﻠﻰ ﺍﳊﻘﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ‪ :‬ﺇﻥ ﺍﻟﻨﺠﻮﻡ ﺍﻟﻨﺘﺮﻭﻧﻴﺔ ﺍﻟﻌﺎﺑﺮﺓ‬ ‫ﻭﻗﺪ ﺍﻗﺘﺮﺣ ‪‬‬ ‫ﺍﳋﺎﻣﻠﺔ ﻳﻨﺒﻐﻲ ﺃﻥ ﺗﻜﻮﻥ ﺃ���ﺜﺮ ﺳﻄﻮﻋًﺎ ﻣﻦ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ‪ ،‬ﰲ ﺣﺎﻝ ﺗﺴﺎﻭﻯ ﻣﻌﺪﻝ ﺍﻟﺘﻨﺎﻣﻲ‬

‫ﻓﻴﻬﻤﺎ‪ .‬ﻭﻣﻊ ﺃﻧﻪ ﻻ ﳝﻜﻦ ﻗﻴﺎﺱ ﻣﻌﺪﻝ ﺍﻟﺘﻨﺎﻣﻲ ﻫﺬﺍ ﻣﺒﺎﺷﺮﺓ‪ ،‬ﺇﻻ ﺃﻧﻪ ﳝﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻟﺪﻭﺭ‬ ‫ﻼ ﻟﺬﻟﻚ‪ ،‬ﺇﺫ ﺇﻧﻪ ﺇﺫﺍ ﺗﺴﺎﻭﻯ ﺍﻟﺪﻭﺭ ﺍﳌﺪﺍﺭﻱ ﳉﺴﻤﲔ ﻓﺈ‪‬ﻤﺎ "ﻳﻠﺘﻬﻤﺎﻥ" ﺍﳌﺎﺩﺓ ﺑﻨﻔﺲ‬ ‫ﺍﳌﺪﺍﺭﻱ ﺑﺪﻳ ﹰ‬ ‫ﺍﳌﻌﺪﻝ ﺗﻘﺮﻳﺒﺎ‪ .‬ﻭﻣﻊ ﺃﺧﺬ ﲨﻴﻊ ﻫﺬﻩ ﺍﻷﻣﻮﺭ ﺑﺎﻻﻋﺘﺒﺎﺭ‪ ،‬ﻳﺘﻮﻗﻊ ﺍﻟﺒﺎﺣﺜﻮﻥ ﺃﻥ ﺗﻜﻮﻥ ﻣﻨﻈﻮﻣﺎﺕ‬ ‫ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﺃﻛﺜﺮ ﻋﺘﺎﻣﺔ ﻣﻦ ﻣﻨﻈﻮﻣﺎﺕ ﺍﻟﻨﺠﻮﻡ ﺍﻟﻨﺘﺮﻭﻧﻴﺔ‪ ،‬ﺍﻟﱵ ﳍﺎ ﺍﻟﺪﻭﺭ ﺍﳌﺪﺍﺭﻱ ﻧﻔﺴﻪ‪.‬‬

‫ﻭﳌﺎ ﻛﻨﺎ ﻻ ﻧﻌﺮﻑ ﺇﻻ ﺃﺩﻭﺍﺭ ﻋﺪﺩ ﻗﻠﻴﻞ ﻣﻦ ﺍﳌﻨﻈﻮﻣﺎﺕ‪ ،‬ﻓﺈﻥ ﺍﻟﻔﺮﻕ ﺍﳌﺘﻮﻗﻊ ﱂ ﳛﺪﺩ ﺑﺪﻗﺔ ﺣﱴ‬

‫ﺍﻵﻥ‪ .‬ﻭﻣﻊ ﺫﻟﻚ ﻓﺈﻥ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﺍﳌﺆﻛﺪﺓ ﻫﻲ ﺃﻛﺜﺮ ﻋﺘﺎﻣﺔ ﻣﻦ ﺍﻟﻨﺠﻮﻡ ﺍﻟﻨﺘﺮﻭﻧﻴﺔ ﳉﻤﻴﻊ‬ ‫ﺍﻷﺩﻭﺍﺭ ﺍﳌﺪﺍﺭﻳﺔ ﺍﳌﻌﺮﻭﻓﺔ‪] .‬ﺍﻧﻈﺮ ﺍﻟﺸﻜﻞ ﺍﻟﺘﻮﺿﻴﺤﻲ ﰲ ﺍﻟﺼﻔﺤﺔ ‪.[51‬‬ ‫ﻭﻣﻊ ﺃﻥ ﺃﲝﺎﺛﺎ ﺣﺪﻳﺜﺔ ﺃﺛﺎﺭﺕ ﺷﻜﻮﻛﺎ ﺣﻮﻝ ﳕﻮﺫﺝ ﺍﻟـ ‪ ADAF‬ﺍﻟﺒﺴﻴﻂ‪ ،‬ﻷﻧﻪ ﻻ ﻳﺄﺧﺬ‬ ‫ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﺍﻟﺘﺪﻓﻘﺎﺕ ﳓﻮ ﺍﳋﺎﺭﺝ‪ ،‬ﻓﺈﻥ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻷﻛﺜﺮ ﻋﻤﻮﻣﻴﺔ ﻻ ﺗﺰﺍﻝ ﺗﺘﻄﻠﺐ ﻭﺟﻮﺩ ﺛﻘﺐ‬ ‫ﺃﺳﻮﺩ ﻟﻜﻲ ﺗﻌﻄﻲ ﻧﺘﺎﺋﺞ ﻣﺘﻮﺍﻓﻘﺔ ﻣﻊ ﺍﻷﺭﺻﺎﺩ‪ .‬ﻭﻻ ﻳﺰﺍﻝ ﺇﳚﺎﺩ ﳕﻮﺫﺝ ﻟﻠﺘﺪﻓﻖ ﰲ ﺍﻟﺜﻘﻮﺏ‬

‫ﺍﻟﺴﻮﺩﺍﺀ ﳎﺎﻝ ﲝﺚ ﰲ ﻏﺎﻳﺔ ﺍﻟﻨﺸﺎﻁ‪ .‬ﻭﻋﻠﻰ ﻛﻞ ﺣﺎﻝ‪ ،‬ﻓﺈﻥ ﻣﺎ ﻧﺴﺘﻄﻴﻊ ﻓﻌﻠﻪ ﺍﻵﻥ ﻫﻮ ﻧﻘﻞ‬

‫ﺍﻷﺟﺴﺎﻡ ﺍﻟﺬﻱ ﻻ ﺗﺴﻤﺢ ﳍﺎ ﻛﺘﻠﺘﻬﺎ ﺍﻟﻜﺒﲑﺓ ﺑﺄﻥ ﺗﻜﻮﻥ ﳒﻤﹰﺎ ﻧﺘﺮﻭﻧﻴﺎﹰ‪ ،‬ﻣﻦ ﳎﻤﻮﻋﺔ ﺍﻷﺟﺴﺎﻡ‬ ‫ﳊﺪَﺙ ﻫﻮ‬ ‫ﺍﳌﺮﺷﺤﺔ ﻛﺜﻘﻮﺏ ﺳﻮﺩﺍﺀ ﺇﱃ ﳎﻤﻮﻋﺔ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﺍﳌﺆﻛﺪﺓ‪ .‬ﻓﺎﳉﺴﻢ ﺫﻭ ﺃﻓﻖ ﺍ ﹶ‬

‫ﺍﻟﻮﺣﻴﺪ ﺍﻟﺬﻱ ﳝﻜﻨﻪ ﺃﻥ ﳚﻌﻞ ﺍﻟﻄﺎﻗﺔ ﲣﺘﻔﻲ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺬﻱ ﻳﺴﺘﻨﺘﺠﻪ ﺍﻟﻔﻠﻜﻴﻮﻥ ﰲ ﻫﺬﻩ‬

‫ﺍﳌﻨﻈﻮﻣﺎﺕ‪ .‬ﻭﻣﻦ ﺍﳌﺘﻮﻗﻊ ﺃﻥ ﺗﻘﺪﻡ ﺍﻷﺭﺻﺎﺩ ﺍﻟﻘﺎﺩﻣﺔ ﻣﻦ ﺍﳌﺮﺍﺻﺪ ﺍﳌﺪﺍﺭﻳﺔ‪ ،‬ﻣﺜﻞ ﺗﺸﺎﻧﺪﺭﺍ‬ ‫‪ Chandra‬و‪ ، XMM‬ﺇﺿﺎﻓﺎﺕ ﺇﱃ ﺍﻟﻘﺎﺋﻤﺔ‪ .‬ﻭﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﳝﻜﻦ ﺃﻥ ﺗﻈﻞ ﺳﻮﺩﺍﺀ‪،‬‬ ‫ﻟﻜﻨﻬﺎ ﻟﻦ ﺗﺴﺘﻄﻴﻊ ﺍﻟﺘﺨﻔﻲ ﺑﻌﺪ ﺍﻵﻥ‪ ،‬ﺇﺫ ﺇﻧﻨﺎ ﻧﺘﻌﻠﻢ ﺍﻵﻥ ﻛﻴﻒ ﻧﻜﺸﻒ ﺍﻟﻨﻘﺎﺏ ﻋﻨﻬﺎ‪.‬‬

‫ﺍﳌﺆﻟﻒ‬ ‫‪Jean-Pierre Lasota‬‬


‫ ﻭﻛﺎﻧﺖ ﺍﻫﺘﻤﺎﻣﺎﺗﻪ ﺍﳊﻘﻴﻘﻴﺔ ﺗﺘﺠﻪ ﳓﻮ ﺍﻷﺩﺏ ﻭﺍﻟﺘﺎﺭﻳﺦ؛ ﺇﻻ ﺃﻥ ﺍﻟﻌﻠﻮﻡ ﺍﻹﻧﺴﺎﻧﻴﺔ‬،‫ﻣﻤِﻞ‬ ‫ﻛﺎﻥ ﺍﳌﺆﻟﻒ ﻳﻌﺘﻘﺪ ﺃﻥ ﺍﻟﻔﻠﻚ ﻋﻠﻢ‬ ‫ ﻭﻋﻠﻰ ﻫﺬﺍ ﲤﻜﻦ ﻭﺍﻟﺪﻩ ـ ﺍﻟﺬﻱ ﻛﺎﻥ ﻋﻠﻰ‬.‫ ﺣﻴﺚ ﻛﺎﻧﺖ ﻧﺸﺄﺗﻪ ﰲ ﻇﻞ ﺍﻟﻌﻘﺎﺋﺪﻳﺔ ﺍﳌﺎﺭﻛﺴﻴﺔ‬،‫ﻛﺎﻧﺖ ﻣﻜﺒﻮﺗﺔ ﰲ ﺑﻮﻟﻨﺪﺍ ﺣﻴﻨﺬﺍﻙ‬

،‫ ﻭﺑﻌﺪ ﻋﺸﺮ ﺳﻨﻮﺍﺕ ﻣﻦ ﺑﺪﺍﻳﺔ ﻋﻤﻠﻪ ﰲ ﻧﻈﺮﻳﺔ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ‬.‫ﻣﻌﺮﻓﺔ ﺷﺨﺼﻴﺔ ﺑﺂﻳﻨﺸﺘﺎﻳﻦ ـ ﻣﻦ ﺇﻗﻨﺎﻋﻪ ﺑﺪﺭﺍﺳﺔ ﺍﻟﻔﻴﺰﻳﺎﺀ‬ ‫ ﺗﻮﱃ‬1998 ‫ ﺇﱃ‬1987 ‫ ﻭﻣﻦ ﻋﺎﻡ‬.‫ﻼ ﻛﻤﺎ ﻛﺎﻥ ﻳﻌﺘﻘﺪ‬ ‫ﻼ ﺃﻭ ﳑ ﹰ‬ ‫ ﻭﱂ ﳚﺪﻩ ﺛﻘﻴ ﹰ‬،‫ﺃﺧﺬ ﺍﳌﺆﻟﻒ ﻳﺘﻌﺮّﻑ ﺍﳉﺎﻧﺐ ﺍﻟﺮﺻﺪﻱ ﻟﻠﻔﻠﻚ‬

‫ ﻭﻳﺸﻐﻞ ﺣﺎﻟﻴًﺎ ﻣﻨﺼﺐ ﻣﺪﻳﺮ ﺍﻷﲝﺎﺙ ﰲ ﺍﳌﺮﻛﺰ‬.‫ﻻﺳﻮﺗﺎ ﺭﺋﺎﺳﺔ ﻗﺴﻢ ﺍﻟﻔﻴﺰﻳﺎﺀ ﺍﻟﻔﻠﻜﻴﺔ ﺍﻟﻨﺴﺒﻮﻳﺔ ﻭﺍﻟﻜﻮﻧﻴﺎﺕ ﰲ ﻣﺮﺻﺪ ﺑﺎﺭﻳﺲ‬

.‫ ﻭﺍﻧﻀﻢ ﺣﺪﻳﺜﺎ ﺇﱃ ﻣﻌﻬﺪ ﺍﻟﻔﻴﺰﻳﺎﺀ ﺍﻟﻔﻠﻜﻴﺔ ﰲ ﺑﺎﺭﻳﺲ‬،‫ﺍﻟﻮﻃﲏ ﺍﻟﻔﺮﻧﺴﻲ ﻟﻸﲝﺎﺙ ﺍﻟﻌﻠﻤﻴﺔ‬

‫ﻣﺮاﺟﻊ ﻟﻼﺳﺘﺰادة‬ BLACK HOLES, WHITE DWARFS, AND NEUTRON STARS: THE PHYSICS OF COMPACT OBJECTS. Stuart L. Shapiro and Saul A. Teukolsky. John Wiley & Sons, 1983. BLACK HOLES AND RELATIVISTIC STARS. Edited by Robert M. Wald. University of Chicago Press, 1998. GRAVITY'S FATAL ATTRACTION: BLACK HOLES IN THE UNIVERSE. Mitchell C. Begelman and Martin J. Rees. W. H. Freeman and Company, 1998. PROBING STRONG GRAVITATIONAL FIELDS IN X-RAY NOVAE. Jeffrey E. McClintock in Accretion Processes in Astrophysical Systems: Some Like It Hot! Edited by Stephen S. Holt and Timothy R. Kallman. American Institute of Physics, 1998. Preprint available at xoc.lanl.gov/abs/astro-ph/9802080 on the World Wide Web. ADAFs: MODELS, OBSERVATIONS AND PROBLEMS. Jean-Pierre Lasota in Physics Reports, Vol. 311, Nos. 3-5, pages 247-258; April 1999. Preprint available at aocac.lanl.gov/abs/astro-ph/9806064 on the World Wide Web. Scientific American, May 1999 (*) Unmasking Black Holes (**) Through Thick and Thin (***) Taking a Pulse، ‫ آﺎﻧﺖ اﻟﻨﺠﻮم اﻟﻨﺘﺮوﻧﻴﺔ ﺗُﻌﺮف‬،‫ ﺑﺴﺒﺐ ﻓﻲ ﺑﺪاﻳﺔ اآﺘﺸﺎﻓﻬﺎ‬،‫ﺑﺎﻟﻨﺠﻮم اﻟﻨﺒﺎﺿﺔ‬ ‫ﻧﺒﻀﺎت إرﺳﺎﻟﻬﺎ إﺷﻌﺎﻋﺎت ﻋﻠﻰ ﺷﻜﻞ‬. (****) A Black Hole Cought in the ACT (*****) Resisting Gravity (******) Down the Drain

.‫( ﻋﻼﻗﺔ ﺁﻳﻨﺸﺘﺎﻳﻦ ﺍﻟﺸﻬﲑﺓ ﺍﻟﱵ ﺗﺮﺑﻂ ﺑﲔ ﺍﻟﻜﺘﻠﺔ ﻭﺍﻟﻄﺎﻗﺔ‬1)

.‫ ﺑﺴﺒﺐ ﺳﺮﻋﺔ ﺩﻭﺭﺍﻥ ﳒﻤﻲ ﺍﻟﺜﻨﺎﺋﻴﺔ ﺃﺣﺪﳘﺎ ﺣﻮﻝ ﺍﻵﺧﺮ‬،‫ﻄﻠِﻖ ﺍﻟﺜﻨﺎﺋﻴﺎﺕ ﺇﺷﻌﺎﻋﺎﺕ ﺳﻴﻨﻴﺔ‬‫( ﺗ‬2) (‫ )ﺍﻟﺘﺤﺮﻳﺮ‬.‫ ﻭﻟﻜﻨﻬﺎ ﻋﺎﻟﻴﺔ ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﺍﻟﻔﻮﺗﻮﻧﺎﺕ ﺍﳌﺮﺋﻴﺔ‬،‫( ﻃﺎﻗﺔ ﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﺴﻴﻨﻴﺔ ﻣﻨﺨﻔﻀﺔ ﻣﻘﺎﺭﻧﺔ ﺑﻔﻮﺗﻮﻧﺎﺕ ﮔﺎﻣﺎ‬3) for Black Holes," by Kip S. Thorne; Scientific The Search" :‫( ]ﺍﻧﻈﺮ‬4)

.[American, December 1993


Binaries," by Edward P. J. van den Huvel-Jan van X-ray" :‫( ]ﺍﻧﻈﺮ‬5) .[1993 Paradijs; Scientific American, November

(‫ )ﺍﻟﺘﺤﺮﻳﺮ‬.‫ ﺍﻟﺬﻱ ﻳﺸﻤﻞ ﺍﻟﻔﻮﺗﻮﻧﺎﺕ‬bosons ‫( ﺍﻟﻨﻮﻉ ﺍﻷﺧﲑ ﻣﻦ ﻫﺬﻩ ﺍﳉﺴﻴﻤﺎﺕ ﻫﻮ ﺍﻟﺒﻮﺯﻭﻧﺎﺕ‬6) Equation of State," by H. Gutbrod - H. The Nuclear" :‫( ]ﺍﻧﻈﺮ‬7)

.[Scientific American,November 1991 ‫؛؛‬Stöcker .‫( ﺗﻘﺎﺱ ﻫﺬﻩ ﺍﻟﺴﺮﻋﺔ ﺑﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﻣﻔﻌﻮﻝ ﺩﻭﭘﻠﺮ‬8) .‫ ﺃﻱ ﻣﻮﺍ ﹴﺯ ﻟﻠﺴﻄﺢ‬،‫( ﻳﺸﲑ ﺇﱃ ﺟﺮﻳﺎﻥ ﺃﻓﻘﻲ‬9)

.Disks in Interacting Binary Stars"," by J. K Accretion” :‫( ]ﺍﻧﻈﺮ‬10)

.[January 1992 ،Cannizzo - R. H. Kaitckuck;Scientific American <>

 


كشف النقاب عن الثقوب السوداء