__MAIN_TEXT__

Page 1

Keane Southard

Sonata No. 1 for

Violin and Piano

(2010) (Duration: c. 10 mins.)


Program notes: My Sonata No. 1 for Violin and Piano was begun in August of 2010 and completed in November of the same year. Since writing a short duo for violin and piano while I was in high school (my first work I'd written that was not for solo piano and performable by myself), I have wanted to write again for this instrumentation. This summer I had been listening to works such as the Ives Violin Sonatas (which I think are absolute masterpieces), the Bolcom Violin Sonatas, the Stravinsky Duo Concertante, and the Ravel Violin and Piano Sonata and Tzigane. Just listening to these great works compelled me to start jotting down some ideas for a violin and piano piece which suddenly began to take shape into a fully formed sonata. One of these ideas actually came straight from a recorded piano improvisation I made the year before. What finally resulted is a single 10 minute movement in arch form with a good bit of jazz and blues in it. Keane Southard 2010


Performance instructions:

1. Unless otherwise indicated, the damper pedal should be used discreetly to allow for maximum clarity. 2. In general, harmonics are notated by either a diamond notehead (â—Š) which indicates the pitch where the finger should be placed to produce the harmonic, or by a small circle over the note intended to sound as a harmonic. For natural harmonics, both methods are used depending on context. If several different natural harmonics are used in succession, where to produce the pitch is given by the diamond notehead in order to show the easiest way to transition from harmonic to harmonic. In addition, the note intended to sound is given above the diamond notehead in parenthesis. Otherwise, natural harmonics are indicated with just the pitch to be sounded while the performer chooses how to produce the pitch. All artificial harmonics are designated with the stopped pitch as a regular notehead and the node to be touched a perfect fourth above the note with a diamond notehead. The note produced should be two octaves above the stopped pitch and is NOT notated in the score.


Sonata No. 1 for Violin and Piano

 

q = 56 Swung 8th notes always iq=qK e

           

 

p gently tolling...

   

4

mf

    

  

3

p

 

       

3

p

p

 

    



©2010

 

3

 

   mf   

      

  

    n

            

3

n p

         

II III

 

     

         

    

f

  

A tempo

p

 

        

                          

  

    

 



mf

n

poco rit. 7

    



   

    

       

Keane Southard

         

3

p

  


2 11

     mf

 

    

  pp

     3 (echo) 

  

3

  

  

     

    

p

   



 

  

 

    

f

           3

    

 

 

   

 

 

 

     

 

  

(p)

  

 

  3

mp

n

  

  

3

p

mf

3

    

poco rit.                              3 3

 

    

A tempo



mf

f

  

      

       



 (p)         

 

n p

         

p

        

poco

  

14

p

3

n

      

17

    



     

 

       mp

3

 

  


20

3

     

mp

                              (loco)   



 

3

p

   

p

   

    

 

 3

3

         

 

IV

  3

mp

                       

3

mp



23

  

          



mf

p

3                     3

 

  

       

mp legato

  

3

mp



  3

3

  p 

mf

26

 

                   

pp 3

  

3

3

 3

3

            mf

  

  3



  3

       3


4 (IV) 28

 

 

                   3

3

ppp

3

3

n

3

          

   

3

   

3



3

                      

3

 

3

 

3

        

 

3

 3

 

 







 n

mp

3

3

         

 n  

mp delicate

 

      

3

3

                  

 

3

bring out tenor melody

mp

  

p

  

30

32



  3



 

  3

3

  

       3

3

  





                3

3

 

3

3

    


  



34





 3                           3

3

3

     

 

 

36



 

 

3

3

38

3

 



 

 



 

3

    

 

 

              3

3

3

 

  

accel.

3

 

gliss

.

p

 3                      

   





         3

3

 

 

 3                  

      3               3 3 3

3

 

 







5

3

3

  

3

3

3

3

3

3

                    mp cresc. poco a poco

      

senza ped.


6 40



  

glis

mp

s.

 

3

s.

3

3

3



3

3

3

3

3

3

3

3

                                                

molto accel.

              3 3 mf

   

  

3

45

glis

f

 

III

mf

   

43

q = 80

II

3

      

3

                

3

 

3

3

  

 

(IV)

 

ppp



gliss.

           3 3 3 3                             3 3 3 3      f    


47

7

q = 126

  

                                                           

ff

              ff                   

   

Slowly (q=52) con rubato 51

        3

p

     

   

54

mf

        



  

           

  

sub. mp warm



    

   

       

  

 

3

n

p

mf

      

   3

n

mf

    



 

p

n

    mf

      

  

  3

p




8 accel. 57

   

    p

 

62

1

q = 136

 

3

2

        

3

3

3

3

4

15

etc. . .

gradually shorten duration of the note

3

mf

  

3

16

     3

ff

  

3

  

3

 

 

3

              3

3

3

                             3 3 3 3 3

3

3

3

mf

3  3        3               3                3

3

3

3

senza ped.

3 3 3                   

64

3

IV

     3

3

  

3

       3 0

3         3  3  3  3                             3 3 3          3                       

3

3

3

3

3

3

3


9 66

3

3

                  3 3

f

                       6 3 3

3

mp

    3      3 3              3 3           3            3   3                3

68

   

3

3

  

 

 

f

3

3

 

I II

      3

   3  3                    3 f 3 3                    3

70

0  0

3

3

 

  

3

3

           3

            3

3

3

       

3

3

 

  



3      3            3 3



 

3

I II

0 0

                  3

3

3

3

     3

      3

3

   

p

p

3  3      3          3   


10

 3   3   3   3             

3 3   3                   

72

3

mf

                                  3 3 3

3

3

3

3

3

mf

3 3    3      3                3               3 3 3 

74

           3

3

p

      p

3

      

3

3

                  

3

3

3

3

  

 

 

 

3

           3

3

3   3                 3 3

76

  

 

 

3     

 

ff 3



3

   3    3

3

3

      3

3

3

3

ff

pp

                   3

3

  

                       

ff

        3

3

3

3

3

pp

  

     3

3


11 79

3

3

3

3

3

3

3

3

                             mf

      mp 3

  3     

81

3

        

3

3

3

3      

3

3

3                      3     f 3               

3

3

3

3

3

3

3

3

3

3

3

3

                               

 3

  

  3    

3

            3

mp

3

3        

3

    3

f

3

3

3 3                   3

3

(as high as possible)

83

3

3

              

 3

3

        3

  3   

3

3

      3

sfz

       3

3

sfz

 



. glisss. s i l g

p

 p

black note gliss.

gliss.

 3 3 3 3                           3 3 3   




12

    

I II

f

3

 

0  0

85

3

3

3

         

mf

                                  f

3

3

3

3

   mf

   3                      3 3 3  3                

87

3

3

3

3

 

   f

         3

3



  

3

 

 3

 

3

 

 

     3 3                                  3 3 3 3 3 3

                   3 3 3

 



  

     

89

3

3

 

 

3

                      3

3

3

3

3

3

                       3

    

        

3

3

f

                    3

3

3

3

3

3

3

                      3


13

  91      

3

ff

3

3

              3

3

mf

                        3 3

3

3

3

      

   

    3 3                             3  3 3 3 3

   

3

ff

93

  

3

3

3

3

3

3

3

3

3

3

mf

              

   

     

 

 

3

95

  

f

3

3

3

3

3

3

3

3

             

   



      

3

3

3

3

3

3

3

3

             

 

3

  3

 

3

 

   

3

3

3

3

              3

3

           

3

3

3

         f

3

3

3

3

               ff


14 97

3

   

3

  3

3

3

3

3

3

3

3

3

 

  

 3

3

  

3

3

      

3

3



3

 

 

3

   

ff

mf

3

3

3

 

mf

 











3

  



3

 

                      3 3

3

3

3

    

3

3

mf

  

3







101

3

 3

 

 3

 

  3



   3



                3 3 3

3

3

3

                          3

 

3

3

3

 

        3

3

    

      

3

             

          

        

99

3

3



3

3

 

3

3

 

3

3

      3

3

3

    3


   

3

3

f

3

3

3

3

3

3

                            

   f

                     

                 

103

15

3

3

3

3

3

3

3

3

 3   3   3   3   3   3   3   3                               

105

3

     

     3

3

     3

 

  

  

  

ff

                               3

3

3

3

ff

3

 

3

 3  3  3                          

 

 

 

 

   3 3 3                       3     3          

      q = 120

        

   

 

       

    

3

3

107

 

  

        

ff

        3

 

3



               

 


16 110

  

  

  

                                                                                                                              113

   

 

                                           116

  

mp

     mf

  

  

 

            fff

fff

         

mp

     

  

                 

  

       



mf

   

  

mp

ff

                                  ff                           mf 

            


 

119

 

 

122

 

 

ff

   

 

                                                                     

   

    

 

     

      

poco rit.                     3

 

                                    

125

      

 

 

 

17

     

arco

f



f

 

pizz.           mp

3

3

3

      

mf

mf

A tempo

        pizz.

sffz

mp

p

    mp

    

   

          sffz

      arco

mf

            mp mf          

   arco          pizz.

mp



 mp



 

       

   

   

p


18 129

 

     

pizz.



arco

p

 

133

f

  

 

II

  

f

   

 

mf

   

 arco       

     p

f

mp

   

mp

p

mp

 

mp

     

    

   

  

 

   arco pizz.                    mp ff

sfz

       

     

pizz.

 

mp

          

                ff

f

            

                     pp

p

mf

mf

      

 

 

    

arco

mf

ff

mp

mp

f

ff

          

    

 

 

                      

      

      

137

  

f

     

         pizz.

       

  

mp

  

 


19

      

arco

141

 

      144

 

  147



    

mf

   

   

  

 

        

       

     pizz.

pizz.

   

sfz

mf

 

     arco

                

   

mf

          

      

                

ff

               

mf

  

     

port. port.

   

f

     3

          f  

       

   



  

     

sfz

 

  

 

  

 3   3           3                 3   3 3    

 

      


20 150

 

  



  

 

 

 

 3     3 3                                     3 3 3          

  

   

 

  

 

 

153

      156

3

3

 3 3 3                  3

   

3

     

  

 

 

3

          

   

3

   

 

      



                          

              

       

 

   



              

   

ff

 3 3 3                      

 

      

 

ff

   

 



      

             

 

 

  

  



  

                      3 3 3       3

3

3


  

159

 

 

              



  ss. i  gl             

accel.

 

 

 

  

 3 3 3             

fff

3

f

                                  3 3 3 3 fff               

 f

  3

3

  3   3   3                                  mf

162

21

q = 136

3

3

3

3

3

mf

sfz

3

   mf 

                3

3

 3     

3

    

3

sfz

   

3

mf

   

3

poco rall.  3 3 3 3 3 3 3 3 3 3                                       

165

3

3

sfz

3

  

 sfz

           3

3

    

      

mf

3

   f

 

             3


22

q = 126

168

        3

3

     

  

 

3

 

 5       

  

fff

                      3

  

3

3

        

           

 

       

          

            3

3

rit.

        3

   

    

3

  

        

  

 

3

3

 

  

3

fff

 

  

172

3

      

3

3

3

5

  3   3                

170

                   

 

3

              

     

3

           3

3

 

       3

       

 3   3  3 3                                 


23 q = 100

   174    

ffff

   

ffff

   

q=54

178

ppp

      

     







 3 3 3                      

sub. mp warm

  

 



               

3

f

  

legato   

  



gradually lengthen first triplet 8th note into a triplet quarter note



3

   

rit.



 



sim. 



mp

      3          3                             3 3 3 3 mp 3legato 3                            3


24

180









      3            3                         3 3 3 3 3 3 3                  

182











  3                 3                           3 3 3 3 3 3                     184

(q=26) q=50

molto rit.

 

             3     3

   

3

3



 

p

3

3

3

3

                  

       3

 

senza ped.

            p  


25

    

con sord.

187

 

 

n

3

mf

          

     3

n p

(loco)

    

mf

una corda al fine



191

   pp                       

p



  

            pp

n

poco rit.                      

3

p

3

f

 

       

 

  

  

mf

       

  

   

rit.

194

A tempo



     



3

p

n p

   pp                            

p

dim. poco a poco



mf

     

  

  3

pp

            


26

     

198



      3

mp

ppp

   pp                            

q = 42



202

 





p

 3  ppp                      

poco rit.

ppp

(loco)

 

n

 

                                  



ppp

as soft as possible

 

  

 

Profile for Keane Southard

Sonata No. 1 for Violin and Piano  

Performance materials available at http://keanesouthard.instantencore.com/web/page.aspx?title=Sonata+No.+1+for+Violin+and+Piano keanesoutha...

Sonata No. 1 for Violin and Piano  

Performance materials available at http://keanesouthard.instantencore.com/web/page.aspx?title=Sonata+No.+1+for+Violin+and+Piano keanesoutha...

Profile for ks391262
Advertisement