Page 15

1.3

Meetkundige rijen

3 Op ontdekking. Gegeven is de rij (un ) = 5, 10, 20, 40, 80, . . . Elke term is gelijk aan de vorige term maal een vast getal (namelijk 2). Daarom noemen we de rij (un ) een meetkundige rij.11 Bij elke term is het quotiënt met z’n voorgaande term gelijk aan 2. Daarom noemen we 2 het quotiënt van deze meetkundige rij, en schrijven dan q = 2. De rij (un ) ontstaat door te starten met 5 (de beginterm a) waarbij we telkens met 2 vermenigvuldigen (het quotiënt q). Door de vermenigvuldigingen niet volledig uit te rekenen, wordt het patroon zichtbaar (vul aan). Opsomming (un ) = 5 , 5 · 2 , 5 · 22 , 5 · 23 , 5 · 24 , . . . Elke term is dus gelijk aan de voorgaande term maal 2. Zo vinden we snel een recursief voorschrift (vul aan). ( u1 = 5 Recursief voorschrift (un ) un = un−1 · 2 voor n > 1 In de opsomming van de meetkundige rij merken we een patroon op (vul aan): u1 = 5 · 20

u3 = 5 · 22

u2 = 5 · 21

u4 = 5 · 23

Op die manier vinden we een expliciet voorschrift (vul aan). Expliciet voorschrift un = 5 · 2n−1 3 Definitie. Een meetkundige rij is een rij waarbij elke term gelijk is aan de vorige term maal een vast getal q. Als alle termen verschillend zijn van nul, dan is bij elke term het quotiënt (of de verhouding) met z’n voorgaande term gelijk aan q. Daarom noemen we q het quotiënt (of de reden) van de meetkundige rij.12 3 Modelvoorbeeld 1. Ga na of de volgende rijen meetkundig zijn of niet. Indien wel, geef dan het quotiënt q van de meetkundige rij. 1 1 (an ) = 9, −3, 1, − , , . . . 3 9

(cn ) = 7, −7, 7, −7, 7, . . . √ √ 2 1 (dn ) = 2, 2, 1, , ,... 2 2

(bn ) = 1, 2, 6, 24, 120, . . . Oplossing. a2 1 −3 =− = a1 9 3 1 a3 1 = − enzovoort = a2 −3 3 1 meetkundig met quotiënt q = − 3 b2 2 rij (bn ): = =2 b1 1 b3 6 = = 3 6= 2 b2 2

c2 −7 = −1 = c1 7 c3 7 = −1 enzovoort = c2 −7 meetkundig met quotiënt q = −1 √ d2 2 rij (dn ): = d1 2 √ d3 1 2 =√ = enzovoort d2 2 2 √ 2 niet meetkundig meetkundig met quotiënt q = 2 3 Eigenschap. Zij (un ) een meetkundige rij. Dan kan ze als volgt worden voorgesteld.13 rij (an ):

rij (cn ):

(1) Opsomming (un ) = a, aq, aq 2 , aq 3 , aq 4 , aq 5 , . . . waarbij a, q ∈ R ® u1 = a (2) Recursief voorschrift (un ) un = un−1 · q voor n > 1 (3) Expliciet voorschrift un = aq n−1

Bewijs van (3). Uit (1) volgt: (un ) = |{z} a , aq , aq 2 , aq 4 , . . . |{z} |{z} |{z} u1

u2

u3

11 De

zodat un = aq n−1 .

u4

benaming meetkundig is ontleend aan het feit dat, indien alle termen van de rij positief zijn, elke term het zogenaamde meetkundig gemiddelde is van zijn linker- en rechterterm. Zo is in dit voorbeeld de tweede term 10, terwijl het meetkundig gemiddelde van de linkerterm √ 5 en de rechterterm 20 gelijk is aan 5 · 20 = 10. 12 Het woord reden is een synoniem van het woord verhouding. Men kan eenvoudig aantonen dat een rij zowel rekenkundig als meetkundig is als en slechts als die rij een constante rij is: (un ) = a, a, a, a, . . . met a ∈ R. 13 Het expliciet voorschrift u = aq n−1 mag niet gebruikt worden als q = 0 en n = 1. n

VI-11

Profile for Koen De Naeghel

Deel VI Rijen (leerweg vier)  

Onderdeel van Wiskunde In zicht, een cursus wiskunde voor studierichtingen met component wiskunde derde graad algemeen secundair onderwijs g...

Deel VI Rijen (leerweg vier)  

Onderdeel van Wiskunde In zicht, een cursus wiskunde voor studierichtingen met component wiskunde derde graad algemeen secundair onderwijs g...

Advertisement